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The Arithmetic Class Number Formula

Absrtact: In this reading report, we first introduce the functional equation for
Dedekind-Zeta function following Hecke’s approach, then we combine the function equa-
tion for Dedekind-Zeta function and Dirichlet L-function to derive the discriminant-

conductor formula, at the end of this report we give the arithmetic class number formula.

1 Inrtoduction(Analytic Class Number Formula)

For a number field K, the Dedekind-Zeta function for K is defined by:

Cr(s) =2 5e
T
where I run through all integral ideals of Ok and N(I) denotes the ideal norm of I.

It can be easily seen that (x(s) defines a holomorphic function on Re(s) > 1, and

(k(s) admits the following Euler factorization:

CK(‘S) = H 1,N1(p)—s
peSpec(Ok)

Let Mk (t) denote the number for integral ideals in Ok with norm < ¢, then:

[e.9]

(k(s) =S mK(n)_Y?ZK(n_l)

n=1

However, it is not easy to calculate Mg (t). Let C' be an ideal class, consider

(x(5.0) = X wiby

IeC
where I run through all integral ideals in C, and let Mk (¢, C) denote the number of

integral ideals in C' with norm < ¢.
Let C~! be the inverse class of C, and let J € C~! be an integral class, then we have

the following bijection:

{integral ideal in C with norm <t} <—
{principal ideal divide by J with norm < tN(J)}
I—1J

For an integral ideal I, let Mk (¢, I) be the number of principal ideal divide by I with
norm < t. Clearly, Mg(t,I) is closely realated to the number of elements in I. More
precisely, Mk (¢, ) equals the number orbits of elements in [ with norm < ¢ under the
multiplication of Oj.

By the geometry of numbers, we have the maps

1



K 25 R x Cr2 2 Rratre
z = (01(x), ..., 00 (1), T1(2), .oy Ty ()

(In|oy(z)],...;In |0 (z)], 21In |7 (2)], ..., 2In |7, (2)])

where o071, ..., 0., are all real embeddings of K and 7y, 74, ..., 7, T, are all complex embed-
dings of K. Tt is easily seen that ry + 2ro = n = [K : Q.
It is well known that j(O) is a complete lattice in R™ x C™2 = R™, and j(Og)(j =

Inoj) is a lattice of dimension r; 4+ ro — 1 in R™ %72 hence we have:
Dirichlet’s unit theorem: As an abelian group, O = u(K) x Z"*m-1

where p(K) denotes the finite group of roots of units in K.

Let €1, ..., €r 4r,—1 be generators of the torsion-free part of Oy, we called them the
fundamental units of K, and let A\x(¢;) denotes the k-th component of j(g;). Tt can be
easily verify that all the (r147r3-1)-th minors of the (ri+ry)x(r;+72-1) matrix (X\;(g;))
equals, and we denote it by Ry, the regulator of K.

Let M =[0,1)j(e1)®...®[0,1) j(er,4m—1) ®R(1, ..., 1), it follows that the number of
orbits of elements in I with norm < ¢ under the multiplication of the fundamental units

equals the number of elements in I with norm < ¢ such that its image under j lies in

In~(M).

1 T2
Let S(t) = {(xl, ooy Ty 2y ey Zry) € R X C™2 2 [T ] I 125 < t},then Nk (t, 1) =
=1 j=1
[S@®NIn— (M)Nj(Ox )|
(K
O(tl_%), where dj denote the discriminant of K.

It follows that Mk (t,C) = ZEEMP Ry 4 Ot~ w), hence (x(s,C) can be analytic

(K [/ ldK |

continuation to Re(s) > 1 — l to a meromorphic function with simple pole at s = 1 and

271 (2mw)"2
Ress—1(k(s,C) = 21 (2m)" Rie RK . Hence we have:

I(K) N/ ldx

Analytic Class Number Formula:(x(s) can be analytic continuation to a

)= 271 (2m)"2Ric

. After some calculations (c.f. Appendix A), g (¢, SN
p K

meromorphic function on Re > 1 — 711 with simple pole at s =1 and

Ress—1(k(s) = w, where hx denote the class number of O.

K)l/ldx|

2 Functional equation for Dedekind-Zeta Function

In this section, we prove that for Zx(s) = A°T'(5)"I'(s)(k(s)(A = 277 ]y,

T

Zk(s) can be analytic continuation to an meromorphic function on C with only two

2



simple poles 0 and 1, and satisfies the functional equation Zx(s) = Zk(1 — s).
The crucial lemma we will use is that:

Lemma: For f,g: Rt — R, suppose:

M f(z) = ao, lim g(x) = bo

T—r+00

2.f(z) — ag, g(x) — by decrease rapidly at infty

1
3.there exists C,k € R,k > 0, such that f(z) = CtFg(t)

Then M(f — ag),M (g — by) admits holomorphic continuation to C — {0, k},with:

LM(f —ap), M(g — by) have simple poles at 0,k
2.Ress—oM(f — ap)(s) = —ag, Ress—p M(f — ag)(s) = Cby
3M(f — ag)(s) = CM(g — bo)(k — s)

where M(f) denotes the Mellin transformation, i.e. M(f)(s) = f0+°° fled

Let j(I)/Oj denote the set of orbits of elements of j(/) under the multiplication of

Oj, and we defines:

Ck(s,I) = N(la)s
an(I)/O;(

Hence for an ideal class C, fixs an J € C71, we have (x(s,C) = N(J)*Cx (s, J).
Observe that |N(a)| = ]_1[ loi(a)l 1_2[ |75 (a)[?, let r=r147r2, we have:
i=1 j=1

(g T (o)l 1) =
> foy exp(-n(L (@ + 2 3 5@t 0) I I

a€jl/OF

H [ty 441° H e

Consider the change of variables R, — R", (¢4, ...,t,) — (Inty,...,Int, ,2Int¢, 11,....,2Int, 4,,),

the integration becomes:

T

. ro T Z:ltk r
= 5o fepln(E @l + 2 3% (o)) exp(S) T dn

aE]I/OX Jj=1 k=1

(L,-s1)

SInce €1, ...y Epytro—1, forms a basis of R” with Jacobian Rk, we change the basis

again and gets:

s r1 r—1 1
= T 2R [ 5 (fys exp(—m(2 oul@)? TT los(ed) 4tF +
i=1 k=1

acjl/O)

ro r—1 1 r—1
23 7)) IT Irj(en) Peter)) TT dh)
7=1 k=1 k=1



—7r 00 § T1 r—1 1
- 2lu(2KR)I\< Jo t2 Z f[o 2] exp(— (; |U¢(a)|2kH1 o (er) [Pt +

eI—{0}
r—1 r—1
23 [ry(a) 2 T1 [ry(ex)15°)) TT d)
j=1 k=1 k=1
r1 r—1 1 ro r—1 1
Let f(a, A t) = exp(=m(3_ |oi(a)* T] los(en)|™ 7 + 23 |7(a)|* IT |7j(er)|t20),
i=1 k=1 j=1 k=1
and O(\,t,I) = > f(a, A\, t). Then by Poisson summation formula for lattice, we have

acl
O\t 1 1) = W\;WG(—)\J,IV) (c.f. Appendix B), where IV = {x € K : Tr(21) C Z}
is the dual ideal for I.We have IV = DI, where Dy is the differential ideal for K,
which satisfies N(Dg) = |dk].

Since the integration of §(\, ¢, I) on every fundamental meshs in R"™! equals, we have
f[ozrlé)\tfdk fOZ]Tle =\ t, I)d\. Let F(t,1) f[02r19>\tl’)d)\ then we have
Fit 1) = V), with F(+oo,]):f[0’2r_1 d\ =21,

)— N(I)m (fa
Let Z(s,1) = (=)D (£)"T'(s)"2Ck (s, I), then Zx (s, 1) = M(F(t,1)—F (oo, 1))(%),

2m2 72

by the lemma, Zx (s, I) admits analytic continuation to C—{0, 1}, with simple pole 0,1 and
2" R _ 1 Y
Ress—1Zk (s, I) = \u(KIK\/\d_K Moreover, we have Z(s,I) = N(I)\/\d_K|ZK<1 s, IV).
Since IV = D I71, for an ideal class C, let CV = D C7!, clearly, (x(s) =
S (x(s,CV). Then N(I)*Zg(s,I) = Y7, (1 — 5, 1Y) = |dg|3=*N(IV)"*Zx(1 —
c Vl0dk|
s, 1Y), hence |di |3 N(I)*Zx(s, 1) = |dg| = N(IV) 5 Zx(1 — s,1Y).
Let Zx(s) = AT(£)"T(s)"2Ck (s), then Z(s) = Y. |di |2 N(I)*Zk (s, I), hence Zy(s) =
T

ZK(l — S).

3 Discriminant-Conductor Formula

Observe that we have:
[(s)T(s+ 3) = 272 (2s)

Then Zk(s) = |dic| 3 (m=2T(5)) 72 (77 2T (H2)) "2k () satisfies the functional equa-
tion Zx(s) = Zx(1 — s).

Let x be an primitive Dirichlet character with conductor f,, it is well known that

L(s,x) = Z X1 satisfies the following functional equation, and hence adimts an analytic

contlnuatlon to C (c.f. Appdendix C):

A(Sa X) = W(X)A(l - S,Y)



where A(s, x) = (fX)SzéF(%)L(s,X), W(x) = 4;\(2)0_, 7(x) the gauss sum of x, and

— 1=x(=1)
= e

Suppose K/Q abelian, then by Kronecker-Weber theorem (c.f. Appendix D), K C

Q(&,) for some integer n > 0, where &, = exp(2%*). Hence for abelian K, we have:
Ck(s) =TT L(s,x)
X

where x run through every characters of Gal(K/Q) (c.f. Appendix E).
It follows that [[A(s,x) = [IW(x) [TA(l — s, x), which gives another functional
X

X X
equation for (x. Observe that x(—1) = 1 if and only if Fix(x*) C R, and since K/Q is
abelian, either 1y =n and K C Ror 7, = § and K ¢ R. Comparing the two functional

equation, we have (discrinminant-conductor formula):

(1] /= ldx|

HdMZMWA if KCR

Hr =i2y/|dx| f K ¢ R

4 Arithmetic Class Number Formula

In this section, we will gives explict formula of L(1, x) for a primitive Dirichlet char-
acter x, and refined the analytic classs formula for an abelian extension K/Q, which is

known as the arithmetic class number formula.

fx
For Re(s) > 1, we have L(s,x) = >_ x(a) Z (a+kf . Obverse that

fy ifn=amod f,

Z f(a n)b

0 else
(k+1) fx a=n)b Ix X(a e
Hence v =+ 3 Zf , then L(s,x) = > Z fX Z f" . Since
(a+kfy) Ix n=kfotl | b= a=1b=1
—vIX

for a nontrivial character, both 51des converges for Re(s) > 0, it follows that L(l,x) =

—ff R (1 - ;).

a=1b=

It is easy to verify that Z x(a)€b €4 = X(b)7(x), hence we have:

a=1

Ix
L(Lx) = =52 3 ¥0) (1 - €77)

ot



Obverse that:

1— & = 1 — exp(—222) = exp(—52) (exp( 22
b

) —
SIH(E) exp(m(% — %))

Since |1 — —| <1, we have In(1 — & ) =In| sin(}r—f)| + im(3 — %), hence we have:

X

Ix )
L(Lx) = =72 35 X(E)In sin(2)| — £8)

;

b
T(b) In|sin(>2)| = 0 if x(—1) = —1
fx

obverse that hence we have for every non-

(b)
(b)b =0 if (—1) =1

=|

Ix
2
b=1

Ix
2
b=1

trivial x:

L(1,x) = S .f
TOOmE S S if x(~1) = ~1

For trivial character g, it is obviously that L(s, xo) = ((s), since Ress—1((s) = 1,
we have Res,—1(x(s) = [[ L(1,x)

X#X0
Let G denote the group of characters of Gal(K/Q), and Gy the subgroup of even

1 it KCR

characters, then [G : Go| = .
fK¢ZR

It follows that:

(

2"hg Ry 1 H H Z .
— = )" X(b ln|sm )\ it K CR
K)|/|dx] x#xo TX x#xo b=1
n Ix —
2 —(-1)3" X (b) In | sin( )|HZ it K R
K)| V |dK| XFEX0 X x#x0 b=1 fX x¢Go b=1 fX

x€Go

By discriminant-conductor formula, we have:

1
-~ ifKCR

H 7(X) _JV |dx|
I Y K ¢R

XF#X0 —_—
Vdk|



Combined those results, we get:

b
HZ O) 1 sin(™2y) if K CR
X#xo b=1 fx
T ) 11 fzx—_w> I Jsin(20) T fz XOP g g g
2 x:go b=1 2 fX x¢Go b=1 2fx
X 0

5 Appendix A: Asymptotic Analysis for Mg (t, )

In this section, we will prove that Mg (¢, 1) = m ?ﬁ;ﬁ%ﬁ?a + Ot ).

The following lemma is crucial in our proof:

Lemma: Let D be a subset of R", and L a complete lattice in R™. Suppose the
boundary of D is (n-1)-Lipschitz parametrizable, then the number of fundamental meshs
of L which intersects with 9(tD) is O(t"1).

Let n~(t) be the number of element in j(/) whose fundamental mesh was contained
in In"H (M) N S(t) = ta(In" (M) N S(1)), and n'(¢) the number of element in j(I) whoes
fundamental mesh intersects = (In"'(M) N S(1)) nonempty, then n*(¢) — n=(¢) is the
number of elements whose fundamental mesh intersects with the boundary of ¢ (In~*(M)N
S(1)). By the lemma, we have nt —n~ = O(t'!"=).

Clearly, we have n~ < |u(K)|Ng(t, 1) < n*, and vol(j(I))n~ < vol(In™'(M) N
S(1))t < vol(j(I))n™, hence we have Ny (¢, I) = VIZI(;?)I \}?j_K“SN(I) +O(t )

Let My = [0,1) (1) ®...8[0,1) 5 (gr, 4rp—1)B(—00,0] (1, ...., 1), then In""(MNS(1)) =

In"'(Mp). And it is not hard to conclude that Vol(lnfl(Mo)) = 2" (2m)"? Rk, hence we

have proved that:

_ 2"1(2n)"2Rg 1-1
Mt D) = o O

6 Appendix B: Functional Equation for (A, ¢, 1)

1

In this section, we will prove that (\,t71, 1) = —L>—0(—\, ¢, IY).

N()+/ldxk]
The crucial result we will use is

Poisson summation formula:Let f € S(R"), and L a complete lattice in R™, then

> flz) = L) Z Ff(z), where F f denote the Fourier transform of f, vol(L) denote

reL



the volume of fundamental meshes of L, and LY denote the dual lattive of L (the lattice
generated by the dual basis for the basis of L, in particular, j(I)¥ = j(IV)).

Consider the gauss function, g(z) = exp(—n(z,x)) = exp(—m i r3), it is easy to
verify that Fg(x) = g(x). =

For an positive definite matrix A, let ga(z) = exp(—mn(z, Ax)). It is well known that
there exist an invertible matrix C' s.t. A = CCT, hence ga(z) = exp(—n(Cz,Cxz)), and

it is easy to vearify that Fga(x) = g(a-1 ( )-
w/|d t Al

71 —1 1
Hence for f(z, A, t) = exp(— (ZI il? H s () [Pt 42 Z |20 44]? H |7j(er)| M)t ),
=1 k=1 7=1 k=1
we have Ff(xz, A\ t) = t"2 f(z, — A1)
It follows that

0<)‘7t71): Z f(CL,)\’t):W\/%d_Id Z f(aa_)U%):e(_)‘a%:Iv)'

a€j(I) 3tv)

7 Appendix C: Functional Equation for L(s, x)

In this section, we will prove that A( ,X) = WAL = s,X), where A(s,x) =
(%)Sgéf(S”)L(s X), W(x) = T(X = 12X Without loss of generality, we will

5/ fx 2
assume Y is nontrivial.

Let 0(t,x) = >_ x(n) exp(—ﬁ(;—x)zt), then by poisson summation formula, we have:
ne”Z

fx

f 1
0(t, x) = GX_:] x(@) X exp(—m(n + £-)2) = 3 x(a) 3 72 exp(—7%) exp(251e) =

neL a=1 neL Ix
1 2 Ix
t72 3 exp(—7) le(a)fjﬁﬁ = ()t 362 %)

We can modify 0(¢, x) slightly by let 0(¢,x) = > x(n)exp(=Z*

nel Ix

“t), then we have

Z x(n) exp( ”: t), and hence

[(3)L(s,x) = (1)%M(0(t’X))(§), and we get the functlonal equation by the lemma in

section 3.

The difficulty occurs when x(—1) = —1, since for these y, we have 6(¢, x) = 0. This

is because x(n) exp(—%) is odd function for n.
Notice that 0(t, x) = >_ nx(n )exp(—%t) isodd, and T'(5£1) L(s, x) = (fi)sélM(G(téx)
nez p

it remains to find the functional equation for this 6(¢, x).

By poisson summation formula, we have:

8



m(ntz)?ty _ 1(x) ;-1 ~ mn? 2minx
— = ¢ —an 2minz
ngzx(n) exp(—=rp) = et ngzx(n) exp(—777) exp(=%)

Differential by x on both sides and let x = 0, we get:

mn?
t

2t _ T(X) _3 - —
ny(n)exp(——) = —=={" 2 ny(n)ex
r;Z X( ) p( Fx ) i/ Fx r;Z X( ) p( Fx )

Hence we get the functional equation of L(s, x) for x(—1) = —1.

8 Appendix D: Kronecker-Weber Theorem

In this section, we will prove the Kronecker-Weber theorem using some basic facts
about higher-ramification group.
Suppose K/Q is an abelian extension, for prime p|p, we define the j-th ramification

group to be:
Vi = {0 € Gal(K/Q) : o(z) =2 mod p’™', Vo € Ok}

Since K/Q is abelian, it is easy to see that ij coincidence for all p|p, hence we will
write VJ instead of Vy

The followings are the facts we will use in the proof of Kronecker-Weber theorem:

0
1.% can be embeded into F'.
. p
J
2.-%2_ can be embeded into the additive group of F, for j > 1.

YRR
VP

We call a field cyclotomic if it can be embeded into some Q(&,). It is obviously that
the composite field of two cyclotomic fields is also cyclotic, hence by the structure of finite
abelian group, we only needs to prove that every cyclic extension of prime power order is
cyclotomic.

First, we will prove that for a cyclic extension K/Q, s.t. [K : Q] = p™, suppose p
is the only prime that ramifies in [K : Q], then K is the unique subfield of order p™ of

Q6pme).

Let L be the unique subfiled of order p™ of Q{pm .1, we only needs to prove that
[KL:Q]=p™.

Since there exists an canonical embedding Gal(K'L/Q) — Gal(K/Q)xGal(L/Q),o
(0|, 0lL), hence KL/Q is abelian. Noticed that T, /0 C Ty x/q X 14,1/, Where Tj; de-
notes the ramification group for q, it follows that p is the only prime that ramifies in

KL/Q. Notice that the order of element in Gal(KL/Q) is less than p™, if KL/Q is

9



cyclic, then we must have [K'L : Q] < p™, hence we only needs to prove that KL/Q is
cyclic (this result only holds for p # 2).

Lemma: Suppose K/Q is abelian of order p" (p # 2), and p is the only prime that
ramifies in K/Q, then K/Q is cyclic.

Proof: Noticed that the fixed field of 7}, is an unramified extension of Q , hence
Fix(T,) = Q, that is, Gal(K/Q) = T, = V;) (hence p must ramifies totally) . Since
[T, : V] Ip — 1, we must have T, = V.

By the structure of finite abelian group, Gal(K/Q) is abelian if and only if it contains
a unique subgroup of order p™~!. Since N, VJ = {Id}, and [VJ: VJ*] =1 or p for
j > 1, there exist a subgroup of order p™~' of Gal(K/Q) (we will show that V? is that
group).

Let H be a subgroup of order p™~" of Gal(K/Q), we will proves that V> C H (hence

H = V2). Let L = Fix(H), then under the canonical map Gal(L/Q) = Gal(K/Q) , we have

V2
- K/Q c V2 .1,/0» hence we only needs to prove that V2 ro = 1d}

Since p ramifies totally in L/Q, we can reduces to deal with the p-adic case. Namely,
for L/Q, abelian,totally ramifies,[L : Q,] = p, we have Vp2 = {Id}. Since L/Q, totally
ramifies, we have L = Q,(mz). Let f(X) = ap + @1 X + ... + a,X? be the minimal
polynomial of 7, then f)(7;) = [[(7r — o(7)). Suppose Gal(L/Q,) = V”l then
v(fV (7)) = v(rg)UHHE=Y - Also v(;e have f(1)(r1) = ai + 2ay7mp 4 ... + pr? ", hence
v(fW(ry)) < v(mp)®~. Therefore, we must have j = 1, i.e. V? = {Id}. O

When p=2, we will use induction on m. It is well known that every quadratic fields is
cyclotomic. For m > 1, let L = Q(&gm+2 + 5;,i+2), then L/Q is cyclic of order 2. Noticed
that K and L has Q(v/2) as subfield in common (consider the maximal real subfield of
K). Hence [KL:Q] < 2*"~ 1 Choose a generator o of Gal(K/Q) and a generator 7
of Gal(L/Q) such that o|xnr = 7|k (this can be done by pigenhole principal). Then
(0, T) geneartes a subgroup H of Gal(K L/Q) of order 2. Let F' = Fix(H), then [F: Q] <
2™=1 hence F is cyclotomic by induction. Since HGal(KL/L) = Gal(KL/Q), we have
FL = KL, hence FL is cyclotomic and hence K is cyclotomic.

Then we will prove that for K/Q cyclic of order p™, K is cyclotomic. Let gy, ..., ¢ be
all the primes ¢ # p that ramifies in K/Q, and make induction on r. When r=0, we have
already prove that K is cyclotomic. For r < 1, let ¢ = ¢,, noticed that [V;IJ : qu“} =1
or ¢, hence Vq1 = {Id}. Tt follows that |T,| = p*|¢ — 1 and T, is cyclic. Let L be

10
10



the unique subfild of Q(¢,) of order p*, we will prove that LK is cyclotomic and hence
conclude that K is cyclotomic. Noticed that T, px C T, X T, k. Since [LK : Q] is a
power of p, T, 1 is also a cyclic group, hence we must have |T,, ,x| < p*. Also we have
T, 1x| = e(qrrlq) > e(qk|q) = |T, x| = p*, hence |T, Lx| = p*. Let Ky be the fixed field
of T, 1k, then q is unramified in K,/Q, hence K| is cyclotomic by induction. Noticed that
LN Ky is unramified, we have LNKy = Q, hence [LKy : Q] = [L : Q] [Ky : Q] = p* [Kj : Q).
Since [LK : Q] = [LK : Ko Ky : Q] = |T, x| [Ko : Q] = p" [Ky : Q], we have LK = LK,,

and hence LK is cyclotomic, which completes the proof of Kronecker-Weber theorem.

9 Appendix E: Sketch of Proof for (x(s) =[] L(s, x)
X

For an abelian number field K, by Kronecker-Weber theorem, there exist some n €
Z>1, such that K C Q(&,). Noticed that Gal(Q(&,)/Q) = (%), let G denotes the group
of dirichlet characters module n, then there exists a one-one correspondence between the
subgroups of G and the subfields of Q(&,), given by X < Fix(X?1)

Let X be the associates group of dirichlet characters for K, if we regard y € X
not a dirichlet character module n, but a primitive character, then we get the following

filteration for X.
K > Kp D Ky D Q

I I I I

{1dy ¢ D, Cc 1T, C Gal(K/Q)
I I ! !

X > Xp D Xr O {xo}

where D, and T}, are the inertia group and ramification group for a prime p, Xp =

{x e X :x(p) #0}, Xr ={x € X:x(p)=1}.

It follows that for every prime p, we have [ ] 1= p)_s = (1_p,§<p|p>s) iy
plp -5

Hence we have (x(s) = [] L(s, x)-

x€X

10 Appendix F: The Relative Class Number Formula

Using the arithmetic class number formula, we can compute hyx Ry for every abelian

number field K easily. However, if we want to compute the class number hg, we must

11
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compute Ry in advanced. Unfortunately, it is generally not easy to compute Rk, e.g.
for real quadratic field Q(y/n), computing Ry is equivalent solving the Pell equation
X? —nY? = 1, which is proved to be a NP-problem (c.f. Manders and Adleman,NP-
complete decision problems for binary quadratics,] Comput System Sci 16(1978)168-184).

However, for totally imaginary abelian number field K, there exist a method to
compute a factor of hx directly. In the followings, we let K a totally imaginary abelian
number field K, K = K N R, h the class number of K, A" the class number of K*, R
the regulator of K and R" the regulator of K.

Let H and H" be the Hilbert class fields for K and K. Noticed that K/K™ is totally
ramified at archimedean primes, hence K N H* = k*. Therefore, h* = [Ht: KT| =
[KH' : K]|[H: K] = h, ie. h*|h. We write h~ = ;2 and calls it the relative class
number.

By arithmetic class number formula, we have:

% ) o=
:‘M(Q)’HZ é(l|sm HZX

x#x0 b=1 ¢Go b=1 X
XEGO
b
h*R" = H E ln|sm —)|
x#x0 b=1 fX
x€Go

Hence we have:

— _ _h _ RT|uX)]
he = = B HZ%
X%Gobl

Let U, U™ be the unit groups of K and K, let Q = [U : u(K)U™T]. In the followings,

we will prove that Q =1lor2and £ = % with r = 1 [K : Q] — 1, and conclude that

T =QuK)| ] Z )% ( The relative class number is also important, e.g. it can be
X Gob 1
proof that p|h(Q(&,)) if and only if p|h~(Q(¢,)), hence p is a regular prime if and only if

plh=(Q(&,)) c.f. Washington, Introduction to Cyclotomic Flields)

Now we prove that @ = 1 or 2. Clearly, €/ € u(K) for € € U. Consider the map ¢ :
E — “((K)L e g/e+u(K)% Noticed that € € Ker(¢) if and only if e = —££2 for some & €
p(K), if and only if e€ = —&¢ for some & € pu(K)(i.e. e € UT) if and only if e € u(K)U™.
Hence Ker(¢) = p(K)U™T, and we conclude that Q = [U : u(K)U]| [u(K) : u(K)?| = 2,

ie. @ =1or 2.

Then, we prove that R—Ii = % For an independent subset 1, ..., &, of U, let Rk (e1, ..., &)

denotes the regulator with respect to €1, ...,&,.. Now let ¢4, ..., &, be the fundamental unit

12
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for K, then it forms a independent subset of U. It is clearly that Rg(eq,...,&,) =
2" R+ (g1, ...,&,) = 2"R™, hence we only needs to prove that ﬁ =Q.

Let 7y, ...,n, be the fundamental unit for K, then e; = (] n;"’)&; with & € p(K).
i=1

Then log |ox(¢;)| = > aijlog|ok(n;)|, hence R 5 = | det(a; ;)|. By the structure of
i=1

Ry (e1,.-6r

~~~~~
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An Introduction To An Algorithm Factoring Numbers With Elliptic
Curves

Song Dianyi; Yu Penghao
June 2022

1 Abstract

In this article we are going to introduce a new algorithm factoring integers proposed by
H.W.Lenstra. It is a method depending on the use of elliptic curves, and it is faster than ex-
isting methods when the number has smaller prime divisors.

2 Introduction

This article is divided into three major parts. The first part is devoted to show the basic
properties of elliptic curves, and the second part will introduce the structure of the algorithm,
then the third part will give an analysis of the method, including its success probability as well as
its efficiency.

3 Basics of Elliptic Curves

In this article, we denote by [}, a finite field with cardinality of p, and by A* the group of units
of a ring A with 1.

(3.1) An elliptic curve over field K is a pair of elements a,b € K with 4a® + 27b* # 0. These
elements are thought of as the coefficients in the Weierstrass equation

v =a3+ar+0b
We denote such elliptic curve (a,b) by E,, or simply by E. The set of points E(K) of such an
elliptic curve over K is defined by
E(K)={(x:y:z2) € PXK):y*z = 2>+ axz® + bz%}
Here P?(K) denotes the projective plane over K, and (z : y : z) denotes the equivalence class
containing (z,y, z).

Let E be an elliptic curve over K, then the zero point of the curve is the point (0 : 1 : 0),
denoted by O. The other points, (z : y : 1), where z,y € K satisfy the Weierstrass equation
y? =23 + ax + b.

The set E(K) has the structure of an abelian group with additive group law, which is defined
as follows. First, O is the zero element satisfying O + P = P+ O = P for all P € E(K). For
two non-zero points P = (z1 : y; : 1) and @ = (w9 : y2 : 1), P4+ Q = O if and only if z; = x5
and y; = —yy. Otherwise, let A € K be determined by A = (xyi%";) if P#Q and A\ = % if
P =@, and then let v = y; — Ax;. Then P+ Q = R = (x3 : y3: 1), where 23 = \> — 2, — 2, and
y3 = —Ax3 — v. Such operation can be easily proven by Vieta’s Theorem to be well defined.
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(3.2) For two elliptic curves E = E,;, and E' = E,  defined over K, an isomorphism E — E’
is defined to be an element v € K* satisfying both ¢’ = u*a and & = u®. Any isomorphism
u: F — E’ induces an isomorphism E(K) — E’(K) of the abelian groups that sends (x : y : 2) to
(u?z : udy @ 2), denoted by u as well.

An automorphism of an elliptic curve £ over K is an isomorphism E — E. The set of auto-
morphisms of F is a subgroup of K*, denoted by AutE or AutxE. And it can be easily calculated
that #AutE must be 2 or 4 or 6.

(3.3) The number of elliptic curves over F),, namely the number of pairs (a,b) € F, x F, with
4a3 + 27b* # 0, can be easily calculated to be p? — p.

(3.4) For any elliptic curve E over F, we have by a theorem of Hasse

#E(Fp)=p+1—t with —2,/p<t<2/p

Conversely, if p is a prime greater than 3 and ¢ an integer satisfying |[t| < 2,/p. Then the
weighted number of elliptic curves E over F, with #E(F,) = p+ 1 —t up to isomorphism is given
by a formula

#{E : Eelliptic curve over Fp, E(Fp) = p+1—t}/ =5 = H(t* — 4p)

(3.5) Then we use (3.3) to count the set
{£ : E elliptic curve over Fy,}/=p
of isomorphism classes of elliptic curves over F},. Since the number of elliptic curves isomorphic to
a given elliptic curve E is #F," /#AutE = (p — 1)/#AutE, summing over the representatives of
the isomorphism classes and dividing by (p — 1) we get
1
2 e =P
We express this by writing
#{E : E elliptic curve over F,}/~p = p.
In similar expressions, the notation #’ denotes the weighted cardinality, the isomorphism class of
E being weighted (#AutE)™!.

(3.6) In this part some properties of binary quadratic forms will be introduced.

Let A be a negative integer satisfying A = 0 or 1(mod4). A positive definite integral binary
quadratic form of discriminant A, or briefly a form, is a polynomial F' = aX? + bXY + c¢Y? with
a,b,c € Z,a > 0,b*> — 4ac = A.

An isomorphism from a form F = aX? + bXY + c¢Y? to a form F' = o/ X? +VX'Y' + Y"?

can be expressed by a matrix (3 g) with «,(,7,0 € Z, ay — 0 = 1. In fact, for a better

understanding ,we may take X' = aX 4+ Y and Y’ = yX + §Y.

Using some knowledge of linear algebra, the set of automorphisms of a form F is a subgroup of
the group SLy(Z) with integral entries and determinant 1; such subgroup is denoted by Aut F. It
can be easily shown that AutF' is a cyclic group of order 2 or 4 or 6.

For fixed A, the set of equivalence classes of forms of discriminant A is finite, and the Kronecker
class number H(A) of A is defined to be the weighted cardinality of the set defined as follows:

H(A) = #{F : F is a form of discriminant A}/ ~
with ~ denoting equivalence and the meaning of #’ being making sums with weight, where the
equivalence class containing F being counted with weight (#AutF)~!, similiar to the definition in
(3.5). It is not hard to show that H(A) > 0.

A primitive form F = aX? + bXY + ¢Y? is a form with ged(a,b,c¢) = 1. h(A) denotes the
weighted cardinality of the set of equivalence classes of primitive forms of discriminant A. By
sorting forms with ged(a, b, ¢), it is easy to see that
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H(A) = h(A/d?)

d
for all d satisfying d|A and A/d? = 0 or 1(mod 4). The largest of such d is called the conductor
f of Ajand Ay = A/ f? is the fundamental discriminant associated to A; it can be shown that the
d's in the above summation are exactly the positive divisors of f.

4 The Structure of The Factoring Algorithm

To unitize the notation in this section, We call a divisor d of a positive integer n non-trivial if
1 < d < n. And in this section we will describe the structure of the factoring algorithm attempting
to find a non-trivial divisor of a positive integer n, or affirm it to be a prime number.

(4.1) To describe the algorithm one needs the definition of Elliptic curve modulo n, and in this
case n is a positive integer (that is not necessarily a prime number).

Consider the set of all triples (z,y,2) € (Z/nZ)? for which z,y, z generates the unit ideal of
Z/nZ, with the group of unit (Z/nZ)* acting on this set by u(x,y, z) = (uz,uy,uz). The orbit of
(z,9,2) is denoted by (z : y : ), and the set of all such orbits by P?(Z/nZ).

For a,b € Z/nZ, the cubic curve E = E,,, defined similarly to the one in (3.1), is defined over
Z/nZ by the equation

y?=a+ar+0b
The set of points F(Z/nZ) of such curve over Z/nZ is defined by
E(Z/nZ)={(x:y:z2) € P(Z/nZ):y*z = 2° + axz® + b3}
If 6(4a® + 27b%) € (Z/nZ)* then E is called an elliptic curve over Z/nZ.

For general n, there is a partially defined ”pseudo-addition” operation on a subset of E(Z/nZ)
defined in the following part. For notations, we denote the point (0 : 1 : 0) of P*(Z/nZ) by O,
and we denote by V;, the subset of P*(Z/nZ) defined as follows:

Vo=A(x:y:1):z,ye (Z/n2)} U{O}

For P € V,, and a prime p dividing n we denote by P, the point of P?(F,) obtained by reducing
the coordinates x,y of P modulo p. And it is easily observed that O, = P, if and only if P = O.

(4.2) In this part the algorithm performing ”pseudo-addition” will be presented, and this part
of the algorithm will be frequently used in the whole algorithm.

Given n € Z<1,a € Z and P,Q € V,, the algorithm will either calculate a non-trivial divisor d
of n, or determines a point R € V,, with the following property: if p is any prime dividing n and
satisfies that there exists b € F}, such that

6(4a® +27v%) £ 0 for a = (a mod p),
Py € Eap(Fp), Qp € Eqp(Fp),
Then R, = P, + @, in the group Ej;;(Fp), with the addition defined in (3.1).

Note that the application of the algorithm does not require n to be a composite number, nor
do we need to know the prime divisor of n beforehand.

When calculating, if P = O put R = @ and stop, or if P # O and Q = O put R = P and stop,
these are the trivial cases. Then in the remaining case P # O, Q # O, let P = (x1 : y; : 1) and
Q) = (2 : y2 : 1). Then use the Euclidean algorithm to calculate the value of ged(x; — x9,n). If
this ged is not 1 or n, denote it by d and stop. If ged(z1 — z2,n) = 1 then the Euclidean algorithm
also gives the value of (x; — x5)~!; in this case put

A= (y1 —ya)(z1 — 22) 71,
$3=/\2—$1—1172, Y3 2)\($1 _373)_91
R=(xz3:y3:1)
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and stop. Finally in the case that ged(x; — x9,n) = n, so that x; = x5 in Z/nZ. Calculate
gcd(yy + yo,n). If it is not 1 or n, denote it by d and stop. If it is n (so that y; = —ys), put R = O
and stop. If ged(yy + yo,n) = 1, put
A= (Bx® +a)(y +y2)7,
$3:)\2—$1—1’2, ysz)\($1 —1’3)—y1
R=(z3:y3:1)

and stop. This finishes the description of this part of the algorithm. And its correctness can be
checked by the formulae stated in (3.1), as they go through similar process.

(4.3) In this part the algorithm performing multiplication (a number in Z* multiplying a point
on the curve) will be introduced.

By repeating the algorithm of addition presented in (4.2), an algorithm of multiplication can
accomplish the following. Given k € Z* n € Z.1,a € Z/nZ and P € V,,, it either calculates a
non-trivial divisor d of n, or it determines a point R € V,, with the following property: if p is any
prime dividing n and satisfies that there exists b € F}, such that

6(4a> + 270%) #0 for a = (a mod p),
Pp € E&,b(FP)a
then R, = k- P, in the group E;;(Fp). If this algorithm determines a point R with the stated
property, then it is denoted by kP.

If k is given as k = kjko, then one can calculate kP by kP = ki(koP). Suppose that k is given
as a product

k=]re",
where r ranges over a certain set of positive integers with e(r) being positive integers. It can be
easily seen that to multiply a point P by k times it suffices to perform e(r) multiplications by r
for each r. To make the proof in the appendix stand, we assume that the multiplications by r are
performed in increasing order of r.

Remark: To calculate r- P, a good way is by using the binary representation of r, which takes
the time of O(log(r)M(n)), with M (n) being the time of performing one round of addition.

(4.4) In this part we will introduce the algorithm factoring with elliptic curves with operations
stated in (4.2) and (4.3).

(4.4.1) When factoring with one curve, let n,v,w € Zs; and a,z,y € Z/nZ be given. An
algorithm attempting to find a non-trivial divisor d of n is described below.

For each integer r > 2, denote by e(r) the largest integer m with ™ < v + 2y/v + 1, and put

k= ] re™.
=2

Let P = (z :y: 1) € V,, calculate kP with the algorithm in (4.3), If this attempt fails then a
non-trivial divisor d of n is found, and the algorithm halts. If kP is calculated successfully then
the algorithm halts as well, with the message that it fails to find a non-trivial divisor of n.

(4.4.2) The whole structure of the algorithm is based on (4.4.1), which is mainly applying (4.4.1)
repeatedly on different curves. Let n,v,w, h € Z-; be given, a probabilistic algorithm attempting
to find a non-trivial divisor d of n will be described in this part.

First we suppose that the random number generator used in this algorithm can draw the triple
(a,z,y) € (Z/nZ)? with equal probability given to each triple, and that successive calls to the
random number generator are independent.

Then for one round, draw three elements a,z,y € Z/nZ at random, and apply the algorithm
(4.4.1) to n,v,w,a,z,y (the notations are the same as in (4.4.1)). If the result is a non-trivial
divisor d of n, halt the whole calculation with the result found. Otherwise, repeat the operation in
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the next round from drawing three elements a,z,y € Z/nZ again. The algorithm will halt once a
non-trivial divisor of n is found, otherwise it will halt when it has already been applied h rounds.

(4.5) For a better understanding of the algorithm, the number v should be thought of as an
upper bound of the divisor d one is trying to find, the parameter w is corresponds to the time one
is willing to spend on a single curve, and h is the number of curves that one tries.

It should be noted that the success probability of the algorithm is not 1. It is a function of
w and h, which increases as either of w or h increases, with the optimal choice discussed in the
proofs in the Appendix.

The time efficiency, which corresponds to the success probability, can be stated as follows:

(4.5.1)There is a function K : R~g — R~ with

K(l’) _ e\/(2-1-0(1))logacloglogac for T — 00
such that the following is true. Let n € Z-; be an integer that is not a prime power nor divisible
by 2 or 3, and let g be any positive integer. Then algorithm (4.4.2), when applied with suitable
values for v, w, h, can be used to find, with the success probability at least 1 — ™9, a non-trivial
divisor of n within time

9K (p)M(n)
where p denotes the least prime divisor of n and M (n) = O((logn)?) being the time needed to
perform a single operation of addition on a curve.
It can be easily noted that the excluded cases in the statement are easy to be checked within
a far smaller amount of time as n — oo, so the algorithm can actually be applied to any positive
integer n. The proof of such statement, as well as the suitable choice of the parameters, will be
left to the appendix.

5 Appendixl: The Preparation of Mathematical Knowledge

(5.1) Recall the formula H(A) = $;h(A/d?) and the notations defined in (3.6).
The quadratic character x : Z — {0, 1, —1} associated to A is defined by
x(1) = AY2(mod 1), x(1) € {0,1, =1} if 1 is an odd prime
x(2) =0,1,—1 for A = 0(mod 4) 1(mod 8) 5(mod 8)
x(mn) = x(m)x(n)

With the analytic class number formula for h(A), we have

h(A) = EL(l,x), where L(s, x) = Z X(:L)

fors € C,Re(s) >0

2 n

Recall that Ay = A/f?, then by induction we can obtain a formula

— xo(l)
L(LX) - L(LXO) H(l - T)

Uus

with [ ranging over the primes dividing f and xo being the character associated to Ay. Combining
the formulae with H(A) = L4h(A/d?), we could have

1) = Y2 L)

with ¢ : Z* — R defined by
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Ly =45 Ek,l, l+ll:21l7k, if 1 is prime, £ > 1 and xo(l) = 0,1, —1

2. Y(mn) = Y(m)yY(n), if ged(m,n) =1

Let ¢(f) be Euler’s function, it can be shown that 1 < ¢ (f) < (f/4(f))? = O(log(logf))?

Furthermore, it can be shown that L(1, xo) = O(log ||Aol|). The proofs of both of the inequalities
above are beyond our reach. And applying the theorem given in the book of K.Prachar, we can
find that there exists a positive effectively computable constant ¢; such that for all z € Z-q,there
exists A* < —4 with the property that

L(17X0) Z

U if |Ag| < 2, Ag £ Ax
z

(5.2) Proposition: Directly following from the inequalities above, we have the inequality that
there exists positive constants ¢, c3 such that for each z € Z 1 there exists A* = A*(z) < —4 such
that

12

< H(A) < 3v/—=A-log|Al - (loglog |A])?,

log z
which holds for all A € Z with —z < A < 0,A =0 or 1(mod 4), with notice that the left inequality
may be invalid if Ag = A*. |

(5.3) Proposition: There exist effectively computable positive constants ¢y, c5 such that for
each prime number p > 3, the following two statements are valid:
(a) If S'is a set of integers s with |s — p — 1| < 2,/p, then

#{E : E elliptic curve over Fp, #E(Fy) € S}/ 25 < cy - #S - \/p - log(p) - (log(log(p)))?
(b)If S is a set of integers s with [s —p — 1| < /p, then

#'{E : E elliptic curve over Fy, #E(Fy,) € S}/ =p > c5(#S — 2) - \/p/log(p)

Proof We know from the conclusion of (3.4) that #'{E : E elliptic curve over Fp, #E(F},) €
§Y Za,= S oog Hi(p+1— 5 — 4p)

Proof of (a) take z = 4p and (5.2), we have #{E : E elliptic curve over Fy, #E(F},) €
SH Zp= Yo H((p+1 - 5P —4p) < X oegocs- /Ip—(p+ 1= 5 - log(dp — (p+ 1 — s)?) -
(loglog(4p — (p+ 1 —5)%))* < ey - 45 - /p - log(p) - (log(log(p)))?.

Proof of (b) Also,we take z = 4p. It suffices to show that there are at most two integers t,
|t| < \/p, for which the fundamental discriminant associated to t* — 4p equals A*. In summation,
at most 2 ”s” is not suitable. Then we have #'{E : E elliptic curve over Fp, #E( p) €S} =Zp=

ZsES H((p+ 1= 8)2 _4]9) 2 Zsuitableses H<<p+ 1 - S>2 _4]?) Z Z el o) > (#S_ 2)

log(4p)

v/ log(p). _

(5.4) Modular curves. (This part is beyond reach of our knowledge as well, so we keep faithful
to the statements given by Lenstra and assume them to be valid in order to continue the proof) We
wish to estimate the weighted number of elliptic curves E over F, for which #E(F,) is divisible
by a given prime number /. For this purpose some results about the modular curves x() and x; (1)
will be shown.

Let p be a prime number, p > 3 and [ a prime number different from p.We can consider pairs
(E, P) to analogy the isomorphism of E, which consists of an elliptic curve E over F), and a point
Pe E(Fp) of order I. Two such pairs (E, P) and (E’, P') are said to be equivalent over F), if there
exists an isomorphism v : £ — E’ over F), that maps P to P’. We denote the set of equivalence
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classes by Z(1)(F},). But if u is allowed to be in the algebraic closure F, of F), rather than in F), a
map E(F,) — E'(F,) is also defined. So we obtain the definition of equivalence over F,. The set
of classes of this equivalence relation is denoted by Y;(!)(F,). There is an obvious surjective map
Z()(F,) = Yi()(F)

If C' is a complete non-singular irreducible curve of genus g over F, then by Weil’s inequality
the cardinality of the set C(F},) of points of C' over F, satisfies

[#C(Fp) —p— 1 < 29v/p

Applying this to C=x1(l), using the properties of modular curves, it can be obtained that

#Y1(1)(F,) = p+ O(p'?) (1)
Applying Weil’s inequality to C' = x(I), we can find by using properties of modular curve that
#Y ()(E,) = p + O(p'/?) (2)

Remark: The proof of both of the above statements are beyond reach of our knowledge, so we
put them here without giving a proof.

(5.5)Proposition: Let p,l be primes, p > 3, | # p.

(a) Let E be an elliptic curve over F, and P € E(F},) a point of order [. The subgroup of all
u € Autp, E that send P to P is denoted by Ap p. Then the number of elements of Z;(I)(F,) that
map to the class of (E, P) in Y;(1)(F},) equals #Ag p

(b) If p = 1(mod 1), with a primitive ['" root of unity £ € F, being chosen. Let E be an elliptic
curve over F, ,and @, P € E(Fp) are points of order [ satisfying e;(P, Q)) = &, where ¢; denotes
the Weil Pairing. Denote by Ag pg the subgroup App N Apg of Autg,(E£). Then the number of
elements of Z(l)(F},) that map to the class of (E, P,Q) in Y(I)(F,) equals #Ag pg.

Proof of (a) Let E be given by a,b, and let P = (x : y : 1). If E', P is another such pair,
given by o', V', 2',y’, then (E, P) and (E’, P') correspond to the same element of Y (l)(F,) <=
(a0, 2, y') = (u'a, usb, uz, udy) for some u € F,", and to the same element of Z;(1)(F,) <= u
can be take in Fj. It follows that the number of elements of Z;(l)(F,) mapping to the class of
(E, P) equals index [Bg p : Cg p|, where the subgroups Bg p, Cg p of F; are defined by:

Brpp={ue 15; Auta, ub, vz, vy} C F,}

4

Cpp = {u € F; : (u'a, u’b, v’z,u’y) = (v'a,v°b, v*z, v’y) for some v € F}}

For Bg,p, note that for u € F¥, u*a € F, <= (ua)’ = u*a, and similarly with u5b, u?z, u®y;
hence the map that sends u to u?~! maps Bg p onto the group Ag p of all u € Autpp(E) sending
P to P. It is obvious that the kernel is F;, so that #Eg, = #App - #F;

It can be shown that Cp p is generated by Fy and Ag p, so that #Cg p = #F;-#Ap p/#(Ap.pN
F), and note that Ag p N F is just Ag p.

This proves (a). Although the operations with Weil pairing are beyond reach of our knowledge,
we will be faithful to the author’s understanding of the correctness of (b). n

Remark: With the results obtained in the propositions above, we can obtain the following

results successively, and the final results stated in (5.8) will be directly used in analyzing the al-
gorithm.
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(5.6) Proposition: Let p,l be primes, p > 3,1 # p. Then the number
#'{E : E elliptic curve overF,, #E(F,) = 0(mod 1)}/ =g,

equals
p

T (Ip'?), if p=1(mod 1)

% + O(Ip'?), otherwise

Note: This property gives a ”probability” in random selection of elliptic curve. Recall that
#{E : E elliptic curve over Fp,}/=p = p. Dividing the corresponding terms on both sides of the
equation, then #E(F,) =0 (mod 1) tends to /(I — 1) and [/(I> — 1) in these condition as above.

Proof: Let Y;, Z; denote Yi(I)(F}), Z1(1)(F)) defined in (5.4). Similarly we can use Y, Z to
denote Y (I)(Fy), Z(1)(F}). A theorem in reference|2] says that the group E(F,)[l| ={P € E(F,) :
[P = O} has order [ or [2. Then we can suppose W to be the set of isomorphism classes of elliptic
curves E over F, with #E(F,) = 0 (mod [). W can be written as W = W, UW,,with W; consisting
of the classes of those E with #E(F,)[l] =*, so Wy = & unless p = 1(mod 1).

The map Z; — W mapping the class of (E, P) to the class of E is clearly surjective. (E, P)
and (E’, P') map to the same element <= P and P’ belong to the same orbit of Autp, F; also,
the size of the orbit is exactly the index [Autp, E : A p| = #Autp, E/#Ag p, with Ag p defined
n (5.5). For a fixed E, we use the orbit summation, we have

#AE P

Then dividing # Autp, E and summing over E in Z; we have

Z#AEP (L= 1) - # Wy + (I = D)# W,

By(5.5), Z is a "fiber” of Y, and the left-hand sum add for #Ap p times, then the left-hand
sum equals #Y7, using formula (2) in (5.5) it can be shown that

(=1 #Wi+ (P =1) - #Wa =p+O(*/p) (3)
If p # 1(mod 1),then this means that
(1= 1D)#W =p+ O(*p),
For the second equation, similarly use (5.5)(b) with (P, Q) being a Weil pair, we will know

In the same way we can get » _, m =1(I* = 1) - #' WS>, similarly by using equation (2), we
get (12 — 1)# Wy = p+ O(I?,/p). Hence, solving a linear equation in two variables, we have

W = #Wy 4 Wy = (L D W+ (= D W) — (10— 1) W)

21



= (1 — ) + OV

[
(5.7) Proposition: Now we give some bound to be used in the analysis of the algorithm. There
exists ¢g such that for all pairs of prime p, [ with p > 3 we have

#{E : E elliptic curve overF,, #E(F,) # 0(mod 1)}/ =5 > cep

Proof: We only need to minus the inappropriate situation to show that they do not exceed the
bound. The left hand side is ((I —2)/(l — 1))p+ O(ly/p) if p# 0,1 (mod 1), and ((I* =1 —1)/(I* —
1))p + O(ly/p) if p = 1(mod 1). Let ¢7 be an appropriate coefficient, satisfying that when [ < e7p,
the proposition is correct.

Using (5.3)(a) on the set S = {s € Z : [s —p — 1| < 2,/p, s = Omod 1}, which has cardinality
O(1+./p/1), Then we only have the cases of p satisfying p < ¢g or [ > ¢o(log p)(loglog P)* > ¢71/p
remaining to be discussed. But in either of these cases, p is bounded, thus showing the suitable
constant cg exists. [ |

(5.8) Proposition: There is a positive effectively computable constant c1y such that for every
prime number p > 3 the following two statements are valid.

(a) If S is a set of integers s with [s —p— 1| < \/p, then the number of triples (a,z,y) € F? for
which

4a® 4 27* # 0,#E,4(F,) € S,

Clo(#S*Q)P%
log(p)
(b) If [ is any prime number,then the number of triples (a,x,y) € Fg’ for which 4a® + 270* #

0, #E.p (F,)# 0 (mod 1), where b = y? - 2® — ax, is at least ¢19 p° .

This proposition is simple application of the proposition above. Consider (a,b,x,y) with (a,b)
denoting elliptic curves and (x,y) denoting a point (z : y : 1) on the elliptic curve. There are at
most (p — 1)/#AutE pairs of (a,b), and each E,; corresponds to #E,,(F,) — 1 points (x :y: 1),
by taking summation we obtain

3

where b = y? — 23 — ax, is at least

(p— V) (#HE(F,) —1)
Z #AutE ’

By using Hasse’s theorem and (5.3) we find this is at least
¢s(p = 1)(p = 2v/p)(#5 — 2)v/p/ logp

In the same way, by directly using (5.7) and Hasse’s theorem we can get the second equation
as well. m

6 Appendix2: The Estimate Of the Algorithm

In this section, we will estimate the success probability as well as the time efficiency of the
algorithm.

(6.1) Proposition: Let n,v,w € Z~; and a,x,y € Z/nZ be as in (4.4.1), put b = y> —2® —ax €
Z/nZ and P = (x:y:1) € V,. Suppose that n has prime divisor p and ¢ satisfying the following
conditions.
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(i) p <o

(ii) 6(4a® + 27b%) # 0 for @ = (a mod p), b = (b mod p);

(iii) each prime number r dividing #E; b(F ) satisfies r < w;

(iv) 6(4a3 + 27b%) #£ 0 for @ = (a mod q),b = (b mod g):

(v) #E,;(F) is not divisible by the largest prime number dividing the order of F,.
Then algorlthm (4.4.1) can find a non-trivial divisor of n successfully.

Remark: To apply this proposition to the whole proof of the statement in (4.5), one only need
the n's not being a prime power nor divisible by 2 or 3, so the proof will also be limited to these
n's. Also, to complete the proof we do not need to know the actual value of p and ¢, we only
assume the existence of them.

Proof: It follows from Hasse’s Inequality that #E;5(Fp) < v+ 2y/v+ 1. So with e(r) defined

n (4.4.1), denote by a the order of P, in the group E,;(F,), and let ¢ be the largest prime
number dividing «, and s satisfies that t5||oc And of course s satisfies 1 < s < e(t). Let

(H re 7')) 51

then it is obvious that ko P, # O, and kotP, = O in the group Ej;(F),) (this is because the limi-
tation of the exponent of each r by e(r) due to the inequality above)

If kotP €V, exists, then we have kotP = O in V,. But with k¢t - P, = O, and (v) we have
koP, = O4, meaning that kyP = O in V,,, thus causing a contradiction. So k¢t P cannot exist, thus
meaning the existence of a non-trivial divisor of n. |

The next proposition attempts to show the probability that a random triple (a,z,y) can be
successful, which is represented in the way of %% as it is stated in the proposition.

(6.2) Proposition: There exists a positive and effectively computable constant ¢ with the fol-
lowing property. Let n,w,v € Z-1, with n having at least two distinct prime divisors greater than
3, and v satisfies that p < v, where p is the smallest prime divisor of n. Let

j=#{s€Z:|s—p—1| </p, every prime divisor of s is no greater than w}
Then let N be the number of triples (a,z,y) € (Z/nZ)3 that lead to algorithm (4.4.1) finding a
non-trivial divisor of n successfully, then N satisfies
W > Togp " AT

Remark: We are actually looking for the triples (a, z,y) satisfying (6.1), whose number is less
than N and also satisfies the inequality.

Proof: Let ¢ be the a prime divisor different from p, For each positive number s, denote by 7.
the following set:

Ty = {(o,21,y1) : 4a® + 276% # 0, #E, s(F,) = s, where § = y;? — 1% — ax }.
Denote by t(a,z,,4,) the largest prime divisor of the order of the point (z1 : y; : 1) in E, g(Fp) for
(a,z1,y1) € Ts. Then denote by Uq s, 4,) the following set:
Ulnyorn) = {(Q2, T2, 92) : do® + 276, # 0, #Eq, g, (Fy) not divisible by (a2, 4.
where By = 122 — 293 — apxs}.

To achieve the condition stated in (6.1), we define a set Vi, x1, 41, a2, 2,%2) in the following
way:

Vv(OQ L1, Y1, A2, T2, y2) = {(CL, Z, y) < (Z/nZ)g : (a(mOdp)a x(modp), y(mOdp)) = (Oé, Ty, yl)
(a<m0dQ>7 x(mOdQ)a y(mOdQ» = (Ck?? Z2, yQ)}

Then by applying (6.1), with ¢ summing over the set of positive integers whose greatest prime

divisor is no larger than w, we have:
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N>> > > #V a, 11, Y1, g, T2, Yo)

i (a,21,91)€T; (@2,22,92) €U 0,21 ,y1)
With the obvious result that card(Vio, z1,y1, 2, 72,y2)) = %, applying the conclusion of

(5.8)(b) we have #U(q,4,41) > C10¢°, reducing the inequality to

N> . Z #Ts

n3 = 10 p3

Remembering the fact that |s —p — 1| < |/p, applying the conclusion in (5.8)(a), thus finishing
the proof. ]
With Proposition (6.2) proven, we are then able to estimate the success probability of the al-
gorithm in (4.4.2). Based on (6.2), with the same parameters n,v,w,h as in (4.4.2), it is easy to

know that the failure probability is (1 — £5)", with N defined in (6.2). If we use f(w) = %TJW to

represent the probability of an integer in the interval (p + 1 — /p,p + 1 + /p) with all its prime

divisor no greater than w (j has the same definition as in (6.2)), then it follows from (6.2) that
N o cf(w)
n3 > 3logv ?
N o hefw) , . —hef(w)
Then (1 — -3)" < e 3| thus showing that the success probability is at least 1 — e 5o

Then it comes to the last part of estimating the time efficiency, which is an important property,
of the algorithm (4.4.2). Applying the already known knowledge of the Euclidean algorithm, it is
easy to know that the time needed performing a single operation of addition is O((logn)?), denoted
by M(n).

Remark: In the original article by Lenstra, it is stated that the time it takes in finishing one
round of algorithm (4.4.2) is about O(hw(logv)M (n)), in the article the author said the reason to
be logk = O(wlogv), where k is the same as in (4.4.1). But due to the existence of the difference
between addition chain, in order that (6.1) stands, it is needed that

t—1

(T] retts - P

r=2
be calculated (regardless of it being successful or not) in the process for 3 <t < w and 0 < s < e(t).
Then this shows that it is not entirely correct to prove in the original way the author gives. This
relation requires that the time efficiency should be estimated in a more precise way considering

the aspect above. Still, after such calculation, the result of the estimate remains unchanged.

Then with the success probability fixed, h is of the same magnitude as ]lfzfv”) defined in (6.2), so

the problem comes to minimizing %

With an unproved conjecture, which is extended beyond the theorem of Canfield, Erdds, and
Pomerance, assumed true. We have the probability of a random positive integer s € (x + 1 —
Vo, xr + 1+ +/z) (the original theorem applies for x < s) has all its prime divisor no greater than

L(z)* is L(z)2 M), The function L(z) is defined over the interval (e, 00) by the equation
L(z) = ¢Vioulogtoge

Putting x to p, we obtain that
F(L(p)*) = L(p)z*o,
with f defined in (6.2). With w = L(p)®, it implies that

w L [e%n®)
7oy = Lp)ateoteld

which is suggesting that the optimal choice of w is w = L(p)gﬂ’(l) as p — o0.
With p unknown beforehand, in the practical sense p can be substituted by v as it is given
that p < v, and the actual running of the algorithm (4.4.2) can be performed by choosing v in an

Y
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increasing sequence to avoid the situation that the least prime divisor of n being too large.
Hence the statement in (4.5) is proven.

7 Appendix3: Some Remarks

(7.1) With the Riemann Hypothesis assumed, one can obtain a stronger inequality in (6.2),
which is &% > Toaioap m. But with the further analysis following the calculation after (6.2), it
reaches no stronger result than the original one.

(7.2) The author stated that the algorithm can also be applied for the purpose of recognizing
numbers built up from primes below a certain bound, and in this case the unproved conjecture in
the estimation can be substituted by analytic results within reach of present techniques, yet it is
beyond reach of this article.

(7.3) In comparison with other previous methods, its expected total factoring time in worst
cases (the second largest prime divisor of n is not much less than y/n) is L(n)'™°M as n — oo,
which is also reachable by other methods. The main advantage of this elliptic curve method lies
in factoring integer n with smaller prime divisors.
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The Weil Bound

Yongle Hu

Abstract

This article introduces some properties of function fields, and proves the Weil bound for some

character sums.

1 Function Fields

Let k be a field, and K is an extension of k£ which includes an element ¢ such that t is
transcendental over k, then the field K is called a function field over k, while k is called
a constant filed of K.

Let k[x] denote the ring of polynomials in one variable over k, then the quotient
field of k[z] is called rational function field, which is denoted by k(x). Clearly k(x)
is a function field over k, which is the situation we are most concerned about in this
passage.

In fact, k(z) and Q have many structures in common. One aspect of them is valua-
tion. We need to do some preparation first.

Let G be an abelian group. Then G is called an ordered group, if it can be equipped
with an operation '<’ satifying, for all a, b, ¢ € G:

(1) Exactly one of these three cases holds true: a < b,b < a,a = b.
(2) If a < band b < ¢, then a < c.
(3) Ifa <b,thena+c<b+c.

Asssume G is an ordered group. Let oo be an symbol not in G satisfying a <
00, a+o00=00+a=00+00=0o0 for any a € GG. For all a,b € GG, we define a > b
if and only if b < a, a < bif and only if a < bora =10, a > bif and only if a > b
or a = b. Note that G must be torsion free since if a € G and a # 0, say a > 0, then
no=a+---+a>04+---4+0=0.

Let K be a function field over k. A map v : K — G U{oco} is called a valuation of
K/k, if it satisfies the following conditions:
(1) v(ab) = v(a) + v(b), Va,b € K, i.e., v is a group homomorphism;

26



(2) v
(3) v(a) = oo if and only if a = 0;
(4) v is non-trivial, i.e., Ja # 0 such that v(a) # 0;
(5) v(c) =0, Ve € k*.

The second condition is usually called strong triangle inequality. Form this condition,
it can be known that if a,b € K, v(a) < v(b), then v(a + b) > v(a), v(—=b) = v(b) +
v(—=1) = v(b), and v(a) = v(a + b —b) > min{v(a + b), v(—b)} = min{v(a + b), v(b)}.
But v(a) < v(b), so v(a) > min{v(a +b), v(b)} = v(a + b) is the only possible case.
As a result, v(a + b) = v(a). By induction, it can be easily got that if ay,...,a, €
K, v(a;) <wv(a;), i =2,...,n, then

(a+ b) > min{v(a),v(b)}, Va,b € K;

U( ak) = U(Ch) (1)
k=1
Let O, = {a € K| v(a) > 0}, P, = {a € K| v(a) > 0}. Then O, is a subring of
K, P, is an ideal of O,. For any a € O, \ P,, v(a) = 0, so v(a™!) = —v(a) = 0, thus
a~t e O,, ais aunit of O,. As a result, O, is a local ring and P, is the maximal ideal.
O, is usually called valuation ring associated to v, and O, /P, is called residue field of
K with respect to P,.
A valuation v : K — RU{oo} of K/k is called discrete, if v(K*) have no limit in R.
Moreover, if v(K*) = Z, then v is called normalized.
Similar to the valuation the p-adic valuations in Q, there are two kinds of normalized
valuations of k(x)/k. One of them is v,, where p € k[x] is a monic irreducible poly-

(z)

nomial. For any a € k(z), write a = p(x)”f—, n € Z, p(z) 1 f(x)g(x), then define

g9()

vp(a) = n. The other is vy,. For féxi € k(z), define vm(%) = deg(g(z)) —deg(f(x)).
g\r g\z
It can be easily checked that v, and v, are normalized valuations of k(z)/k.

Theorem 1. Let v : k(z) - GU{oo} is a valuation of k(z)/k, then there exsists ¢ € G

and ¢ > 0 such that v = v.c or v = v,c for some monic irreducible polynomial p(z).

Proof. ()If v(z) > 0, then for f(z) = Y ¢z’ v(f(z)) > 1mln {v(e;z")}. But v(cizt) =
k=0

v(e;) +i-v(z) > 0,50 v(f(z)) >0, f(x) € O,. As a result, klz] C O,. Set p =

P, N klx], then if a,b € k[z], ab € p, then ab € P,, so a € P, or b € P,. But

a € klx] and b € k[x], so a € p or b € p, which means p is a prime ideal of k[z].

Write p = (p(z)), where p(x) is a monic irreducible polynomial. For f(x) € k[z], if
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p(x) t f(x), then f(z) ¢ (p(x)) = P, N k[x], Sof(f()x) ¢ P,, moreover v(f(x)) = 0.

As a result, for any a € k(x), write a = p(x)"—), n € Z, p(x) 1 f(z)g(x), then
g(zx

v(a) = v(p(x))n+v(f(z)) —v(g(z)) = v(p(x))vy(a). Since v is nontrivial, v(p(x)) # 0,
then v(p(z)) > 0. The proof is complete;i by setting ¢ = v(p(x)).

(ii) If v(z) < 0, then for f(x) = ch_ixi, co # 0, then v(coz™) < v(c;a™ ),
¢ = 1,...,n. Using the equation (1),1\:7\/96 have v(f(x)) = v(coz™) = v(x)deg(f(x)).
As a result, for any a € k(z), write a = f—x, then v(a) = v(f(z)) — v(g(x)) =

g(x)
v(z)(deg(g(x)) — deg(f(z))) = —v(z)vs(a). Since —v(z) > 0, The proof is completed

by setting ¢ = —v(x). O

The Theorem 1 shows that v, and v, are all the types of valuations of k(x)/k. As
a corollary of Theorem 1, every valuation v : K — R U {oo} of k(z)/k is discrete.

Let E is a field, and oo is a symbol not in E satisfying: a+o00 = co+a = oo, Va € E;
a-00 =00-a =00, Vo € EF*; co- 00 = 0o. Note that oo 4+ 0o, 0 - 0o and oo - 0 are
invalid formulas.

A function ¢ : K — E U {oo} is called a place of K/k, if it satisfies the following
conditions:

(1) p(a+b) = p(a) + @(b), plab) = p(a)p(b), for all a,b € K such that the right sides
of the equations are valid;

(2) ¢ is notrival, i.e., ¢(1) = 1 and Ja € K such that p(a) = oo;

(3) v(a) # 0 or oo, for all a € k*.

Let O, = {a € K| p(a) # oo}, then O, is a subring of K. Thus ¢ : O, — E is a
ring homomorphism. Set P, = Ker(¢) = {a € K| ¢(a) = 0}, then P, is a prime ideal
of O,. For any a € O, \ Py, pla)pla™) = pla-a™t) = (1) =1, so p(a™') # oo,
a~! € O, therefore a is a unit of O,. As a result, O, is a local ring and P, is the
maximal ideal.

Assume a € K \ O, then ¢(a) = co. If p(a™t) # 0, then 1 = (1) = p(a)p(a™) =
oo, which is a contradiction. Therefore ¢(a™') = 0, then a™! € P,.

Consider K* and O, the multiplicative groups of K" and O,. They are both abelian
groups, so the factor group K*/ O} is also an abelian group. For a € K*, let a =
aQ} € K*/Oj. Then the operation '<’ can be defined as follows: a < b if and only if
ba~' € P,. For all a,b,c € K*/O}, first, if ba™! € Py, then a < b; if ba~' € O, then

— <p — — —
a="0b;ifba~t € K*\ O, then ab™ € P,, so b < a. Second, if @ < b and b < ¢, then
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ca™t =ba"' bt € P,, thus a < ¢. Third, if a < b, then (be)(ac)™! = ba~! € P,, so
ac < be. As a result, K*/O7 is an ordered group.

Let v is the canonical map K* — K*/Oj, and define v(0) = oo additionally. Then
for all a,b € K*, v(ab) = ab = ab = v(a) - v(b). Say v(a) < v(b), then ba™t € O,
(a+bat =14ba"! € O, thus v(a+b) > v(a) = min{v(a),v(b)}. Since there exists
a € K such that p(a) = 00, a ¢ O,, v(a) # 0. At last, for a € k*, p(a) # 0 or oo,
hence a € O, \ P, = O, so v(a) = 0. As a result, v is a valuation of K/k. Obviously
O, =0, and P, = P,.

Conversely, if v is a valuation of K/k, define ¢ : K — O,/P, U {oc} as follows: if
a € O,, then p(a) = a+ P, ; otherwise p(a) = co. It is easy to verify that ¢ is a place
of K/k. We will often simply use P, to denote this place.

Therefore, valuation and place are essentially the same concept. Let P be a place
of K/k and v be a valuation corresponding to P. The residue field associated to P is
k(P) = Op/P = O,/P,. Write fp = [k(P) : k], where fp is called the degree of the
place P.

From now on, we will discuss only the case K = k(z). Assume v is a normalized
valuation of k(x)/k and P is the place corresponding to v. If v = v, in which p(x) € k[z]
is a monic irreducible polynomial. Let S, = {g € k[z] | pt g}. Then O,, = S, 'k[z],
Py, = S, (p). So k(P) = O, /Py, = S; Klz]/S; (p) = klal/(p) and fp = [klz]/(p) :
k] = deg(p). In this case, we will write P = P,.

bppa™ 4+ -+ b
Otherwise v = v,. For R(x) = Imt_H %00 € k(x), vo(R(x)) = n—m =

cnwn+'+00

bm++bol‘m bmx*m+.+b0 1 1

e ) T U — 1,(R(=)). Let y = =, then v, _
vl cn+-+coa7") U<cnx—n—|—-+co) U<R(x)) ety = thenv (R(x))

v, (R(y)). Since k(z) = k(y), k(P) = O, /Pu. = O,, /Py, = klz]/(x) = k. As a result,
fp = [k : k] = 1. In this case, we will write P = P..

n—m

Let P, denote the set of all the places of k(x)/k, Dy denote the free abelian group
generated by all the elements of P,. An element of D, is called a divisor. Equivalently,
a divisor is a formal sum of all the element of P, with integral coeffcients such that only
a finite number of coefficients are non-zero. Two divisors a = > apP,b = > bpP are
called coprime, if for any place P, either ap = 0 or bp = 0.

Assume that m is a divisor. Define the degree of m by

D(m) = Z ap fp, where m = Z apP.

PPy, PePy
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A divisor is called finite, if the coefficient of P, is zero. A divisor is called positive,
if all the coefficients are non-negative. In fact, finite positive divisors are essentially
the same as monic polynomials in k[z]. For a finite positive divisor a = ) a,P,, since
a, > 0 and only a finite number of a, # 0, [[p(x)* is a monic polynomial of k[z].
Conversely, if f € k[z] is a monic polynomial and its standard prime factorization
decomposition is f(z) = [[p(x)®, then a = ) a,P, is a finite positive divisor. In this
case, we will write f(z) = Rq(x). Then d(a) = > a,fp, = > a,deg(p) = deg(R.).

For a finite divisor m, there exists positive divisors a, b such that m = a — b. Then
. Rq(7)
 Re(x)
which remains true when k() is replaced by other function fields.

Suppose that all distinct roots of Rq(x)Ry(z) in k are &1,&,,...,&;, then define

d

do(m) = d. Write Ry(z) = [[(z —&;)%. Then for R(x) € k(x), define R(m) =

J=1

we write Ry(z) . Conversely, every m € k(x)* is corresponding to a divisor m,

d
R(&;)%. Due to Vieta’s theorem, R(m) € k.
=1

J

2 The Weil bound for some character sums

From now on, we will assume that k is a finite field of ¢ elements, whose characteristic
is p.

Let G be a group, then a homomorphism x : G — C* is called a character of G. x
is called non-trivial, if there exists ¢ € G such that x(g) # 1.

Lemma 2. Assume that G is a finite group and x is a non-trivial character of G, then

>, x(a) =0.

a€G

Proof. Since x is non-trivial, there exists g € G such that x(g) # 1. Then since G is
finite, a — ga is a bijection from G to itself. Then

D x(a) => x(ga) => x(g)x(a) = x(9) > _ x(a).

aeG aeG aeG aeG

Because x(g) # 1, we have

> x(a)=0. (2)

a€G
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O

Set Go = {1+ xf(x) | f € k[[z]]}, then Gy is a subgroup of k[[z]]*. Let w be a non-
trivial character of Go. Assume that N is a positive integer such that w(1+ 2V f) =1
for all f € k[[z]]. For a € k((x))*, write a(z) = cz"(1 + xf(z)), where ¢ € k,n €
Z, f(x) € k[[z]]. Then define w(a) = w(1 4+ = f). It can be easily verified that w is a
character of the multiplicative group k((z))*.

Let s be a positive integer such that p* > N. For any a € k((z))*, write a(x) =
cx™(1 4+ a;x + ...). Since p is the characteristic of k, w(a)?” = w((1 + ayz +...)"") =
w(l+4a 27" 4+ ...) = 1. Thus the image of w is a subset of the p*-roots of unity.

For f(z) = 1+ ayz + agx? + -+ € Gy, set g(z) = 1+ ax + -+ + ay_12V 71,
h(z) = ay + any17 +ansex? + ..., then f(z) = g(x) +2™Nh(z). Let g~! denote inverse
for g in Gy, then w(1 +2Vg=th) = 1. As a result,

w(g +ah) = w(glw(l +2"g7'h) = w(g)
=w(l+ar+- - +ay_12V ). (3)

w4 a1z + agr®* +...)

For any f(x) € k[z], we can naturally consider f(z) as an element of k[[z]]. Further-
more, for any R(x) € k(z)*, write R(z) = %, where f(z),g(z) € k[z]*. Then R(z)

can be considered as an element of k((x))*, so w(R(z)) is well defined.
Now we can state the main theorem of this part.

Theorem 3. Let yo be a character of the multiplicative group k*, and w satisfies the
above properties. Set xo(0) = 0, xo(c0) and w(0) = 0 in addition. Let A\(a) = w(1 —ax)
for all @ € k. Assume that b is a finite divisor and d = dy(b), then

Z Ala)xo[Rs(a)]

ack

< (N +d-2)/q. (4)

Proof. For any finite divisor m coprime to b, define that
A(m) = w[Rn(1/2)]x0[Run(b)]-

Note that if m and n are finite divisor coprime to b, Ryin(z) = Run(z)Rn(z), thus
Am+n) = A(m)A(n).

Since |w(f)| =1 and |xo(a)| =1 for all f € k((x))*,a € k*, |A(m)| =1 for all finite
divisor m coprime to b.
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For any divisor m, the norm of m is defined by |m| = ¢P™. The set of all finite
positive divisors coprime to m is denoted by C'(m).
Assume that s € C and Re(s) > 1, then define the L—series

Ls,A) = Y Ala)

acC(b) |a|5

We will show that the L—series has beautiful structures.

Lemma 4. The L—series is well defined when Re(s) > 1, which is a holomorphic
function of s. Moreover, it is a polynomial of ¢7%, and the degree of the polynomial is
no more than N +d — 2.

Proof of the lemma. Let € > 0, and n be a positive integer. Since any finite positive
divisor of degree n corresponds to a monic polynomial of degree n, there are ¢" finite
positive divisors of degree n. Thus there are at most ¢" ‘a positive divisor a of degree

n of the form a = iP,, + a; where a; is a finite positive divisor of degree n —i. As a
n
result, the number of positive divisors of degree n is no more than Y ¢"~* < ¢"*1.

1=0
Therefore

2

acC(b)

_ 1 _ > qn+1 B q
- Z |a‘Re(s) — Zl ane(s) - 1 — ql—Re(s) )

a is positive

A(a)
jal°

As a result, L(s, A) is absolute uniform convergence when Re(s) > 1 + ¢, so it defines
a holomorphic function of s when Re(s) > 1+ €. Due to the arbitrariness of the choice
of €, L(s,A) is a holomorphic function of s when Re(s) > 1.

Note that above proof remains true when A is replaced by any character y of D

satisfying sup{|x(a)|} < oo.
d d

Write Ry(z) = [[(z—§&;)%, & € k, b; € Z\{0}, j=1,...,d. Set b(z) = [[(z—&;).

j=1 j=1
Since k is a finite field, every irreducible polynomial in k[x] is separable, thus having
no multiple roots. As a result, b(z) is a product of some irreducible polynomials, so

b(z) € klx].
To prove that L(s, A) is a polynomial of ¢—* whose degree is no more than N +d — 2,
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we only need to show that for n > N + d — 1, the coefficient of ¢7*" is zero, i.e.

> A= ¥ w(f(})) wirml =0 )

acC(b) aeC(b)
D(a)=n D(a)=n
Since every finite positive divisor a of degree n is associated to a monic polynomial
R.(x) of the same degree, the equation (5) can be modified to

> o (r(3))ulrer-o )

deg(f)=n
f is monic, (f,b)=1

Note that xo[h(b)] = xo H h(&;)% |, so this value only depends on h(¢;). As a

result, if h =g mod b, then h(gj) =g(&),7=1,....d,s0 xo[h(b)] = x0[g(b)].

Write f(z) = > a,_;a7, ag = 1, then use the equation (3), w[f(1/x)] = wlz™™(1 +
j=0
@z + -+ a,z")] = w(l + a1 + - + ay_12¥ 1), which means the value w[f(1/x)]
only depends on aq,...,an_1.
For such a polynomial f, let fi(x) = Z a;z" I, foz) = Z an—;z?, then there

exists g(z) € k[z] such that deg(g) < d and g = fo» mod b. So w[ (1/z)]xo[f(b)] =
wlfi(1/x)]xol(f1+g)(b)]. Conversely, if g(x) € k[x], deg(g) < d, then for any polynomial
h such that deg(h) < n — N —d, deg(g + bh) < n — N, so there exists exactly one f
satifying such that f, = g + bh. Since the number of such h is ¢" " N¥=9*! we have

LHS of (6) = ¢" V) "w (f1 (é)) > Xol(fi +9)(b)],

f1 deg(g)<d
(f1+g’b):1

—~
~J
~—

N—
where the summation is performed for all f; of the form fi(z) = > a;a""

Let Gy, = (k[2]/(b))*. For h € k[x] such that (h,b) = 1, write h = h + (b) € G}. Fix
f1, then for any h € G, there exists exactly one g such that deg(g) < d and fitg=nh.
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Note that in this case, xo[(f1 + ¢)(b)] = xo[h(b)], thus

Z Xol(f1+9)(b)] = Z Xo[h(b)].

deg(g)<d heGh
(fl+gvb):1

Substituting it into equation (7), we have

1
LHS of (6) = qn—N—d—i-l ;w (f1 (E)) Z Xo[h(b)] (8)
Let Gy = {1+az+ - +ay12¥ | a; €k, j=1,...,N — 1}, then G; can
be considered as a subgroup of (k[z]/(z"))*, and w can be considered as a non-trivial
character of GG;. So by using lemma 2, we have

yofnfi) - gem=o

Substituting it into equation (8), we gain that the right hand side of equation (8) is
zero, therefore the equation (6) is proved. ]

From the lemma 4, we know that L(s,A) = F(q~*), where F'is a polynomial such
that deg(F') < N+d—2. Since F'(¢~°) can be well defined for all s € C, we can extend
L(s,A) to the whole complex plane.

Write d; = deg(F). Since a = 0 is the unique element in C'(b) such that D(a) = 0

amd Ry(z) = 1, the constant term of F is A(0) = 1. So we can write F(z) = [](1 —

a;z). By comparing the coefficient of the term x of two sides of above equation, we
have

d1
Yo A== a (9)
acC(b) Jj=1

D(a)=1

Any finite positive divisor a € C(b) of degree 1 is associated to a monic polynomial

Ry(z) = © — a where a € k. Then w[Ry(1/x)] = wlz7'(1 — ax)] = w(l — azx) = Aa),
d

Ry(b) = [1(&—a)% = (—=1)P® Ry(a), therefore A(a) = (—1)P® \(a) Ry(a). Conversely,

j=1
if x — a is associated to the divisor a which is not in C'(b), then z — a|b(z), thus there
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exists jo € {1,...,d} such that a = &, so Ry(a) = [[(a—&;)% = 0. Substituting them

j=1
into equation (9), we gain that

> A@xalRe(@)] = (-7 Y (10)

ack

According to the original paper [3], it can be proved that this L—series divides
the zeta-function of an Abelian extension of k(z) by class-field theory. Then by the
Riemann hypothesis in function ﬁeldﬂ, any the root sg of the zeta-function satisfies
that Re(sg) = 1/2 , thus any the root so of L(s, A) satisfies that Re(sg) = 1/2. Since

dy 1 .
L(s,A) = 1_[1(1 —a;q7%), 55 = foggog is a root of L(s,A). Therefore Re(s;) = 1/2,
J:

laj| = |g%| = ¢"e) = \/g. Substituting them into equation (10), we have

dy
<Y oyl <di/g < (N +d—2)/g (11)

j=1

Z Ala)xo[Ro(a)]

ack

As a result, the theorem 3 is proved. O]
In the end, we will dicuss an application of the theorem 3.
Corollary 5. Let F(x) € k[z] such that deg(F) = n and F(0) = 0. Assume that v

is a non-trivial character of the additive group of k, and there exists ay € k such that

W[F(ag)] # 1. Then

Y YUIF(@)]xo[Re(@)]| < (n+d —1)y/a. (12)

ack

Proof. Let N =n + 1. Due to the theorem 3, we only need to construct a character w
satifying the above conditions such that A(a) = w(1 — ax) = ¢Y[F(a)].
Let m > n be an integer, k[z1, . .., Z,,] denote the ring of polynomials in m variables.

Consider the elementary symmetric polynomials of z1, ...z,

o= (1) Y apmt=1..m

1<ji<-<gesm

IThe first proof of the Riemann hypothesis in function fields over a finite field owed to A. Weil [2] in 1941. Then a
new approach was invented by S. A. Stepanov [6] in 1969, which was simplified by E. Bombieri [7] in 1973.

10
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Write F(z) = > ¢x', Sy = Y x?, t =1,...,n. Due to Newton’s identities, S; =
i=1 =0

E 0;St—; + toy. Thus by induction, there exists Gy(z1,...,2) € klz1,...,x], which
;:1independent of m and has no constant term, such that S; = Gy(oy,...,00), t =
1,...,n. Then i F(x;) = zn: ¢;S; = G(oy,...,0,), where G = Zn: ¢iGi € klxy, ...,z
independent of Jn:ll . -

For f(z) = 14+ bz +byx* +- -+ € k[[z]], set h(z) = 2"+ bya" ' +-- -+ b, € k[z]. Let
ai,...,a, be the roots of h in k, and o; be the elementary symmetric polynomials cor-
responding to as,...,a,. Then o; =b;, j =1,...,n. Define w(f) = ¢[G(b1,...,b,)].
We will show that w meets all the conditions.

First, let by = —a € k, by = b3 = -+ = b, = 0, then h(x) = 2" + az™ !, a; = a,
ag=---=a,=0,s0ow(f) =v[G(1,0,...,0)] = Y[F(a)]. Thus w(l — azx) = P[F(a)].

Second, setting b; = 0 in addition, we gain that w(1 4+ 2""'g) = [F(0)] = 1 for all
g € kl[z]].

Third, for another element fi(z) = 1 + bjx + bha® + --- € k[[x]], set hi(z) = 2" +
Via" 4.+ b € k[z]. Let d}, ..., ad, be the roots of h; in k, and o be the elementary

symmetric polynomials corresponding to aj, ..., a,. Then o7 =¥, j=1,...,n. Let 7

)t

be the elementary symmetric polynomials corresponding to ay, ..., an, a,...,al, then

h(z)hi(x) = 2*" + 7z® ' + -+ - + 7o,. Therefore w(f - f1) = w(l+ 1z + -+ 72" +
)= Gl ) = 613 Flay) + 35 Fla)] = 913 Flalol3: Fa)] = wl D)

j
As a result, w is a character of GGo. Moreover, since there exists ay € k such that

w(l — apr) = Y[F(ap)] # 1, w is non-trivial. O

Note that the condition 9[F'(ag)] # 1 is only used to ensure w is non-trivial, and it
can be replaced by other conditions. For instance, assume that p { n .Since v is non-
trivial, there exists a € k such that ¢¥(a) #1. Let oy = -+ = 0,1 = 0, 0, = (nc,) 'a,

n—1

then G(o1,...,0,) = ¢,Sn + > ¢:S; = nepwon, + H(oq,...,0,) = a+ H(0,...,0) = a.
i=1

Therefore w(1+ o1z 4 -+ -+ 0,2") = Y[G(01,...,0,)] = ¥(a) # 1, thus w is non-trivial.

Now assumme that p > 2, s # 0, then dy(b) = 2 for Ry(x) = 2> — 5. Furthermore,

11
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set F(z) = x, then from the corollary 5 we gain that

> dla)xo(a® - s)

a€k

< 2,/4. (13)

Let xo(a) = 1 if a is a square in k*, otherwise xo(a) = —1. For u,v € k*, we will show
that the sum in the left hand side of equation (13) is corresponding to the Kloosterman

sum > t(uz +vr~!), which plays a crucial role in the representations of numbers in
xek*

the form az? + by? + c2? + dt* [1].

Let A'(a) denote the number of elements x such that uz 4 va™!

= a, or equivalently,
the number of solutions of the equation (2uz — a)*> = a* — 4uv. Therefore N (a) =
Xo(a? — 4uv) + 1. As a result,

Y wlur+orTl) =Y ()N (a) =Y d(a)xo(a® —duv) + Y 9(a)

rek* a€k a€k a€k
= Z w(a)XO((Iz —_— 4'1,“}) (14)
ack

The last equation is obtained from the lemma 2.
Setting s = 4uw in the inequality (13) and then substituting it into the equation
(14), we get a bound for the Kloosterman sum

Z Y(ux + vz

zek*

<2/4. (15)

The coefficient 2 in the left hand side of (15) can be improved. Malyshev[4] proved
that it can be replaced by 1 in many cases. In fact, he showed that for general Kloost-

K (u,v10) = Z exp (2m'(ua: +vx1)) |

C
1<a<]e],(cx)=1

ermarn suin

it can be proved that

Kol <min{Vwad (5 ) V@ad (55) bVEL a0

where (m,n) denotes the great commom divisor of integers m and n, d(m) denotes the

number of positive divisors of integer m. His proof is also based on the Weil bound
which we have proved above.

12
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There are some generalizations for the Weil bound as well. For instance, Bombieri[5]

generalized the Weil bound by replacing F' with a polynomial in n variables. He also

proved that the exponent 1/2 of ¢ can not be improved and found some best coefficient

of \/q for some spacial cases.
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SR 2.2: 35 oy AEN 0, AT FEIRENEEL v, BHBT vi,a,b, ¢, d, q, BRI T p, P, HFFE2

Z{ SPyex (2mup 27Tivp'>’

p1<p 4

ZHIC w=—n,pp’ +1=0 (mod q); 24

2miuP  2mivP’
=K D (S ex ( g T )

Pi<p

XL u = —4n, PP’ +1 = 0 (mod 4q), MEERFGEAS ERXT A 0 < P < 4q,(P,4q) =1 H P < p
) P ORAL X HL P OME—I 2 P(Pr+ N)+1=0 (mod 4q) H 0 < P < 4g HYEAL.

WARTIBE 2.2 WTRASLRPHE R

It 2.2°: FATEDA 01 = Koo, XHIL

Z{ SPpex (27mup zmp')

p1<p 4

Hep g WTRER o1 ¢ B—R5kPUAE; HINHE, w = —n Bk —4n, i 1+ pp’ =0 (mod g).
T ) AL R TETE o0 HIRVN.
XTI Sae, FATHPARIEER: 2 (a,c) = 1 H,

0, c=2 (mod 4)
Sa,c - ec\ﬁ (%) ) 2 ’f C
(1+z’)eg1¢5(§). 2%a,4|c
XA

1, m=1 (mod 4)
em =
i. m=3 (mod4)

XAEERAUERA T PAZ R, Eeanid, Bachmann fY Die analytische Zahlentheorie 2 (1894), 146-187. &1l
i (BOATUR ) T, AT ARG
518 2.3: AT
=5
XH Qs UE ¢ MATEERD. FATHE X

p 2
QaQchQd) C(p.a)a”,

17 2+QSZQS

0, s =2 (mod 4)

b 9 - ]- .
P09 = o <4squsm>, 0o = 2Qu, 2} 1y > 2

1
1+exp <25qus7m'>. qs = 2" Q4,2 | iy pp =2
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C(p,q) = ¢(p,q,a,b,¢c,d) = n(p, q,a)n(p, q,b)n(p, g, c)n(p, q, d).

AR Q 2y ¢ WarEERsT, G2 (0,Q), (b,Q), (¢, @), (d, Q) WMF/NARL FAMIFE 8 [ ¢4 19,81
G2 At g2 g IAMRIE X A K 8GAG;2G; G. BEABRAE A g H A XTFFH ¢ A5 ER. M
MG I8 2.3 AT AR

g 2.3 FA1E

z’: exp <2m'up N 2m'vp’) .
q

PLS<H q
p=A (mod A)

A
o2 < Kq* )
A=1

N THEGIBE 2.3 (7 T ARSENT |oof, AT ZHIIE S(u, v; A, Asq), IXH

! <27riup 2mivp’ >
exp + .
)

S(u,vi A Asg) = Y p

p=X (mod A

WXHIEAE T 553 (5P 4a-5|BE de), ) BE5HI AR H
SIE 2.4: A g, W

Al

S(u,v; A\, A;q) =0 (q%“(u, q)i) . S(u,v3 M A9) =0 (q%“(v, q) ) -
w)E, ATETIEHATH
SR 2.5: 37 A | g, < g, DX
oy — Z exp <2mup N 2mwivp >’
p1<p,p=X\ (mod A) q 4

(PMZX B p',pr Wi 14+ pp' =0 (mod q),p' =p1 + N (mod q)), FKATH

o] < Kq5+<(u,q)7.
ZEE DA FgER, FATAES T iAW) 15| PgY
FolM: ®ATE

/
2nmip Tie 1
Z Sap,q,v196p,q,02 Sep,q,05 Sdp,q,04 €XP <_ p ) =0 (q2+8+ (”7‘])4) ‘

P1SH
FATE SRV RSB, P2 ZE g o1, TIEHSIBE 2.2° B oy FIEREIAER] 454518 2.3
MSIAL 2.5 E5R, K155

A
o] < Kq* Y Jou(u, )| < Kg?" 57 Au, )%
A=1

HREEUKIEH A, v = —n 5 u = —4n, ¢ WABEASBUFERI ¢ MIPURE T A T ¢ H—8 LR, X
WA HETA 5 A5 1 T o B IER.

FATHR ], XA BN — S U CRIE R SHAAEEA 5 T N2, 1 HAESIEEEE). T
SCHAHHE ¢ = as(s,9), s = sq(s,9), IRA (g5,8,) = 1.

SR 2.1 RN UED]: R RA1E

-1

a2 omispi?  2mivj\ % Omisgps?  2mivgy ) as omivp
Sspyq,U:Zexp . + . :Zexp m + . Z exp G.0) )

Jj=0 J1=0 =0
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B2 (q,8) tv BT p HET 0. HFEFHE (¢,5) | v BHETE, ILATEE v = (¢, )0 FRA
SSP;Q;U = (57Q)Ssqp,qs,v’-

FATAT A=A : (1021 055 (2)2] ¢5,2 [ 05 (3)2 | gsy 240" Forh (3) WYTTE SR N IRIME, A0 25w
FRERIUER (RTPIARETERT . T4e iy (1), EESkRIHE (3) BRI, B p” e

qu(2p” B 1) = (mOd 4QS)7
A LFANTH
qs—1 . ] . .
2 "2 2 / 7
SqPq,v’:ZeXp< Tmsqp(]“rp ) + T (]+p ))

qs q

—exp <27risqpp”2 27m'v’p”> (fexp <27m'squ2 N 2mig (v + 2$qpp”)>

qs qs =0 qs ds
2mis,pp’? 2 « 2 j
—exp ( IS PP miv'p’ ) Z ( Tisqp(J +])) .
QS S O QS

XAE 4 | g WHESET 0, 2N

gs—1

27”8410(] +7) > .
Z exp ( Z exp 0

=—Z (M.HJ)>

s

MIMTFATATBE g5 = 2 (mod 4). FATEEEIXFA (a,0) = 1,0 =2 (mod 4), TATH Sap = 0, XZHH

b\ 2
2ai <‘7 - 2) abmi\ < 2amij
T S AL I ) e

NI

qs—1 . -2 . . qs— . . 2
2 2 2 2 1
> oxp (FTHELED ) o (2 3 (22T

2miS,p 1

(27risqpp”2 N 2miv'p” 27Tisqp) S,
Qs qs 4qs

/!

. o 2miv' ! i
exp (m(sqp v')p 4 2y msqp> s,
qs qs 4q,
2mi(2p" — 1)s,p + 4mwip” v’
exp ( ( é)qu Ss.pAg.

BUAER 0", p" W2
v'"%(s,q) = s;v”  (mod 4g,), 1+pp' =0 (mod 4q).
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12 ,U// ,U//pl

2" — Dsep+ 20"V = (142" W = —— = — = ,  (mod 4gq,
( )% ( ) sgp (5,9 (s,9) ( )
NID]
1 2mip'v”
Sspyaew = 9 exp ( 4q ) Ss,pdq.-
EFANEEES

Ssp,q,v = (87 q)Squ,qs,v’a Ssp,4q = (Sa q)Ssqp,4qs7

X ARFSE G | BEFRIER. O
1 R ICH R e AR RG], F X A MRS T

Sspaq = (Sa 4Q>58qp,4qs )

AT SR B S 5 L B T 00 (Rt R RS A, IOWIE ST ). 448, %951
AAEK o OB ER]. 5350, SI80 2.1 AOUEW] LR TUK AL R IR A TAE BT T S, ATCRES
AT HRHL, FIEA AR, FARUET SR 163 RBORE I AU SRR, AT Fsk
ALV SHRMT T

el IRE I BIA 2.2 (OUEM, SEAESETRA 1A% | PR 16,

SIA 2.3 MYRMGHEN]: BORBONIE Q = (Q.9)Qu. 2

(5) - <§> <(Q]?s)> ’
(@Qf%) - <<cfa>> <(Q]?b)> ((Q}?@) <<cfd>>’

M jEEj (Q?‘S)|I&7 3%1”%
QaQchQd QaQbQCQd ’

[ IR BRI 2 ST n(p, g, 8) = nlp+ A, q,5), The

FAMIHHE T

Clp+A,q) =C(p; q)

P 1B 2.3 BRYZER, FATAIALESRFI R p KIREL A 232, Ay

/

A > 2miup  2mivp’
_ 2 A
7= ; (QaQchQd> ¢ a) Z exp < p + p >’

p1<p,p=X (mod A)

HEE (N q) 2—BCAFHY, MIBATERL TR, O
BAEFRATEI LA FsL b, FROTAZL IR 2.2 (LR, 2518 2.2 ARERAIERK. FLLE, K
I

1

SsP,q = §SSP,4q

XA B, AT PAGS Bl A T gk A R, FRATEHEAT T R EMIR R, s A SO, TE
Mathematics Stack Exchange & 1445, HAK A IHE. Gk, SO KER%E, LALLM, XBRNMHTE
Tk 55 2.3° ek, B NE B R HEE R ¢ 19 A, RS ULBAIRLERTIE R R TDA A
Jil 8.



FLRSE, R SIPE 2.1 fgs R, Fo4077T A3

4 " " " " .

. v v v v 2nm
o =K E , Sap,a1Sbp,a2 Sep,qs Sdp,qs €XP <—27Tlp/ <1 + 2424 4)) exp (‘ p>
pi<p q1 q2 qs q4 q

XH g1, 92,03, g4 DA s = a,b, e, d BRI 2.1 i8R, Wk 2K s, ¢, v FEUE T REEL ¢ 5%
dq. 28K, MRAE ¢ 5 4q W36, AT B AIE SCrP i BRSSP R AT N IR o0 ARHL
0; [FIBS g1, g2, g3, g1 FREAH ¢ 35, AW 4q #. XK, RATEHEA ¢ 2B 4 4 2 1. FANC @0 = 4, X
FA 8| qo- FATE ¢ MATEES T, Wil g0 MAEERM 2 Q. iR G 2 (a,Q), (0,Q), (¢, Q), (d, Q) ¥y
/AR IB2FRATX AT PANL A = 8G, X FEFRATTIE A A | qo- IR A < 8abed, W —F IR it
FATHFTBIUELL 1T

o ()

Va e Qs

KT p 2L A NI HA —BCER ). ZHERATER T ART p B A B2, N2 518 2.3 1
FhT, XN 1K A R

FNTHEAT 2 2R ] AVE R L. FATHE T 0 0 S e — A e BIERATIR 22 Sep.q,
B 4] g FATBE g5 = 20Qs. IATATHRA A, 1551

Ssap = (8,0)Ssyp.a.
e (%) (2)(2)
= Vi e (L) (Z) o= (cy==)”

A E T R R 2 R ﬁ;mﬂéﬂ%%% BIAER TR B, T A R 8 EEEL TR A
el (—1) I (LS R p S ARBOE %, BORSER TR FIRHE. e

TR R e 2.
B2, Tfic2a

A . .
2miup  2mivp’
qu g g exp( + .
P1SH qo0 q0
p=X (mod A)

H UL IR ATTE 2 W] DAME S 51 2.3,
BRI 2SS 5 I 2.4 A UERRIE . XA DAAMEA AT L
SR 2.4.1: 5 Ay | @, Ao | o, (i, q2) = 1,

S(uavl; A1, Ay (h)S(U,’UQ; >\27A2;C]2) = 5(u,vlq§ + 7)261% Mgz + Aaqi, A As; Q1QQ)-

SIAE 2.4.2: % g = wi'ws - wé, # (u,q) = (v,9) = LA = wiws? - wé, EH ¢ <&, ¢ TRES
T 0. JeI, ATRAN—H1 vy, Ay, B75 (vj,w%) =1, A

S(u,v; A\, A;q) = HSuv],)\ WS wEJ).

g 0 g

XTI BB FSEA] DAE %8 400k, FI b E A @ BRI, 2T R A FEOR . XA 3
WAL, w0 #E ¢ R, MY THEZIE ¢ LREFRHIE.
I8 2.4.3: % g =ws A =w" (<& (u,w) = (v,w) =1, N

S (u, v; A, A; q)| < Kgf.
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B8N 2.4.3 WIEW]: ol 18 Tt
o3 =YY |S(u, v\ Asq)f!
A u

X HRFS Y A BHER A /NT A 52 HREEEE N KA AESHITA/NT ¢ B2 BRI
B u SKAN.
B3 op MK v BBUE.
3 ey B A5
P=up (mod ¢), 14 PP' =0 (mod q),

/

B2 p' = P'u (mod q), MFHMFHEXTH P =uX (mod A) #E473KRF, BIFRATA
Z exp (27Tqu N 2mivv P’ )

ZZ ZZIS(l uv;ud, A;q)[f =D [S(1,us M, Az g)|*.
P=uX (mod A) A u

ROZRCABESR A BUl B A/ A H5Z BRI IEREL B4 udh AR, TR ATE BT uA
SR A; R, FATH AT AR wo SO u, U] T
BUEIERLN V7 5 U ROk B C LR, A2

J_ZZ Z exp<2ﬂiU(P1+p2—7r1—7F2)+27Tiv(p/1+p/2—7fl1—77§)>

U P1,p2,T1,T2 q q

:Z 3 exp<2m;}Hl)cq(H).

A p1,p2,71,T2

XHE ATHREM H = p1+p2 —m — 2, H' = py +py — ) — my, IR w KA, FRERRIFATA A

cq(H)zz/:eXp (2””’H) > ou(9).

p 3|(H,q)

X HL 2 Mobius pREL, HP
1 n=1;
p(n) =40 %58 SNie i ORIk 173
(-1 nREAERREZA.
FATERET] ¢ = ws, WA vo(H) <=1 cg(H) =05 v, (H) =€~ 1 ¢g(H) = —w* 5 v, (H) 2 €~ 1
B cg(H) = w® —wt™" = o(q), HILFEATH

S 12 T oo (27ri;)H’> Z T e <2m:])H>

A m Pzﬂ T2 A P P2 7r1 T2
(H)=¢-1
vw

BAE, R 03 5 v Tk, WILIRATE EPXTTA v KA, 153

pl@os=—w> Y e (H)+ Z > c(H)

A PL (1’2 )7’1 T A PL pz 7r1 ™2
Vw £—1

=w* 2N, — ws p(q) Ny — ws o(q) N3 + (p(q))* N,




Ny =33 Niyy B Ny 292 pr,po, 1, = A (mod A), H H,H' =0 (mod wé™'),qt H,H'
PUTCHE (p1, P2, 71, ma) HIDEL CUIRIETERE ¢ B CT);

Ny =570 Nooy, 3XHL Noy SR p1.p2, 1, m = A (mod A), H H =0 (mod wt™1),q{ H,q | H
VUTCHE (p1, P2, 1, m2) ML

Ng = Y7\ N3, iXHL N3y 2 p1,p2,m,m = A (mod A), H H' =0 (mod w™'),qt H',q | H 1]
VUTCH# (p1,p2, T, m2) HIDEL

Ny =3\ Ny, XH Nyy BIE pr,po,m,m =X (mod A), H g | H,H' [GPUICHE (p1,p2, m,m2) HY
AN

TREANE

p(q)os < w* 2Ny + ((q))*Na,

AT RV Ny = O(¢?), N1 = O(w?2). FAVEHANTT Ny, FoATEARZK po, po, w1, w0 2L A ]
RIS, HIE R FHE

pr+p2=m +m (mod q), pi+py=m+piy (mod gq).
BN TENT mma(pr + p2) = pipe(m1 + m2) (mod q), MITEEEH — X T, 15384
p1+p2=0 (mod q), m +me =0 (mod q);

B
p1p2 = mme (mod q), p1 +p2 =™ + 12 (mod q)

F—AETE IR IUR O(¢?) 4 S5 A IE ST DMER (1 —p2)? = (m1 — pi2)? (mod q), T2 p1 —p2 =
+£(m —m2) (mod q), TRMIA O(¢*) 4f, il Na < K¢,

XF Ny, FATb R —FEHIR S 20K, — R EIERE ot~ BB T O(w™—?); FITER ¢ R
fRIIDECH O(w*+2).

PR AT AT AR RIS T

0(q)os < Kw* 2w 4+ K¢® 4+ ¢* < K¢*.
HEH o(q) = w ™ (w—1), FHt o3 < Kq¢®. IF2IRATHEH

S (u, 03\, A; q)| < Kqt.

BIRE 2.4.4: 2 A|q, (u,q) = (v,q) =1, ]
S(u,v; A, A q) = O(q7 7).

BIRE 2.4.4 [WFW]: MBIEE 2.4.2 K 5[B 2.4.3, FA155] ¢ = wwd - wé i,
|S(u, v; A, A; ) < K™g5 .

AR
K™ <257 {1+ &)1+ &) - (1 + &),
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M (1+&)A+&) - (1+&) 2 ¢ WETFAE ATRESUIR O(¢°) 1. Bt K7 = O(¢), T2HKA
SERL T IEH]. O
SI 2.4.5: 35 A g, (u,q) =1,

S(u,v; M, As q) = O(g ).

SIBE 2.4.5 MRIMEUEN]: FRATE 20— L B, FRW S W AR5 v;, \j, &, A

S(u,v;)\,A;q):HS(u v],)\J,wa,wff), (v,q)sz], w; Hw
j=1

j=1
XHL &< &G, H G ATRAN 0. AnxfT-ARLE & = 0 1 j, AT LA (v), w; 9) =1, Mg 58 2.4.3 B4%H

‘S (u V55 A, w]C],wf]> <Kw457 (1)

FeATTRH B ¢ = & 1 5. WUt w | v BILEATH

2miup
S(u vj,)\J,wfj,wfj): Z eXp( £ )

, w’
p=X (mod wj.]) J

KAE ¢ = 0 WH ¢ e, (u) = p(w), AT (1) BRI AR MO Y. RS ¢ # 0, A 2RA14

w§j7<'7—1
J - .
Goo&\ 2miu, 2miuv
S (u V3 g, Wi w; ) = E exp( " exp 7@05]_7(]‘ ,
J J

v=0

KTE & # ¢ BT 0, 1 & = ¢ WFE Rl ﬁﬁj@ 1, (1) U5
SRR 0 < € < & W, AT v = wol, T4

G, &) 2miup | 2mivip!
S(u,vj,)\ w;'w; ) = Z exp( o5 + EJ |
J

C. .
p=X; (mod w;”) w;

TN T = RIS
(i) 24 ¢ = & — & B, FRATATRAR X, WL 1+ AN, =0 (mod wi' ™). 4

el—1

omi 2miv) N, vy’ P
S = exp ( mg/\ i) ) Z exp ( ﬂ-n,w> = 0.
w;’ &

J

(ii) 24 ¢ < & — & mf, FATATLALL

p:pl'i_UwfjiEj? U20717"'7w§'j_17

K HFETESR pr = Ay (mod wS), B 1+ piph =0 (mod w?’ %), BAKME

r_1

§7
. s o wy .
o ¢ 2miup,  2mivUsp] 2miuv
S (u v],)\J,w]’7wJ]) = Z exp g T gj_Jg} exp e | =0
¢ W w

j v=

(=)

£§5—
0<py <ur].'

p1=X; (mod wf-j)
(i) 24 ¢ > &§ — & W, FATATRALLE

L ws T 1,

p:)\j—l-vwf-j, v=0,1,---
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BRICAR Ak N WAL 1+ AN, =0 (mod wi' %), FATH

ij —< —1
2miuh; 2wl N\ 2miu
S = exp - 17 exp | —— | =0.
( wf_) wéj*fj Z ,w&J*CJ

j v=0 J

M (1) AT UME AR 2 . BRI FRAT T3 & 2, KA [R]) A b i b S Ak e, FRATTak
SE T 5IP 2.4.5 HIERH. O
518 2.4 BUEW: AL A

S =8S(u,v; N\, A;q) = HS(u Vi3 A ws; wg’),

70 g g
j=1
% . i . .
a=[[ws A=T[ws, (v,0) = [J(ws 0. (u,q) = [Juww).
Jj=1 j=1 j=1 Jj=1
TATEZR, AL (u,w)) = (v, w;) =1 /) 5 H151PR 2.4.83 FTPAZA AT
26 E\L 8¢ &yt 3
S| < Kw!™ = K(u,w;’)iw™ = K(vj,w;")iw]

WREAE (u,wy) = 1, TATHTIBL 2.4.4 FBSL; MAREE (v, w;) = 1, IWLEBBIEE N W2
1+ AN =0 (mod A), FATH
S(u,v; A\, A;q) = S(v,u; N, A;q)
AT SR FE A A 1 348 2 T Y.
MTTFRAT R T BALAE T, B w0 RS w; T, AT, ROTBRAE (u, o) > (v, 0). 3
5
(UJ,wa): (u,w )—wE &l > ¢ >0.

FATE v = v u = u'w?

W & = &, WATHHM R

. Lt . EF . EF
|S] < waj = ijf‘gjwf’ = K(vj,wg’)%wf‘@ < K(u wg’)%wf‘&.

MR &) < &, ABAFRNT PRI S DL THE.
(i) #7 ¢ <& — &, TATA

g ! 2miu'p 27T’L"U§pl ¢ ! 2miu'p 27‘(‘7;1)3-]7/
= Z P\ g T e | T Z xp | = T e |-
pEAJ (mod wJCJ) w] wJ P=Xj (mod wfj) w] w]
0<p<wjj 0<p<wf.]_E;
A2 B H] (0], / j) =1, FATh 5B 2.4.5 153
’ 3 . EX- . 3
S| < Kw’ wj“(gj G K 45 j4£]+5 = K(vj, ?ﬁwfﬁe < K(u,wﬁj)%w]“g e,

(i) # ¢ > & — &, A

omiu' N;  2mivi N, s
S = exp L+ I3 ) WS,
§—¢&; §—¢&; J
w w;

J
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XHEIRATH N 15 14 A0 =0 (mod w 7). Hi

Ej)iw,%gj < (u ng)%w.%gj,

|S| = wfljfc" < wfj < (vj, w; ;

Pt TCie g, AT

E¥
S| < K (u, w} )4w4£’+6, 1S < K (vj,w f’)%w;‘{ﬁe.

PN RFAN ] 28 5O W AR T e e > BT A5:3) 518 2.4 RYUER. O
BTG FATRLE oA R AERY S IBE 2.5 ATERT, 45 AN N 2.
SIPE 2.5 WUEW]: FATHEIE En— P ERIER TR 0 < € < 1,0 <n < 1. 78 §— i b, FRATHCE A
T g P ai:
qg—1

2
77"'7771‘
q q

E%%ﬁ%On+M®:1%ﬁ&z%&hﬁmﬁﬁ%%ﬁ%

up + vp’
q
Hp =p+ N (mod q),1+pp =0 (mod q). X, FALE En— FiE EAFEN T @(q) A, FATATATRL
A B AR B AT B AT T 1E 5 TR KA.
TAVFRFEREAN R M, X m =0,1,--- , M — 1, ic My, IR FARZAR p 9140

X
ih

up+vp _ m+1

0<pr <, p=A (mod A), % . < T

A AHATHTHN

! 2miup  2mwivp’
> (i

p1<p,p=X (mod A), q
. ’
%< up+4vp < m]\«/[#l

- ’ - ’ i
=M,, exp< 7]r\2m> + Z <exp <m(“pq+ up )) exp( 7;\z4m>)

P1<u,p=X (mod A),

IT\Z < up+vp < m+1

211 M
=M,, exp < Zm> +0 <J\;> )

M EATA
' 2miup  2mwivp’ = 2mim 1
o4 = plz\; exp< . + . > mz:OM exp( U >—|—O(M).

p=X (mod A)

50 M, FAVEIRACS(e ). 5T
) MFo<e<t ML ey fe ) = 1

M M
00ﬁ?fﬁﬁ0<£<qA4<n<7glkﬁhm@¢»ﬁXf@o=;,

(i) XFFHIE 0 << L,0<n <1 PRHHES, EX f(E0) =0. (M4 m=M—1 1, X—FKEHR
PR 0<E<1,0<n <1 HRHELS X f(E¢=0.)

(iv) X &,m &A1 R AHIHEA TSR

<n<
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p=A (mod A) q q )
BB A AR, FATTH

+oo +oo
f&mn) =

Z Z ah,kezmghe%mk
h=—00 h=—0c0
X H
R I

—_ —2mih —27rinkd d
.k /O /0 f(&me e &dn
ATPAB SR RN, h # 0 1,

m—+1
d o 1 < _ 2mihp 1)
= o \© ‘

R, FATH

1 ©
G — / / F(€m)e 2 € dedn = / dge2mieh /
0 0 0 m
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m;;q { q}e + Zq 77729) Z{ q}e + N
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g=Ni+l p n=q’+q—N TNEATD

! q<N+;) -2 _me ! _ 27mnpi
=K Z Z/ <29) o " (St .

a=N1+1 =17 T a'+q-N<p

RERBSNEER, 0 <pr <q Hp(pr+N)+1=0 (mod gq).

51 o (¢ )

pl<p

7 (1(N+;) do 7. N
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<K (n,q)* q‘”en/
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2R EIRATRIUER T 2 P

4 JEsEE

N EFEATIAT AN ESE, X S(n) MIBUESEATIHE, FEMATH ax® + by? + c2® + dt* J& T
— 5.
FAVEmB—T S(n) #YE X

/

n) = Z Z g *{St}e” e
q=1 p

iTiE ,
A=Y a S

p

n) = ZAq.
q=1

BB 4.1: WTF (¢,¢) =15 =p (mod ¢'),s = (mod q), FfTH {85, } = {5 HS).

iy

21 59



UEW: {Sg} E‘J%X, ?jZﬂ]RFrﬁFEIiEEﬁ Sas a9’ = Sap q/SaTq

q -1
2armim? 2apmin?
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Nk
Ha < Hb < fle < -

Fropa > 1, MXFFAZ w (55009 n, n NEEFR ax? + by? 4 ¢2® + dt*. TR a,b,c,d JETH
(2) 3.

i ta = 0,0 > 1, WXFT n = ax? + by? + c2® + dt*, WH n = ax® (mod w), B na™" 2y w K FHF
& TRATFEZA n TR ax® + by? + 2 + dt? F5. W a,b,c,d BB TH (2) k.

XFTRIRHE) a,b, ¢, d, FATEUTEER:

SIBE 4.4: XT po = o = 0, pe < pa, TATHUTE

(Dpe > 1, pa > 2, (?f) = (—1)"F W, f77E—F n, xw = 0;

b d wrl K
(i) = pa = 1, <°;> = (wal = ()" B, 24 0= wh B AR K> 000 ~

(iii) XFFHERH, 1 K > 0,x, > K, Vo, UENERER (B S EIaie it 8, TR mE).
IR xo HATRMITIE, |

a = 2““@1, b= 2‘“’1)1,0 = 2’“01,(1 = 2Mdd1,

Nk
Ha < o < phe < fha-

i ta > 1, MIXTTAE 2 5500 n, n REERRI ax® 4 by® + c2® + dt*. TRRUILHY a,b,¢,d JE T
(2) 2.

i ota = 0, > 2, MXFTF n = az? + by? + c2? + dt?, WH n = az® (mod 4), Bl na=' Ky 4 1)F )5 %
& TRALFEZA n TTES az® + by? + c2® + dt? FoR. W) a,b,c,d METH (2) %

XFTRIGI a,b, ¢, d, TATH U T LR

SIBL 4.5: XT pa = 0, 1 > 1, pe < pa, FATHUTFEAR

(D)xz2 XF—%1 n 24 0, 4R

Has o fes fba =0, 1,1, > 3;
0,1,2,> 4;
0,1,>3,> 3;
0,0,>2,>2;

0,0,0,>3,a=b=c (mod 4)
K
(i) XF n =2 74 K > 0,x2 ~ ot LUES

Las by fhes fta =0,1,1,2, a+dy =b;+¢; =4( (mod 8)) or by +c¢1+2a=a+d; +2b; =4 (mod 8);
0,1,2,3, bi+di=a+c;=4 (mod8) or by+di+2a=a+c +2b; =4 (mod 8);
0,1,1,0dd, a+b=c;+dy =4 (mod8) or a+b+2c; =c+d+2a=4 (mod 8);
0,0,0,0, a=b=c=d (mod4) and a+b+c+d=4 (mod 8);

b

0,0,0,2, a c=d; (mod4) and a+b+c+dy =4 (mod 8).
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(iif) T HERFI, FE K > 0,x2 > K, Vn.
TER I RS

SAELAERITE, FATATLAAEE, Wk a,b, ¢, d 2
1. ARLESIEE 4.5 (1 (1) (i) o

2.A WAEMIRFA AL TIEE 4.4 19 (1)(ii);

3 AR R a,b,c,d 1 > 3 NG
4.a,b,c,d RS DHOHAEL

5.a,b, ¢, d HEDHNFORYE 4 B,

WfHAE K > 0,
K

Sn) > loglogn’

i B EH BT XA a, b, ¢, d, 55 7050 A IE S50 nl R

WA a,b,c,d A2 B 3/4/5 FARRE—A, WA THEFIA T595 24 n AREEERR. AT 2
1/2, FAT R FATIHE.

HETRATIEN]: A5 1PE 4.4(1) XA REUSLEG IR 4.5(1) 807, WIS 21 n ANRERRIR.

FRATER w WESIM 4.4 1 (1), FAISHFILE:

D2 < pe < pa, H <CZ§> = (-1)":

FAMHRE n=wni, (n1,w) = 1, FIEBXFER n ANRERERR.

Y wny = ax® + by? + c2® + dt?, FATATH (w,2) = (w,2) = 1, FEW w | z,w |y, #EH w? | n, TIE!

i w | aa® + by, AT ab= 12 (£)” (mod w) ik (u‘j) - (;1) (1), SRR,

@MC = 17/1/d > 27 <Z}b> = (_1)74)TJrl

BERSFATH] PASE @R BERI T 41 n Tk :

Ciny
n=wnj,wtng, |(—)=-L
w

FrglBl 4.5(i) Bor, WFRATAT AE A ] e BN R 91 n ANBEREFRIN
Dk, o, tres pa = 0,1,1,> 3

#bi+c =0 (mod 4), M n=a+4 (mod 8) NEEWEFHER;

b+ =2 (mod 4), W n=a+2b; +4 (mod 8) NEEHIFRMR;
Qhas Py pies ta = 0,1,2,> 4

#ra+c; =0 (mod 4), M n=2n;,n =b; +4 (mod 8) NEEHEF/R;
#Ha+c =2 (mod4), M n=2n;,n; =b; +2a+4 (mod 8) NEEMFEMR;
@thar toy ey pa = 0,1,>3,> 3

n=a+2b; +4 (mod 8) NEEWFER;

@ttas ps pes g = 0,0,> 2,> 2

#a+b=0 (mod 4), W n=2n,2¢n FEEPFER;

#ra+b=2 (mod4), W n=a+2 (mod 4) NEEMFERN;
Blras P, fhey fta = 0,0,0,> 3,a = b= ¢ (mod 4)

n=a+b+c+4 (mod 8) NEwHFmR.

T ESIBL 4.4(1i) 55180 4.5(ii).
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55@§m@44@%ﬂhh—ud—L<f>_<

Dcy > 1,dy > 1, W n=w* 21k NEEMEFR:

UEWI: FRATSEIE — R

518: wtAwt B, (f) = (=1, WXT VXY, #ATH 2| v, (AX? + BY?)

SIBUE): 2)fgw (AX? + BY?), ARG wt X, wtY, WIHH w | AX? + BY?.

mAB;_W<§><mmwy$%<ff)_(;>_@n%25%ﬁﬁﬁ.

BB, 2 wh = ax® + by® +w (e12® + dit?), BT kAL SEHEIA ¢z + dit® # 0. R T
cr > 1,dy > 1 AT HEBREVEISFH ax® 4+ by® # 0. B A = vy, (az® + by?), WEGI3E, 2 [ X BT 21k, B
k> A, Houboh = IR 0 AT g (22 ) = A -1, S5,

Qv = 1.dy >3 W n = 2wk 2tk R

®cr =1,dy =2,w #5, W n =50 21k NEEPFHER;

@c, > 1,dy =2,w=">5, M n="7-55 21k REEMFEMR;

®c1 =1,dy = 1L,w# 3, M n=3-wk 24k REEWFR;

©®ci =1,dy =1L, w=3,a>1,b> 1, W n =31 24 k RNEEWFER;

Mey=1,dy =1, w=3,a=1,b>1, M n =231 2tk REEWFTR.

ME——BhBISMEDLZ ©° + 4 + 32% 4 3%, W AFIR T A IERAL

ISR E O LML 52— 2R LM, WAFR T XXM EISMENL, ISR SHs
DU P 1 BREEASAH [R], AN AR SO R P E

PRSI 4.5(i). FoATATAZSL BT A REgEA T 0 S0 HE, T R G S 4, FRATTTE AN 45 ) A
ERITHE AR, HI Eam s

BT (1) k1 {a,b,c,d} A:

cidy

w

)—@Dﬁkmﬁm&%ﬁﬁw:

{1,2,3,6},{1,2,3,22},{1,2,3,38},{1,2,6,11},{1,2,6,19}
{1,1,10,10},{1,2,2,9},{1,2,2,17},{1,2,2,25},{1,1,2,18}
{1,2,9,18},{1,2,17,18},{1,2,18,25},{1,1,2,34},{1,1,2,50}
{1,2,9,34},{1,2,9,50},{1,2,17,50},{1,1,2,2},{1,1,1,1}
{1,1,1,9},{1,1,1,17},{1,1,1,25},{1,1,5,5},{1,1,1,36}
{1,1,1,68},{1,1,1,100},{1,1,4,9},{1,1,4,17},{1,1,4,25},{1,1,5,20};
Kloosterman A RgF17E J& T-W—K 511 {a, b, ¢, d} F:
(1,2,17,34}, {1,2,11,38), {1,2, 19, 38}, {1, 2,19, 22}
IXSEEAH B AR AR, FRE T5E (1) 25
HAW RS 4.5(0) 1) {a,b,c,d} WETH (2) 2
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1 Introduction

History has witnessed the fast development of modular forms, which is common
in a number of mathematical branches. There is no denying that due to the idea of
modular forms, analytical number theory embraces its brand new era. This article
is intended to record the results and some proofs roughly, especially those related
to analytical number theory. Our main reference is the classic work that belongs to
Kuznecov. His estimates, via the use of modular forms and former conclusions, are
more precise than his contemporaries’.

In essence, those basic formulae come from the Fourier expansion of some fun-
damental functions. However, by virtue of the deformation of integrals, we obtain a
series of nontrivial results. The reason for our deformation comes from some masters’
estimates and rich properties of Bessel function. We will focus on the deformation
but skip some inequalities so that we can make our article seem easy.

This article is based on [[1] and [2]. They do help us a lot.

2 Notation

Before we begin our journey, some definitions are important.
Let G be the modular group PSL(2,7Z). We equip the upper plane H with a

G-action, that is,
a b az +b
z = )
c d cz+d

1
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3 HECKE OPERATORS 2

Besides, Laplace operator £ = —y2(§—22 + ;—;2) is also frequent. We will consider
its eigenfunctions of discrete spectrum, named after cusp forms of weight 0. Here
we recognize that they are nontrivial real-analytical automorphic functions, which
satisfy the equality f(gz) = f(2),Vg € G and finiteness condition [, |f(2)[*dz < oo,

where D is the fundamental field of G and dz = ng’y, the G-invariant measure of H.

The gray domain is the fundamental field.

On the basis of some knowledge on compact operators, we know that the Laplace
operator has Lebesgue spectrum of multiplicity one which fills out the semiaxis 1—11 <
A < o0, and it has a discrete spectrum of finite multiplicity located on the semiaxis
A > 0 and having no points of accumulation in every finite interval.

The simplest subgroup of G may be translations < z + 2z +n >. We call it G..

Hecke defined operators acting on automorphic functions, T'(n),n € N,. Let us

prove some basic propositions.

3 Hecke operators

3.1 Definition and properties

A matrix M is called order n if det M = n. We consider the equivalence relation
of My and Ms if My = gM,, g € G. 1t is not difficult to verify that all representatives
are of the form

a b
(O d) yad=n,d>0,b=0,1,...,d — 1.

Hence, the following definition is valid.
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3.1 Definition and properties 3

Definition 3.1. For every automorphic function f and n > 0, we define

1 az +b
== 5 f(E50). (3.)

ad=n b mod d
d>0

Or equivalently,

T(n)(f) = % S F(Me2), (3.2)

where M; runs over all representatives.

It is trivial that the images of Hecke operators are also automorphic. And the
following theorem implies that they are commutative.

Theorem 3.2. n, m € N, then
mn
T()T(m)= Y T (7> . (3.3)
d|(m,n)
Proof. Step 1: If (m,n) =1, then,

1 ad'z +a'b+bd
Gl XY (M) e

ad=nbmod d a’d’=m b mod d’

T(n)T(m)f =

Because m and n are coprime, aa’ and dd’ run over every divisor of mn and
a’b+ b'd runs over the residue system of dd’. As a result, T'(n)T'(m) = T'(mn).
Step 2: If m = p and n = p” and p prime, then,

T()f = (f(pZ) ey ( - b)) | (3.5)

VP = p
Then,
ri1 iy PR+ tp S (PRt b
p 2 T(p)T(p)f = f (—k ) +Y f (—M ) . (3.6)
k=0 t=0 p b=0 p

Similarly, basic number theory tells us that,

T(p")T(p) =TE TP (3.7)
Step 3: If m = p® and n = p” and p prime, then we can assume s < 7.
Ifs<r, T(p)T(p"T(p*) =T ") (T(p*™) +T(p*')). Hence, we can do induc-
tion on T'(p")T(p**'). If s = r, the same as the above case.
All the three steps have told us all. |
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3.2 Inner product of automorphic funtions 4

Lemma 3.3. If we let Chebyshev polynomial be

Up(cos®) = W (3.8)
then . (1) — )
10 =0 (3r0) = ¥ SR aer . e
ogk<r/2 ’
Proof. It is trivial. |

Corollary 3.4. p prime and 2cosf is an eigenvalue of T'(p), where § € C. Then
sn(r 10 §s an eigenvalue of T'(p").

sin 0

3.2 Inner product of automorphic funtions

Lemma 3.5. T'(n) is Hermitian with respect to this inner product of automorphic
functions,

(ot = [ BRI (3.10)
D
where D is the fundamental field and dz is the G-invariant measure.

Proof. Tt suffices to considering the case when p prime. Then,

1 & 1 <~
(T(p)f)(z) = N ;f(ang) = NG ;f(agﬂ% (3.11)

where,
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3.3 Relation to eigenfunctions of Laplace operator 5

As a result, if we change variables by 2’ = g,z and conform the integral domain,
we can get,

(T(p)f1. f2) = Z/fl ag;z) f2(z)dz (3.12)
- /B f1(2) Tl T2)dz, (3.13)

p
where B = |J ag,;D
§=0
The same as this, we cam get,

(fi, T /fl ) fo(@z) (3.14)

~
where B = |J g;D
=0

But note that a 'z = az = pz. So what we only need to do is to compare B
and B. We claim that they are both the fundamental field of G4, and the proof is
reserved for practice. |

3.3 Relation to eigenfunctions of Laplace operator

We denote 1 as the eigenfunction of the discrete Spectrum of Laplace operator

equipped with the eigenvalue \ > }L. And let kK = /X — ;. The Fourier expansion
of ¢ is clear. And the regular property makes the followmg formula appropriate,

+oo

W(z) = Z cn(y)e?™ e, (3.15)

So, apply this to characteristic equation, we can get,
— 2! + 4An’n?yPe, = Aey, (3.16)
which is the classical Bessel equation. Then,
cn(y) = p(n)V/yKin(2[nly) + p(n)y/yLin(27|n]y), (3.17)

with p(n) and p(n) to be decided.
But the second component is always unbounded. Finiteness condition request it

69



3.3 Relation to eigenfunctions of Laplace operator 6

to be zero.
Simultaneously, when n = 0, the concrete calculation suggests that p(0) = 0. So,

= p(n)yKix(2m|n|y)e*™. (3.18)
n#0

Beside, K, (y), considered as a function of v, is even and entire on the complex
plane. When v purely imaginary and y positive, K, (y) is a real number. As a result,
if 1(z) takes on real value, an extra condition is inevitable,

p(n) = p(=n). (3.19)

This part provide a case of Hecke operators acting on special functions.

Lemma 3.6. The same as above and let n > 1, then,

=) ta(m)\yKix(2m|n[y)e>™™, (3.20)

m#0
where,
mn
ta(m)= 3" p <?) . (3.21)
d|(m,n)
d>0
Proof.
2 b
Z Z Z m)\/ — Km( 7r|7;z|ay> exp <2mma c;_ ), (3.22)
and,
d, ifd
exp 27m'mé S [, ) (3.23)
d 0, el
b mod d ,  ClSe.
tell us all. |

Then, using the following proposition, we can choose a special basis in an attempt
for simplification.

Proposition 3.7. Hecke operators commute with the Laplace operator.
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3.3 Relation to eigenfunctions of Laplace operator 7

If V) is the A-characteristic space of £, V) is also the invariant space of T'(n).
We have told readers dimV) < oo and 7'(n) Hermitian and commutative. Hence, we
pose induction on 7'(n) and make them diagonal under some basis. Note that the
dimension is finite, our induction will stop finally. That means, we can choose a basis
such that every T'(n) act as a stretch on them. That is, if 1); is the eigenfunction of
Aj and,

T(n)v; = p;(n)v;, (3.24)
we can get,
Yo(n) = const. (3.25)

If we use our Fourier coefficients, we can get,

DN (%) = p(n)p;(m). (3.26)
dl(m.n)
d>0

If we take m = 1, we get,

() = Pi(7)
1 (n) () (3.27)

As a result, we get the matrix form of the formula (@),

pi(m)ps(m) = pi(1) Y pi () (3.28)

d|(m,n)

Example 3.8.
(T(n)E) (z,s) = 15(n)E(z, s), (3.29)

where E(z, s) is Eisenstein series that will be discussed later. Its definition is that,

1 y°®
E =y + = — .

(29)=v"+5 D P (3.30)

(e,d)=1

c#0

And,

7o(n) = |n[*=12> d (3.31)

o
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4 INNER PRODUCT BETWEEN REAL-ANALYTIC POINCARE SERIES 8

4 Inner product between real-analytic Poincare se-

ries
When 2 € Hand s € C, Poincare defined the series P,(z, k) = n*~* EGZ\G %,
g )
where gz = ¢£ . Similarly, Selberg defined U, (z,s) = > (Imgz)*e®™9%, which

g€Go\G
is called real-analytic Poincare series.

This section is the highlight of the entire paper. Due to calculating this inner
product from two basis, principal properties of Poincare series are described in two
senses, both numerically and analytically. Corollary lil] and theorem @ can be
understood easily in this way. As for Poincare series, it can be regarded as the
expansion of group representation theory, where sums with respect to group elements
exist everywhere. Moreover, in the theory of Riemann surfaces, the Riemann 6
functions share the sane philosophy.

Remark. When Res > 1, the series absolutely converge. And Uy(z,s) = E(z, s).
Besides, we can verify that U, is automorphic, and if we let ¢ = Re s,

Un(z,8) = (1 — $5)Un(z,5) + 4mnsU,(z, s + 1), (4.1)
|U (z,8)| <y’ *™ + E(z,0) —y°.

Theorem 4.1. s, sy € C, and Re sy, Resy > %, Re (51 + $2) < % Then,

s L)) — F(81+82—1)
(Un(a 1>’Um<7 2)) 57”” (4 n)sl—i-sz—l

s2751 3—s1—s o0
n 20712 S(n, m;c) 4my/mn
- : 4.3
i (\/ m) sinm(s; — $7) Z csits2 (s, 523 c ), (43)

c=1
where S(n,m;c) = Y exp (2mi (% + Tl)) is the Klooster’s sum and,
1<d<|c|
(c.d)=
dd'= 1modc
= s1+s2—2 : . du
D(s1,80;) = (u—1/u)** ™27 (= sin(wsy) Js, —s, (x0) + sin(ms2) Js,—s, (20)) o
1
(4.4)

The idea of this proof is in center of Fourier expansion. So, we can first calculate
the Fourier coefficients of U,,.
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4.1 Fourier expansion of U, 9

4.1 Fourier expansion of U,

Lemma 4.2. Res > 1, n € N, z € H, then,

“+oo

Un(z,5) = Z e*mME B (msy, 8), (4.5)

m=—o00
where,

—27mny

Bn(m Y,s ) = 5mnyse
S(n,m;e) ., [T , 2mn d¢
+ = Z T / exp <—2mmy§ T2yl @5)) it e) (4.6)

—00

Moreover, when Re s > %, the formula is well-defined and holomorphic.

Proof. Dismiss all the strictness, we can get,

1 y° 2mina 2min
U — oS p2minz - .
(2,8) = yre T3 Z lcz + d|? P < c c(cz—l—d))

(e,d)=1
c#0

ad=1modc

_ s 27r7,nz_|_ Z’ ’28

5 i (o hens).

c#0 1<d<|c|
(c,d)=
where,
o= —2mn
. —2s
n 7 R = B . 48
folz;cy, 8) Z.ohy—i-m—l—x] eXp(CQ(zy—f—m—i—m)) (4.8)
Note that f,, has period one, so,
+0c0 '
Z e*m My (m; ey, 8), (4.9)

where,
l .
ba(ms .y, 5) = / e 2ME R (¢ 1y )de
0

+oo
Change order 1—2s , 2mn df
_— —2 _— . 4.10
i e (amimig - g ) e 40

73



4.2  One way of calculating inner product 10

We may as well omit [i,i00) and (—ioco, —i] for one-valued branch. And we can
change the toy contour to Im¢ = A, —1 < A < 1. Then,

Re(—if) = A, Re< -1 ) <0, |1+ <(@-1]A])*+ [Re&)?) "

— £
(4.11)
Hence, for any s for which Res > 1/2 and any A € (—1,1) we have,
b (m; ¢, y, 5)| < Ay, 0)e”2™mAY 5 = Res. (4.12)

As a result, this series converge absolutely when y > 0 and ¢ > 1/2 and if the
following series converges, we can substitute (4.9) in (4.7]).

3y S, mic) (4.13)

2
= e

It really converges when o > 3/4. In fact, Kloosterman sums satisfy Weil’s estimate,

1S(n, m; ¢)| < |¢|'/? min {\/Wd ((nfc)> A/ (m, o)d <<mc C)> } L (4.14)

So, for any fixed n, this series is determined by v/n > Mgdf—f)m, which converges when
c#0

o > 3/4.
Replace f,, by its Fourier expansion, and our target will be reached.

4.2 One way of calculating inner product

It is easy to see that, the inner product I above satisfies that,

Z / (2, 51)(Im gz)*2e2mimezd, (4.15)

9€G\G

_G-invariant Z/ Z 31 y emede (416)

= / (2,81)y*2e2™m=dz, where B is the strip of [0, 1] x [0, 00) (4.17)
[(sp+ 52— 1) 1/00 —2 -2 S(n,m;c)

= Oy - °2 TN ey b (mi e,y 1), (418
" (4mn)sitee—l * 2 Jo e #0 |c[s1 ybu(mic g, ). (418)
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4.2  One way of calculating inner product 11

The last step uses Fourier expansion of U,. And if we can change the order, we will
get the target form of (@) To reach this, we note that,

* d
Y™ by (M5 .y, 81)| < yl‘”/ ﬁ’ o1 = Res. (4.19)

So, when we temporarily assume oy > o7 > 1 and m > 1, the integrand in (4.18§)
is majorized by y72~ 71" le7 W - £0 ‘S("# As a result, change the order of sum-
mation over ¢ and integration over y and use the representation of b,,, we can obtain
that the inner integral is equal to,

= so—s1—1 o : o 2mn
/0 Y exp ( 2mm (1 + i)y —02(1 — if)y) dy. (4.20)

Here, the writer skipped a lot of calculation and claimed that using the well-known
integral representation for the Hankel function of the first kind of a purely imaginary

argument,
1 [ z 1 du
K,(z) = 5/0 exp <—§ (u + E)) py Rez >0, (4.21)

we can get, the integral in () is equal to,

2 n g Ary/mm |1+ i€
|C|52—s1 ((1 +£2)m) K s ( |C| 11— £> . (4.22)

Substitute it into the above formula, the second term in () is,

[ - S(n,m;c dy/mm |1+ i€ gy —S1E52
2( E) > — = pregees / K, - ( . i (1+&) 7 de

- (4.23)

And if we let v = 1“ which changes along right unit semicircle from —i to 4,

we can obtain,

i 1 s1+s2—2 d 4
(h23) = (—iy22 / Koy (av) (v+—) D=V (12
—i v

(% Cc

Cut the complex v—plane along the negative real semiaxis, and deform the path
of the integral above. We can obtain a path from the imaginary axis from —ioco to
—i and from ¢ to ico, because for each fixed v and fixed > 0, when |v| — oo in
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4.3 'The other way 12

the right half-plane, K, (zv) < |v|7*/2. So the integral along the bigger semicircle
converges to 0 when o7 + 05 < 5/2.
And In the integral from 7 to ioo, we have,

KU(Z> . ™ {efiwv/2J_v (Zefiw/Q) . eiTrv/QJv (zefiﬂ'/2>} 7 (425)

2sin v

and in the integral from —ioco to —i, we have,

K, (2) {ei”/QJ_v (ze”/z) — T2 (ze”/Z)} ) (4.26)

2sin v

Hence, substitute the above expressions and combine same terms, we can get the

formula (@)

In order to erase the extra assumption of s, it suffices to verifying the series in
(B.3) converges absolutely and use the principle of analytic continuation. Since we
have estimates,

|y ()| < 27 1Rev] (4.27)

and,
/ ut J, (u)du, (4.28)
1
is finite for any Re p < 1/2, we can obtain, when = — 0+

a2z, min (o1, 09) > 1,

[@ (51, 52;2)] < { T — oy — 02|ln%, min (o, 09) < 1. (4.29)

Thus, the general term in the series in (@) can be dominated by o (|c|72|S(n, m;c)|)
if min(oy,02) > 1, and by o (|¢| 720192 In|c||S(n, m; ¢)|) if min(oy, 02) > 1.

And then, every proposition in this section has been proved.

4.3 The other way

The subsection @ has stepped forward a lot. Here we can use their information
to calculate the inner product the second time.

Lemma 4.3. The eigenfunctions above are complete in this Hilbert space.

Theorem 4.4. Let s; and s, be complex variables. For any fixed value of one of
them, the inner product is a meromorphic function of the second variable in the
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4.3 The other way 13

entire plane, and for all s; and s, with Res; > 1 it equals to,

1= ramynn 3) (i s (M P TIA(s1, 521 1)

+% /_OOOO (%)ZT am’r(”)OLQir(m)A(Sl, S2; T‘)%dr) , (4.30)
where og4(n) = > d® and,
dn
D (51, 50:7) = D(sy —1/2+ir)(sy — 1/2 —ir)[(se — 1/2 + ir)['(sy — 1/2 —ir)
o (50T (s:) o
Proof. 1f we let,
Ef) = [p [(2)05(2)d> (432)

Er.f)=[p f(g)E(z, 1/2 +ir)dz,

We have Parseval’s equality,

(U o) U (59) = 1= [ €00 (o) BT G

AT J_
+ Y& (Un50)) & (Un (52)). (4.33)
=0
Similarly, using their Fourier coefficients, we will obtain,
Onteshi) = [ [ Eay (4.34)

= (2mn) ) [ K )y (1)
0

And we can get a simple form,
I'(s—1/2+ik;) (s —1/2 —ix;)

(Un(, 5)?¢j) = 277\/5(477")78m I(s) J (4.36)
and,
~(Ual), B, 12 + i)
_ 22723<nﬁ)1/2737ir02”<n)F(S —1/2+ir)l'(s —1/2 —ir) (4.37)

L(s)I'(1/2 —ir)¢(1 — 2ir)
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5 APPLICATION 14

Substituting these Fourier coefficients in Parseval’s equality, we obtain the main

assertion of the lemma. We reserve the others for readers.
[ |

5 Application

In this section, we will only show the outcome from the analysis above without
proofs.

Corollary 5.1. m, n € Ny, [Im¢| < 1, then,

Y —pj(n)WH(’fjat) + % /+OO (ﬂ)" UZir(n)Ufm‘r(m)—H(T? D__ g

cosh 7k o \n 1C(1 + 2ir)|?

_ Omn 1 2t Z S(n,m;c)q)(élw\/ﬁ’t)’ (5.1)

72 sinh 7t - 7 sinh(27t) £ c c
where
cosh r
H(rt) = 5.2
(r2) cosh(r +t)coshm(r —t)’ (52)

O(z, 1) Zx/oo (Jait () + J-2it(u)) d:. (5.3)

Proof. Let s; = 141t and s, = 1 — it. In this case, compare the two forms of the
inner product. Intereted readers can complete the remaining proof. |

Corollary 5.2. Given e >0, X > 2 and n > 1,

2 X2
3 !g e mL S+ 0 (X log(X) + Xn® + n%+€) . (5.4)
J

H]\

Theorem 5.3. h(r) is an even function of complex variables holomorphic on the
strip {Imr < A} with A > 1 and h(r) = O (|r|7*"°) where § > 0. m, n € Ny.
Then,

Y Mh(’%) + L /_Jroo (Tyr 02ir (1) 0 —2ir (M) M)

coshmk; TJ) o \M |C(1 + 2ir) ? "
Omn [T = S(n,m;c)  4my/mn
=2 rtanh 7wrh(r)dr + Z . o( . ), (5.5)
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6 SUMMARY 15

where,

o) =2 [ o) hird (56)

x)=— (T r)dr. .
T J o 2 cosh mr

Remark. The estimate (@) can be obtained when we let m = n. Now weight

function H plays a role of filtration. Moreover, theorem can be obtained if we

integrate (ﬁ]) over t and change the order of sum and integration.

Theorem 5.4. When n, m fixed and T" — oo,

D> M\ < TY°(InT)"°. (5.7)

1>c2T

Remark. This estimate is the first nontrivial conclusion all over the world. Ju. V.
Linnik conjectured that the average on the left is much smaller than any 7°¢. And
Selberg found a counterexample to show that the analog of Linnik’s conjecture for
an arbitrary discrete subgroup of SL(2,R) is wrong.

6 Summary

We briefly discuss the basic ideas of this topic and some theorems. In this process,
we turn to be familiar with modular forms and contemporary analytic number theory.
The deeper our grasp of arithmetic group is, the better we can understood the
number theory. I think it is what Kuznecov’s article suggests. The introduction is
still imperfect, and we apologize for all possible errors and fault sentence in advance.
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A journey to space-time singularity

Yu xueyi

June 2022

1 Introduction

This is a reading report on general relativity and space time singularity. The
book or article I read is listed in Section 6 (Reference).

Section 2(Causal structure in space time) will introduce the basic
concept and result about the causal structure in general relativity, and introduce
the concept of Cauchy surface. Section 3(The longest causal path, and
conjugate point on non-spacelike geodesics) will investigate when can a
non-spacelike geodesic be a longest non-spacelike path.

Section 2,3 can be seen as preparation to Section 4,5. Section 4 (Hawk-
ing’s singularity theorem on the cosmology), Section 5(Penrose’s sin-
gularity theorem on the blackhole) will introduce two exciting evidence of
the existence of singularity, one exists in the beginning of universe, the other
exists in the death of a massive star.

Because Hawking’s singularity theorem do with time-like geodesics, Pen-
rose’s singularity theorem do with null-geodesic. Hawking’s singularity theorem
is easier to understand for beginner, so I don’t follow the route of history and
introduce it first.

2 Causal structure in space time

The Minkowski space is the four-dim linear space equipped with the (0,2) metric

-1 0 0 O
0 1 00 . .

tensor 0 o0 1 olo® each point. Call the four axis t,x,y, 2; t express
0 0 0 1

time; x,y,z express space. The Minkowski space is the mathematics model of
space time in special relativity.

But in general relativity, the things is a little different. The space-time is
locally a Minkowski space on every point. That’s to say,every point in the
space-time manifold M (a four-dim manifold that is smooth enough to ensure
the theorem in this article to be right ) is equipped with a (0,2) metric tensor g,
which is equivalent to the metric tensor in the Minkowski space under coordinate
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transformation. But this space-time (M,g)can be curve in large scale, the curve
of space-time is source of gravitation

Definition 2.1. a four-dim vector 2 is said to be timelike if gqp2®2? < 0; null
if gabxaxb = 0; spacelike if gabmaxb >0

Figure 1: three types of vector

When a particle is moved in space timethe tangent vector of its world line
is always timelike ( particle with static mass,like electron) or null ( particle
without static mass,like photon).

Definition 2.2. a C! curve 2#(s) in space time is said to be non-spacelike path
or a casual path if the tangent vector da*/ds is timelike or null on every point.

The causal path z#(s) is a geodesic under proper parameter s if D?z* /ds? =
0 along the path .D means covariant derivative. This means that the tangent
vector is parallel while moving along the curve. The parameter s is called a
affine parameter

Use the metric g, we can define the length of a causal path from p to q is

a dz® dxb
l= —Gap———— d
/s,, Jab"gs ds

. Attention to the negtive sign. While in Minkowski space , the length is simply

Sq
z:/ V2 — di?
Sp

Every substance and information can only travel through non-space like
curve.So we have

Definition 2.3. T' is a subset of M. Then the casual future of I', called as
J (), is the point that can be reached by a future-directed causal path begin-
ning from a point in T'. The causal past J (I") can be defined as the same.

. Figure 2 shows the casual future of a point ¢, Figure 3 shows the casual
future of a round ring W in space.
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9J*(q)
[

Figure 2: casual future example 1

Figure 3: casual future example 2

Definition 2.4. Given two points p,q in M, if p is in the causal future of q,
then we can define the causal diamond between p,q , named DY | is the intersect

of 77 (q) and J~ (p)

Clearly each causal path from p to q is in D%, most of the time DY is compact,
however there are counter examples. If we moved a point from space time in
the causal diamond, then D? can be non-compact (figure 4)

Figure 4: casual diamond DY is not compact if I moved away a point

If the DL is compact,then the space of causal path from p to q is compact
too when we give M certain restrictions(Theorem 2.2). This can be seen using
the intuition of Arzela-Ascoli theorem, but our space time is not a metric space
yet. We can define a metric (Euclid metric) on M use a local finite atlas and
”partition of unity”.

Recall that let M is paracompact, then there exist a local finite atlas {U,, ¢ },
and {C'} functions g, on each map, such that
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(1)0<ga<1;

(2)the support of g, is contained in U, ;

(3)2_q 9a(p) = lor any p ;

Then the set of g, is called a partition of unity. g, is the weights of each
map. If there is only one map that cover p. We can define the metric at p
simply the metric as in Euclid space. If there are many maps that cover p, we
can calculate the weighted average of every metrics use the weights function g,.
Then we can define the length of v which is a C' curve from p to q, then define
d(p,q)=inf{length(v)|y is a C* curve from p to q}. One can proof the topology
of M under the metric d is the same as the natural topology of M by verifying
the set {the open subset of every U, } is a topological basis of M in both cases.

Then we can proof the theorem we mentioned before, but before that we
should proof a baby version.

Theorem 2.1. Let (M, g) be the four-dim Minkowsky space. If the DY is com-
pact,then the space of C' causal path from p to q is compact too.

Proof. we can see C! causal path (s) from p to q as a C* map from [0,1] to
M | such that v(0) = ¢,7(1) = p, we can let the parameter s simply represent
the t-axis value of y(s), however we should we should act a linear function on
it so that v(0) = ¢,~v(1) = p.

~(s) may be not equicontinuous when they are just normal curve.But cause
v(s) is causal path, they are equicontinuous: Because 7(s) is causal path, then
|dt| > |dZ|,(t represent time, ¥ represent space) then ds% = dt* + d7? < 2 * dt?,
then |ds| < v/2|dt|, then d(7y(s1),7(s2)) < V2|51 — s3]

Recall that v are all in a compact place D, use Arzela-Ascoli theorem,
function space «(s) is compact, then the curve space v is compact O

The compactness of the space of causal path means a lot to us, in such space
there is a longest causal path from any two compact sets (such as from two
points, or from a point to a compact set). But this compactness only holds for
some "normal enough” space. There is a restriction that have good physical
intuition, that is ”globally hyperbolic”.

Definition 2.5. A space-time (M,g) is called globally hyperbolic if there is a
Cauchy surface H. That is, H is a spacelike 3-dim submanifold of M, and the
point of M — H is divided into JT(T') (future) orJ (') (past). If a point p is
in the future of H, then any past-pointed closed casual path without end point
will pass though H; if a point g is in the past of H, then any future-pointed
closed casual path will pass though #.

The intuition is that if you want to predict what happened in p, you just need
to know the data on H, figure 6 shows a counter example of globally hyperbolic
space-time. A point r is kicked out from the space time. If you want to predict
what will happen at p, you also need the data that comes from the lost point r.

Then we come to the theorem that shows the compactness (theorem?2.2,
theorem?2.3, especially theorem 2.4).
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Figure 5: Cauchy surface example

M
Figure 6: Cauchy surface counter example

Theorem 2.2. if (M,g) is globally hyperbolic, H is a Cauchy surface. Let q be
a point in the past of H, then the future-pointed causal path segment from q
that has an end point on H form a compact space

Proof. Take ¥1,%2, ..., Yn, ... be a infinte sequence of future-pointed C' causal
path segment from q that has an end point on H.

(M,g) is locally a Minkowski space at p.Then there is a open neighborhood
of q called U, and a coordinate (¢,Z) on U such that the Lorentz metric is
ds?> = adt?> + bd7? ;a € (—1 —¢,—1+¢€), b € (1 —¢,1 + €).while € is sufficiently
small.

We set the Euclid metric is ds% = dt* + d#? , one can verify that U is a
metric space under this Euclid metric. And the topology won’t change

Use the symbol in the proof of theorem 2.1. Cause v is timelike, then
ds® = adt?> + bdi? > 0, then

1—¢€
dt dx
el |
then
2 2 =2 2 2
then

[ 2

then d(v(s1),v(s2)) < V2|s1 — sa|, then the map ~(s) is equicontinuious.
Then the image of y(s) is within the closer of U, which is compact. Use Arzela-
Ascoli theorem, then ~, restricted to U will have a subsequence converge to 7,,
which is a causal path segment which has a end point q’ on QU.Then we can
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extend the convergence causal path segment from q’ use the same method. We
can extend it until it pass through H.

To make our proof more rigorous, let’s do some subtle work. FEach time
we extend our convergence causal path segment, we define l,4q4 the sup of the
Euclid-length of the segment we can add on the original path(we have shown
that  can’t be zero,because we can always extend).Then each step we will extend
until the length add at least l,44/2, this can be done.

Then our convergence causal path won’t have a end point at the past of H.
If so, we call the endpoint r. We call the end point of each step of extend r,,
then r, — r. Use the definition l,44(r) — laga(r).

But we have promise that each step we will extend until the length add
ladd(rn)/2, but the r,, converge, so we have l,q4(r) — 0, then we have l,q4(r) =
0, a contradiction!

Then our convergence causal path won’t have a end point at the past of H,
we can call it . use the global hyperbolic of (M,g), v will have a end point on
H, that’s what we want

O

N

a

Figure 7: proof of theorem 2.2

Theorem 2.3. The point ¢ is defined in theorem 2.2, then D;“ = J (q) N
(J~(H) UH) is compact.

Proof. If D;" is not compact. There will be g1, g2, ..., @n, ... in DZ" that don’t
have a limit point in D;{, then the causal path 71,72, ..., Vn, ... (7n pass through
q and ¢, ) will have a converge subsequence v, that converge to a causal
path 7. Then for sufficiently large k, v,; will be within a neighborhood of
v, which is compact.Then ¢, is within the compact neighborhood of v, but
qnk 1S a subsequence of ¢, and won’t have a limit point, contradict with the
compactness! O

Theorem 2.4. if (M,g) is globally hyperbolic, H is a Cauchy surface. Let q be
a point in the past of a point p, then the C' causal path segment from q to p
form a compact space.

This theorem is also right if p,q is replaced by compact set. Because the
direct product of compact set is compact
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Figure 8: proof of theorem 2.3

Proof. There are two situations: p, q are within two different sides of H, or p,
q are within the same side of H

(1)p, q are all in the future of H

Y1,Y25 s Vn, --- are causal path from p to q. v, can be extend to H and then
call it 3,, . From theorem 2.2 we have known that (3, will have limit causal
path 8. Cause each (,, pass though g, then § will pass though q too. Call the
segment on 8 from g to p 7. Cause [ is the limit causal path of 3,, v is the
limit causal path of ~,,.

(2)p is in the future of H, while q is in the past.

Y1525 ey Y, --- are causal path from p to q. v, can be divided into 4} and
L. 4L are causal path segment from q to H; 72 are causal path segment from
H to p. From theorem 2.2 we have known that ~,, will have a subsequence 7;\.
converge to y'. We also know that +;, will have a subsequence 7, converge to
~2. Put together v',42 and then form a causal path v from p to q. Cause 'y,l”j
converge to y!, %2”7» converge to 72, then Yn;; converge to -, then v is the limit
causal path of ~,. O

From now on we only consider our space-time (M, g) is globally hyperbolic.
This have good reason because we always expect the future of our universe is
determined by some initial state.

3 The longest causal path, and conjugate point
on non-spacelike geodesics

From theorem 2.4 we know in a globally hyperbolic space-time there is a longest
causal path from any two compact sets. If the two compact sets is two points
p,q (p is in the future of q) we call itthe longest causal path from p to q. Use
variation of curve it can be showed that the longest causal path must be a
timelike or null geodesics (theorem 3.1).

In the opposite, a timelike or null geodesics may not be the longest causal
path from p to q. As an example. Let’s see the longitude begin at the north
pole N (figure.9), as the path have pass though the south pole S, it’s still a
geodesic, but no longer a shortest path. We notice that S is a conjugate point
of S, that is, some geodesics emitted from N will focus at S again. We will show
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that a geodesics is a shortest path (in Lorentz metric, the longest causal path)
only if it’s geodesics and have no conjugate point on it (Theorem 3.1).

Figure 9: Longitude that have pass though south pole is no longer the shortest
path

To define conjugate point we should define variation of curve first.

Definition 3.1. A variation a of a C'! causal path y(from q to p) is a C! map
from [—e, +¢€] x [0, sp] (set s, = 0) to M such that

(1a(0,5) = 7(s)

(2)a(u, s) := 7y.(s) is also a C! causal path from q to p.

Oa(u, 8)/0(u)|u=0 := Z(s) is called the variation vector. From the definition
we have Z(0) =0, Z(s,) = 0.

Then we define conjugate point

Definition 3.2. ( p is conjugate point of point q) p is in the causal future of
q, v is the non-spacelike geodesic from p to q. We call p is a conjugate point of
q, if there is a variation of v, such that

(1)7(0) = q

(2)7u(sy) = p

(3)7u(s) solve the geodesic equation d?v(s)/ds®> = 0 in first order. That is
d*v.(s)/ds?® = o(e) .

To ensure that -, is significantly different from . We have to set another
restriction. Named the begin vector of v(s) is d@(u) = d7,(0)/ds. Named the
begin vector of y(s) is d(u) = d~v,(0)/ds . Named the end vector of v(s) is

—

b(u) = dyu(sp)/ds . The restriction is that
(4) d3(u)
a(u
0
du 7
That is, the beginning vector change direction in first order. This is equiva-
lent to

db(u)
du 70
because if .
dbu) _
du 0
8
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recall

A%, (s)
ds2 o(u)
, then @(u) = o(u), then
di(u) _
du 0

a contradiction.

B

q
Figure 10: ¢’ is a conjugate point of q on geodesic pq

Then we come to a Necessity about when can a causal path be a longest
causal path.

Theorem 3.1. p is in the causal future of p Then a C' causal path v from p to
q is a longest causal path only if v is a non-spacelike geodecsic, and there are
no conjugate point of q on .

Proof. In variation of curve , named L(u) := Length(v,) Some calculation
(reference(2) Lemma.4.5.4) shows that
oL Sr d?vy(s)
A |lu=0 = Z B d 1
o= [z, T has (1)

g( , ) is the inner product of two vector use the Lorentz metric g. Z is
the variation vector we mentioned above. If v is not a geodesic . That is, If
d*v(s)/ds?) isn’t zero along v, we can set Z(s) such that g(Z(s), d*y(s)/ds*) > 0
when d?v(s)/ds? is non-zero. So that OL/0u > 0, then there is some ~, near
that is longer than . So to be a shortest path, v must be a geodesic.

If there are conjugate point ¢’ of q on pq, then there is a variation ~, of qq’
such that 7, solve the geodesic equation in first order, that is d?v.(s)/ds*> =
o(€). The variaton vector Z,(s) is continuous in u,z , so it is bounded in a
neighborhood of 4 . Then formula (1) shows that

OL
ou |u:e = 0(6)

That is, the length change of «, don’t change in second order.
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Recall the restriction that dg(u)/du £ 0, b is the end vector of qaq’. Then 7,
(the variation of qq’ ) together with q’p form a "kink”. We will show that by
rounding off the kink we can increase the length in second order, then the new
curve will be longer than ~.

Named the combination of v, and q’p is n,. We have 19 = ~. n,, is a curve
from ¢ to p whose tangent vector is continuous expect at ¢'. Named the end
vector of v, at ¢’ is b Named the begin vector of ¢'p at ¢ is @, = bo (because
v is C1). A variation of 1, is 1y, the length of 1, is L, (w)

Similar to (1) calculation (reference(2) Lemma.4.5.4) shows that

w o 2 uw\S °» 2 uwl\S
aLauIE] )/0 g(Zuw(S)dr,zlsz())d5+/8I g(Zuw(S)%)dS o

q

+ g(Zuw(sq/)v buw) - g(Zuw(Sq’)a auw)

There is a technical fact that in a neighbourhood of ¢’, For any two vector d,
b, there is vector Zsuch that g(Z,b)—g(Z,b) > K||@—b]|-||Z]|, while ||Z]| is the Eu-
clid length of 2. So we can set Z,.,(s,) is a vector like this, and set || Zy. (s7)|| =
1. We can also set Z,, on other point such that d?Z,.(s )/dzs is zero in
(0,5,), (s}, 8p), and Zyu(0) = Zyw(sp) = 0. This set ensures d*1y,(s)/ds® i
still zeros in (0, s7,), (sy, 5p), which makes things easier.

Notice that from definition of variation vector , we have

a(auw - guw) aizuw a+Zuw
= +

ow ~ Os 0s
The set of Z ensures both one of the right side %, % have Euclid

length greater than C||Z,,|| = C, C is a constant. Then we have

-

|| 8(61“1) - buu))
ow

S0 ||@uw — buw|| doesn’t reduce to less than Hd, — by|| when w € [0, ||d@, —

[| >2C

bu||/2¢]. Then from formula (2), when w = ||@, — by||/2¢ ,we have

Luw) - L,(0) = [ G Zan () Buw) — 9 Zuw(51), )

— _'u — l_;u _’u - gu
> K || Z| 1B bull _ g 1 = bul] (3)
2 2
Hau — Z_7’u||2
P Pull
2¢ ’
Recall db(w)/du # 0, then ||@, — by|| = ||bo — bu|| = ku(1 + 0(1)) 50 Ly (w) —
L,(0) = £Eu2(1 4 o(1))(u — 0) . This means that 7,, do increase the length
in second order. So for some sufficiently small u,w; 7,,, is longer than . Then

v is not the longest when there are conjugate point.
O

10
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The following situation is also useful. If S is a spacelike 3-dim surface. q is
in the causal past of S. What kind of causal path v can be the longest from p
to S. When can guess that ~ should be a geodesic and have no conjugate point
on it. There are another necessity that v must be orthogonal to S, that is the
tangent vector of v at p (p is on S) is orthogonal to the tangent hyperplane of
S at p.

Figure 12: pq has to be orthogonal to S

The definition of conjugate point is much like the situation of two point, but
a little different

Definition 3.3. (q is a conjugate point of surface S) S is a spacelike 3-dim
surface. q is in the causal past of S. v is the non-spacelike geodesic from q to S
and orthogonal to S at p, p is on . We call q is a conjugate point of S at p, if
there is a variation of 7, such that

(D)7u(0) =¢

(2)7u(sp) is still on S

(3)7yy is still orthogonal to S

(4)And 7, (s) solve the geodesic equation d?v(s)/ds? = 0 in first order. That
is d?v.(s)/ds* = o(e) .

To ensure that ~, is significantly different from . We have to set another
restriction. Named the begin vector of v(s) at q is d@(u) = dv,(0)/ds. The
restriction is that

(5) Il

Yu Sp
du 70

That is, the end point of v at S change position in first order. This is

equivalent to

11

90



because if

recall

then

a contradiction.

The necessity of longest causal path in this situation is what we have men-
tioned above

Theorem 3.2. q is in the causal past of S Then a C' causal path v from q to
p(on S) is a longest causal path from g to S, only if

(1)~ is a non-spacelike geodecsic.

(2)There are no conjugate point of q on v (see figure 11)

(3)And ~ is orthogonal to S. (see figure 12)

Proof. From theorem 3.1 , if (1) is not right, Then there is a longer causal path
from q to p.

Let’s verify (2). If q’ is a conjugate point of S at p on qp. Then we can
variate q’p to q’p’(p’ is still on S) who solve the geodesic equation in first order.
Then the length of q’p’ don’t change in first order. And ¢’p’ with qq’ form a
”kink” , we can round off the kink as in the proof of thm 3.1. Then the new
curve will be longer in second order. Then there will be a longer causal path
from q to S

Let’s verify (3). v, is a variation of y From calculation(Reference 2, Lemma
4.5.5) similar to formula (1)(2), we get

oL o d*(s) dr(s)
— |u=0 = Z(s), d Z(s), = 4
Gelho = [ oz, s+ oz, G s =0 @)
So we can choose Z such that Z(20) satisfy g(Z(s), d”&fj) )]s =0 > 0. And Z(s)
decay quickly so that [;* g(Z(s), dﬂ;@ )ds is sufficiently small. So %%[,_o > 0.

From variation we can got a longer curve.
O

Theorem 3.2 will be useful in the proof of singularity theorem.

12
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4  Hawking’s singularity theorem on the cos-
mology

Dose the universe have a beginning, or it has existed for infinite time and will
still exist? These question is beyond the reach of science until Einstein write
his field equation

1
Rij — iRgij = 8n Tj;

in 1915, which can also be written as

1 .
Rij = 8m (Tij — 5T9i;) = 87 Ty

The left hand side is the curvature in space-time, and the left hand side is the
matter. It shows how matter curve the space-time. Shortly after this , Alexan-
der Friedmann use the equation to investigate the dynamics of the universe.
His work based on the assumption that the universe is uniform isotropic, this
is luckly well satisfied by our observable universe according to modern obser-
vations. Friedmann’s work shows that the universe have a beginning, and may
have an end. But whether if uniform isotropic condition isn’t satisfied. Some
work shows that the deviate of isotropic may prevent singularity from happen.

In this section we will introduce Hawking’s singularity theorem on the cos-
mology. Hawking proofs it in 1970, encouraged by the work of Penrose. This
theorem shows that our universe must have a dramatic beginning in some sense.
My introduction don’t follow the history route. But since the Hawking’s singu-
larity theorem only do with time-like geodesic. It’s easier to understand.

The proof do a lot with conjugate point. The conjugate point is easy to
form in universe. Because the positive energy will cause positive curvature, and
positive curvature will cause geodesic come together.

Let’s show a convenient way to show when a conjugate point can from

S is a space-like three-dim surface. Let v be a time-like geodesic orthogonal
to S and intersect S at p. Then there is a transfer ¢4 of a neighborhood U of
p on S. That is , from every point q in U, there is a geodesic vy, begin at q,
orthogonal to S and point to the same direction of 7. Define ¢4(q) = v4(s) .
Clearly ¢g = id. ¢s can be seen as a map from a three-dim manifold to another
three-dim manifold, ¢/ (p) is a 3*3 matrix. So We can define

A(s) = \Jdet(@}(p)T gi; 04 (p))

A(s) can be seen as the volume change of U while transfer along ~, clearly
A(0) =1.

Theorem 4.1. At some point p’ on 7y , if A(s, ) =0, then p’ is a conjugate point
of .

13
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Proof. A(s,) = 0 means that for some & in linear space, ¢, (p)Z = 0 . Then
choose Q,, in U such that (1,Q>... is on a curve in S that pass P and its
tangent vector corresponds to & in the tangent space of S at p. Then we have
[|6s(Qn), ¢s(P)|| = o([|@n, Pl|), ||, ]| is the Euclid length. Use the definition of
@5, then ||vg,, (spr) — Y. (sp7)|| = o(||@n, P||).-We can change g, a little bit to
74, » the begin point of g, is still Qn, g, is still orthogonal to S. But the end
point is moved to (s, ). Cause the distance from g, (sp) to Yo, (sp) is less
then first order. We can still let ’ybn solve the geodesic equation in first order.
Then from definition P’ is conjugate point of S at P. O

£

—/
J 5y

Figure 13: the transfer ¢, acts on a neighbor U of p on S

The Raychaudhuri equation (1955) of time-like geodesic shows how A(s)
change under the influence of matter. It is just a deformation the 00 component
of Einstein equation

1
Roog = 87(Too — §T900)

to a ordinary differential equation of A(s). The Einstein equation should be
used in a proper coordinates.

The coordinate is that: First cause S is a three-dim space like surface, we
can set a three-dim vector # to every point q on U as a C' coordinate, in
fact, the coordinate of q is (0,Z) . Second, in a neighbor of 7, we set the
coordinate of v,4(s) is (s,Z) . Since for any s < s, (p’ is the conjugate of S at
P). A(sp) > 0, that is ¢/, (p) is non-singular. So use the inverse function theorem
@s(p) is diffeomorphism (so injective) for sufficiently small U as a neighbor of p.
Since [0,s] is compact , the Euclid radius of possible U of every s; on [0,s] has a
positive lower bound. So on [0,s], the coordinate is well defined C! coordinate
for sufficiently small U. This means that if we got a ODE of A(s), it is hold on
any [0,s] for s < sy, so it is hold on [0, s,,).

There is a good property of our coordinate, which will make the calculation
much easier.

Theorem 4.2. In this coordinate , the metric tensor on g;; satisfy g;o = go; =0
(i=1,2,3). This means that ¢,(U) is still orthogonal to v while transferring.

This theorem holds because s is a parameter represent the length on each
curve. A rigorous proof is this

14
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Proof. Cause 7 is orthogonal to S, then g;o(P) = go;(P) = 0 (i=1,2,3) , that is
giO('Y(O)) =0. Also
dgiO(fY(S))‘ _ :g(d’}/q(s) d’y(s))
ds 5=0 dzt 7 ds
g(,) is the Lorentz inner product, cause

d’Vq(S) N
dxt =0
, SO
dgz‘O(V(S))| -
ds s=0

is zero. Cause

gio(1(s)) _ (d(DQVq(S)/dQS) d’r(S))
d?s g dx? " ds
Cause 7,(s) is geodesic , then D?v,(s)/d?s =0 , then
d*gio(v(s)) —0
d?s
Recall the initial condition
g9i0(7(0)) =0
dgio(7(s)) | -0
ds =0
then we have g;o(v(s)) = 0. O

—

So under the coordinate (¢, Z) we defined above, the metric is simply
ds® = —dt* + gijrix; (i, j = 1,2,3) (5)

Under this coordinate we have

A(s) = /[ det(gi;(s)) (6)

Cause the parameter has a intuitive meaning, the time, so we use ¢ instead
of s from now on.
From the definition of Ricci curvature we have

Rop = —5@(9 katgik) - 1(9 katgkj)(gj i Gmi) (7)
Then we have
1 . 1 _q.
Roo = —§3tT7“(9_19) - ZTNQ '9)? (8)
15
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From the equation of A(t) (6) we have

1 1,
0= A §TT(9 9) (9)
6 is called the volume expansion, it describe the volume change of the frontier of
a small bunch of geodesics around + , the ”frontier of geodesic bunch” is ¢.(U)
in fact.

Define

i ik - L 1.
oi = g% gij — 39 Tr(9™"9) (10)
which describe the shape change of the frontier of a small bunch of geodesics

around =, that is ¢;(U) , is named as ”"shear”.
Then Ry can be reduce to

_ 1o 1 2
Roo = 8,56 30 4TTO' (11)
Recall the Einstein equation
1
Roo = 8m(Too — §T900) (12)
Define )
Too = Too — §T900 (13)
is a kind of matter tensor.
Then (12) is equivalent to
Roo = 8Tho (14)

Then from (11), (14) we get the the Raychaudhuri equation (1955)

% + %92 = —iTr o? — 87Tho (15)

Recall § = A/A, so (15) is a ODE of A(t)

If Too > 0 , which is satisfied by normal matter. Then the right hand side
of (15) is non-positive, effect is that A(t) tend to decrease, that means time-like
geodesic tends to come together. So we can see in fact the conjugate point is
easy to form (See figure.14) .

Theorem 4.3. Assume Tpy > 0. If 6(0) = —AX is negative, then there is a
conjugate point of S on ~(t) within ¢ € [0,3/)].

Proof. From Ty > 0, then the right hand side of (15) is negative.
then we have the left hand side of (15) is

do 1
ol (16)
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——— —

S

Figure 14: conjugate point p of S is easy to form

So if §(0) = —\ is negative, Then from the comparision theorem in ODE,
we have

0(t) < PRREYSY _33/)\

Then 6(t) will go to —oo within ¢ € [0,3/A]. This meas that A(t) will go to
zero within [0,3/A], then there is a conjugate point of S on ~(t) within [0,3/A].
O

Tho > 0 is a restriction on matter , which is called the strong energy condi-
tion. It is satisfied by non-relativistic matter, radiation . But not satisfied by
Dark energy, which is a discovery of modern observation (1998).

Hawking singularity Theorem says that

Theorem 4.4. (Hawking 1970) If the condition below is satisfied

(1)The strong energy condition Tpo > 0 is satisfied.

(2) If the universe is globally hyperbolic , that is , there is a Cauchy surface
S

(3) On S the Hubble constant is everywhere positive. That is , on every
point p, the initial expansion ,(0) = A(0)/A(0) defined above is positive. And
the expansion 6,(0) on S has a positive lower bound 6,,;,

Then our universe is time-like geodesic incomplete, that is , there is some
time-like geodesic before S that can’t be extend to any time parameter to the
past. So, the particle traveling though this geodesic may mysteriously have a
”beginning” in her time.

(1) is satisfied by normal matter, but sadly, not the dark energy, which
dominate in our universe since 9.8 billion years ago (our universe aged 13.7
billion years). (2) is the assumption we always tend to believe. (3) means our
universe is expanding, which may be supported by observation.

Proof. If a point q is in the past of S. From theorem 2.3 we know the point
on S that can be reached by q by a causal path is compact, From theorem 2.4
we know there is a longest causal path v from q to S, intersecting with S on p.
Then from theorem 3.2 we known that v must be time-like geodesic orthogonal
to S, and there is no conjugate point of S on it.
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Figure 15: every particle have a finite history...

Notice 6,(0) > Opnin, cause in this case our geodesic is pointing to the past.
We have to change the sign of 6,,(0), then we get 6,(0) < —0,,;, From the strong
energy condition Too >0 (we have discussed the affect of it) , then v must have
a conjugate point ¢’ of S on it when the time parameter is smaller than %,

it is equivalent to

lenth(pq') < <

_ep(()) Omin
Cause pq have to be longest path, so ¢’ is not on pq’, then

3 < 3
*91)(0) = Omin

lenth(pq) < lenth(pq') <

That means that every point g in the past of S will have a longest-causal
path to S that are shorter than 3/60,,:,, that means every causal-path point to
the past are shorter than 3/6,,;, (see figure.15), then our universe is timelike

geodesic incompelete
O

The result means that the history of any particle before S is shorter than
3/0min- Where do it begin? We call this place singularity.

In this theorem, there may be many singularity, but from astronomy ob-
servation , mysteriously, our universe only have one, we call it the Big-Bang
singularity.

5 Penrose singularity theorem on black hole

Stars resist the gravitation by heat pressure of the matter in star. And the heat
energy comes from nuclear reaction in the heart of the star. At the end of the
life , the star will consume out of its nuclear fuel and lose heat gradually. Then
the heat pressure can’t resistance the gravitation and then the star will collapse.
What will a dead star result to be, it may result as a white dwarf or neutron
star . But Chandrasekhar shows that white dwarf have a mass greater than
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1.4Mg,, can’t resistance its gravitation by Electron degeneracy pressure and
exists stably, Oppenheimer shows that neutron star can’t have a mass greater
than 3Mj,, can’t resistance its gravitation by neutron degeneracy pressure and
exists stably. What will a star have a mass greater than 3Mj,,, become when
it dead, this is a mystery. Oppenheimer and Snyder (1939) shows that if ignore
the pressure of matter, and star collapse in a spherical symmetry way. It will
collapse to be smaller than its Schwarzschild radius rs = 2m , and will keep
collapsing to a singularity. Then all the mass is located at a single point, which
seems to be crazy. But the singularity may be seen as a result of perfect spherical
symmetry. It’s not clear whether singularity will form in real universe.

time

ISR
atter—\

r-2m r:0 r-2m

Figure 16: The figure in Penrose’s original paper. A star Collapses in a spherical
symmetry way will result in a singularity. S? is a trapped surface, F'4, B3 is its
future and future boundary.

In 1965 Penrose published his paper ” Gravitational collapse and space-time
singularities”. It shows that the singularity is inevitable if some condition is
satisfied

Cause Penrose work do a lot with trapped surface I' ; a compact 2-dim
space-like C! surface that satisfy some condition , and its causal future J*(I').
Let’s investigate some property of J+(T'), if I" is a compact 2-dim space-like C*
surface.

Theorem 5.1. Space-time (M, g) is globally-hyperbolic. T is a compact 2-dim
space-like C! surface. Then dJ T (I'), the boundary of J¥(T), is a consist of
the null-geodesic that comes from I' and orthogonal to I
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Figure 17: The future boundary of W is made bynull-geodesic that comes from
W and orthogonal to W

Proof. If a point u on JT(T") and can be connected to I'" by a causal path
~. Cause I' is compact , we can choose v be the longest. Cause u is on the
boundary of future, so length(vy) = 0. If not, length(v)0, then in a neighbor U
of u, from continuity , every point in U can be connected to I' by a causal path
~', contradict with the definition of boundary.

So, cause 7 is the longest, similarly to theorem 3.2, we have 7 is a geodesic
orthogonal to I'. Cause lenth(y) = 0, then we have « is a null-geodesic.

It remain to proof that there do has a causal path v that connect u with ~
. (See fig.17 , in figure.17 W means I') . This may not be right if (M, g) is not
globally hyperbolic. Imagine kick off a "ring” R on 07 (T') from (M, g), then
the point on J T (T') and behind R it is still on 8J T (T), but can’t connect to
I’ by a causal path, because they causal path have to pass the "ring” R.

Now we proof the theorem is right if (M, g) is globally hyperbolic. Let u
be a point on JT(I'). Cause u is on the boundary , there will be a sequence
of point p1,ps,... in JT(T') such that p, — u. From the definition of J*(T)
, there will be a causal path from p,, to v, name it v,. p1,pe,... converge, so
they are in a compact set, from globally hyperbolic and theorem 2.4, they form
a compact space. So they have a converge sequence +,, . It converge to a path
v, Because 7, is causal path, , then the tangent vector on every point of 7y,
in non-spacelike, then because 7,, converge to 7y, then the tangent vector on
every point of v in non-spacelike, then + is a causal path from u to ' O

Now we can define the trapped surface.

Definition 5.1. (Not rigorous)

Trapped surface:a compact 2-dim space-like C! surface I' that satisfy both
of the the two local null geodesic beams( that is, light beams) orthogonal to ~
(going outside and inside) at p will decay the area of they wavefront when they
leave p.

In figure.16, S%(= T?) is an example of trapped surface. (Figure.19 shows
it more clearly). In the case of fig.16, calculation shows that, the gravitation
is strong enough that the in-going and out-going light-rays all ”going inside”!
So the area of the two wave-front all decay. That is a motivational example of
trapped surface.
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Figure 18: a picture of trapped surface v, and its causal future. Notice both
blue ring and orange ring go smaller when time increase

From continuity, the trapped surface is still a trapped surface if the spherical
symmetry is perturbed. Trapped surface can be seen as a result of high matter
density and strong gravitation. And Penrose work shows that once the trapped
surface is formed, singularity is inevitable.

Let’s make the definition of trapped surface more rigorous.

“incoming" £ outgoing”
u |

W,

Figure 19: Two light rays orthogonal to W at the same point, one can be seen
as ”income” direction, and one can be seen as ”outcome” direction

First, let’s define the two orthogonal direction of light rays. given a point p
on I', T has tangent space W at p, space-time (M,g) also have a tangent space
V at p. W is a 2-dim spacelike subspace of 4-dim V. It can be verified that there
is only two null-vector 675 (up to multiplied by a real number ) in V that are
orthogonal to W. Then set d, b to be the beginning vector of the two light rays
“p, Mp - One can be seen as ”incoming” , and one as "outgoing” . (see figure 19)

Secondly we can choose a neighbor U of p on I'. Each point q in U can
have a coordinate (z1,z2). On every point q of U we can similarly define ~y,, 7,
choose the direction of v, 71, such that ,,n, is continuous in q. ~,(s) has a
affine parameter s( ”affine” means the tangent vector in parallel along the curve
, that is D%y,(s)/d?s). Set v,(0) = g, then the parameter s of each v,(s) is
determined up to multiply by a constant(the constant of each geodesic v, can
be distinct from each other).

The same as the case of timelike geodesics, define ¢4(q) = v4(s) . Clearly
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¢o = id. ¢s can be seen as a map from a 2-dim manifold (U) to another 2-dim
manifold, ¢/ (p) is a 2 x 2 matrix. So We can define

A(s) = \Jdet(@}(p)T gi; 84 (p))

A(s) means the wave front of the light ray beams while transferring. (see
figure. 20)

Figure 20: A(s) is a measurement of the area of the wavefront of a local light-ray
beam.

Then, choose proper parameter for each ~,(s) so that

9X,4(0)
dz;(q)

=0(i=1,2)

on each q.

X;(0) means the tangent vector of v, at q. The equation means the begin-
ning vector of v, is parallel while moving along U.

Then similar to theorem 4.2, we have the wavefront of light beams ¢4(U) is
the orthogonal to 7.

Set 6(s) = A/A, 6 is called the area expansion, or simply expansion

Then we can define trapped surface rigorously

Definition 5.2. (rigorous)

Trapped surface a compact 2-dim space-like C! surface I' that satisfy both
of the the two null geodesic 7,, 7, orthogonal to v at p have a positive initial
area expansion. That is, 61,(0) > 0, 62,(0) > 0. 61, means the area expansion
of vy, 02, means the area expansion of 7,

use similar calculation in section 4, we got equation similar to (15). This
is called the null Raychaudhuri equation, which is a analogy to the original
Raychaudhuri equation (15).

g + %92 = fiTr 02 — 81Ty, (17)
T\ means the component of T at the direction of tangent vector of v at
v(s). Notice that (17) is a little different to (15), the coefficient of 6% in left
hand side change from 1/3 to 1/2, this is because T in section 5 is 2-dim , but
S in section 4 is 3-dim.
Similar to Section 4, we have
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Theorem 5.2. If (0) = — X is negative(this will be satisfied by a trapped surface)
. And if the weak energy condition

is satisfied, there will be a conjugate point of I" at p on y(s) when s € [0,2/A1].
(See figure.21)

Proof. The proof is the same as theorem 4.3, you just have to change the coef-
ficient from 3 to 2 . O

But notice in theorem 5.2 we also have to assume (M, g) is null-like geodesic
complete, that is, any null-like geodesic can be extend to sufficiently large affine
parameter. If (M, g) is not null-like geodesic complete, the geodesic may can’t
extend before it come to a conjugate point. We can say it meet a singularity
before it meet a conjugate point.

Figure 21: conjugate point will form at some parameter u € [0,2/A]

Finally we come to Penrose singularity theorem

Theorem 5.3. (Penrose 1965)

In space-time (M, g) If the condition below is satisfied

(1)The weak energy condition T}, > 0 is satisfied.

(2)(M, g) is globally hyperbolic .And there is a Cauchy surface S that is
non-compact

(3)A trapped surface T' is formed.

Then (M, g) is null-like geodesic incomplete. In fact this is a evidence of the
existence the singularity. We think some null-like geodesic can’t extend because
it ”hit to a singularity”. Just as Hawking ones said

” Although we have omitted the singular point from the definition of space-
time, we can still recognize the 'holes’ left where they have been cut out by the
existence of incomplete geodesics.”

(1) is satisfied by normal matter, and particularly dark energy. In fact , it’s
satisfied by any usual relativistic classical matter field. (2) is the assumption we
always tend to believe. (3) Happens when matter density is high and gravitation
is strong enough.

Proof. Step 1: If (M, g) is null-like geodesic complete, then 07 (') is
compact
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To get a contradiction , we assume (M, g) is null-like geodesic complete,
that is, any null-like geodesic can be extend to Sufficiently large parameter.

Cause 0JT(T') is a boundary of a space-time region, then it’s closed in
(M, g) and have no boundary as a 3-dim manifold.

Cause T is a trapped surface, we will show that, strangely, 7 ™ (T) is com-
pact. We say compactness is strange result because you can see the example in
figure 1, figure 2, non of the 87T is compact.

Cause the trapped surface I' is compact, and 61,(0), 61,(0) is continuous in
P(P is on I'), Then there will have a positive lower bound of 6:,(0), 81,(0), cal
bound A

Then from theorem 5.1 we got 71 (") is made of null-geodesic segment -,
that is orthogonal to I' at some point p on. Cause 7, should be a shortest path
from point on p to I'. There should be no conjugate point of I' on segment ~,.
But the weak energy condition tells us that, if keep extend, 7, will come to a
conjugate point when s € [0,2/A], so the parameter of point on -, won’t be
large than 2/X .

We can define map f

I x[0,2/A] x {1,2} — (M, g)

that is, f(p,s,1) = vp(s), f(p,s,2) = np(s) (7p is null-geodesic going inside,
np is null-geodesic going outside). We can see f is continuous. Cause the
parameter of point on 7, won’t be larger than 2/\, then

AT () C f(T x [0,2/)] x {1,2})

Cause I'x [0,2/A] x {1, 2} is compact, f is continuous, we have f(T'x[0,2/A] x
{1,2}) is compact. Then J " (T') is a closed subset of compact set, then 07 (T")
is compact.

Step 2: in fact 07 (') can’t be compact

Let’s also show 07 (') can’t be compact . In fact, we can set a C! timelike

segment field on (M, g)(such as a direction at each point where Lengthporent./Lengthgyciia

become the maximal). Then the integral curve of the segment field F will con-
nect a point p at I' and a point g(g) at Cauchy surface S (See fig.22). Cause
segment field F is C*, then we have map g: 7 (') — S is continuous.

g is also a injection, if not, two point p,q on 8JF(T') satisfy g(p) = g(q),
then there will be a integral curve of F called v connect ¢,p(p is in the future)
. But « is timelike (See fig.23), so we can start at I', walk along a null-geodesic
v to q, and then walk along « to p, then 7 U « is a casual path from I" to p
and its length is positive. Then p won’t on dF (') , contradiction. So g is a
injection .

Then because segment field F is C' , we have ¢! is also continuous. Then
g is a homeomorphism from 97 (T') to a subset Sy of S. S is not compact, Sy
is homeomorphic to 87T (T'), so Sy should be compact. So Sy should have a
boundary , but 87 (') is a three-dim manifold without boundary , a contra-
diction!

1

O
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Let’s see why the assumption that (M, g) is null-like geodesic complete is
needed to get a contradiction. Remember in the first half of our proof, we
have shows that if (M, g) is null-like geodesic complete, dJ+(T') is compact.
If (M, g) is null-like geodesic incomplete, like the space time in figure.21 (the
null geodesic can’t extend when they meet the singularity). To make things
more easy, we just consider in figure.21 spacetime is 2+1 dim, then the trapped
surface S? is a 1-dim ring, We can see the future bound of trapped surface
dJ+(S?) is homeomorphism to a 2-dim sphere without a point, because the
top of the sphere is a singularity , and it’s not in our space-time, we have to
remove it. So J(S?) is homeomorphism to a 2-dim open disk, which is not
compact.

i
—matter—\

riam rio rom <

Figure 22: a homeomorphism g from 871 (T') to Sy

e

q

Figure 23: p,q is on 0J (T, If there are line segment « from p to ¢, then o
can’t be time-like

At the end of massive star. nuclear fuel is consumed, no force can resist
gravitation, then star will collapse. we can expect the matter-density will get
very high and then a trapped surface will be formed , then things end up in
one/some singularity. There are no proper physical theory near the singularity,
that’s the boundary of our knowledge. What the singularity really is , that’s a
question that is challenging the wisdom of human being.

The Penrose’s work is just a new beginning of the study of black hole. His
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work give general relativity theorist new tools and perspective. Important work
like black hole area non-decreasing theorem (Hawking 1971), No-hair theorem
of blackhole(1973 and later) was made after that.

The observation evidence of black holes is also accumulated as time goes
by.In 1996 and 1998, two teams lead by Genzel and Ghez, published their ob-
servation of the star orbits around Sagittarius A*, and find it is high massive
(4.1 x 1O6Msun), but located in a relatively small area. In 2015 , LIGO first
detected the gravitational waves emitted from the merging of two blackholes.
In 2019 and 2022, ETH release the ”photo” of two massive black holes, one is
at the center of galaxy M81, one is at the center of our Milky Way. The second
one is exactly Sagittarius A* which has been studied by teams of Genzel and
Ghez.

6 Reference

there are four main reference

(1) Penrose Roger (1965), ”Gravitational collapse and space-time
singularities”

this is the original paper of Penrose singularity theorem on black holes |,
which only have less than 3 pages.

(2)S.W.Hawking , and G.F.R.Ellis, ”"The large scale structure of
space time”, Cambridge university press,1973,

this is a professional book on General Relativity and space-time singularity.

(3)”Light Rays, Singularities, and All That” by Ed Witten

They are in fact a summer camp lecture notes of Witten in 2018, you can
find it on arXiv, you can find the lecture video ”Light rays and black holes 1,
2” on internet.

In this lecture, Witten explain in simple language but give reader deep per-
spective on space-time singularity. This lecture is enjoyable if you are interested
in this subject and have basic knowledge on General Relativity.

(4) ”Gravitation ” by Charles W. Misner, Kip S. Thorne, and John
Archibald Wheeler.

A Big Mac textbook on General Relativity, written by three master.
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1 Introduction

A tiling is a covering of the plane by polygons or other shapes that do not overlap with each other.
A tiling which cannot coincide with its original pattern when shifting any finite distance without
rotation, is called a aperiodic tiling. The contrast is called an periodic tiling.

Figure 1: The Penrose tiling

The Penrose tiling, found in the 1970s, is a famous example of an aperiodic tiling. Despite its
lack of translational symmetry, it possesses both reflection symmetry and fivefold rotation symmetry,
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aside with abundant wonderful properties. The tiling was created by Roger Penrose, and was firstly
discussed by Penrose and J.H.Conway, who found some of its fantastic features and constructed some
of its geometric structure.

In the early 1980s, the algebraic structure of Penrose tiling was discovered, which in my opinion
means the beginnning of serious mathematical research of this marvellous phenomenon. In the following
years 1982, D.Shechtman found a diffraction pattern in the metallic phase of some Al-Mn alloy turning
out to have fivefold rotation symmetry, which contradicts with the existing opinion of the structure of
crystals. After fighting against opposition for two years, his work was finally published, which triggered
his Nobel prize at 2011 and the new concept of “quasicrystal”.

There is the fabulous connection between the Penrose tiling and quasicrystals, just as the connection
between periodic tiling and crystals. I will finally show in this paper that the Penrose tiling is a
projection of a trivial periodic tiling with a higher dimension, the same as the quasicrystal is the
projection of a high dimensional crystal, as it was written in the textbooks of solid state physics.

This paper is organized basically in two parts. At first I will summarize some of the basic properties
from tiling and crystal to the fascinating Penrose tiling and quasicrystal, which serves as an exhibition of
this topic. And then I will present some of the algebraic structures of the Penrose tiling, in other words
do some mathematical approaches, which as an introduction, will show the profounding cannotation
of this topic aside from just “Interesting Mathematics”.

2 Basic Properties

2.1 From tiling to crystal

A tiling is a non-overlapping cover of the plane, where some obvious examples are the square tiling
and the regular hexagon tiling. If we do some simple math of a tiling by a regular polygon of n edges,
then we have 5

(n—2)m < m = o (1)
n

where m is the number of polygon tiles around a perigon, therefore requiring m € N, and we have

n

— eN (2)
which leads to a solution of n = 3,4, or 6.

A crystal is a material state where the atoms(or ions) are highly ordered, forming a lattice that
extends in all directions. It usually consists of two properties known as the traslational symmetry and
the long range orientational order, and the latter are usually characterized by reflection symmetry or
rotation symmetry.

The Crystallographic Restriction Theorem states that if a translational symmetric crystal owns
a property of n-fold rotation symmetry and reflection symmetry, then n can only take the value of
{1,2,3,4,6}. The proof are also some simple maths, for if we take one vertice on a horizontal line L in
the lattice and suppose the length between two adjacent vertices on the line are d, then we can rotate
the line by 16 and get Lq, here 6 = 27” are the basic angle of n-fold rotation symmetry. After getting
Ly by reflecting Ly along L, we notice the length between the mth vertice of L; and Lo equals to the
length between some two vertices on the original line L, that is, there exists an integer k satisfy

2mdcoslf = kd (3)

by substitution of  and rearranging the equation we have for every m and I,

2
2m cosl—ﬂ- ez (4)
n
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thus we have n € {1,2,3,4,6}.

2.2 Penrose tiling and quasicrystal

Among these tilings, aperiodic tilings seemed to be more interesting than periodic tilings, and many
methods to produce an aperiodic tilings were found gradually. An example are the “reptile” method.
Its main idea is to create a fractual pattern by putting the tiles together to form a same tile with a
bigger size. Thus any finite-distanced shifting can be considered in a large enough pattern same with
the tile, and one prooves the shifting cannot coincide with the original tiling.

Figure 2: The sphinx reptile figure

But there is the problem that the tiles one can find to create a reptile can always be combined
together trivially to form a periodic tiling, like a parallelogram tiling. So mathematicians began
searching for an aperiodic tiling S such that for any set of tiles T' C .S, T cannot form a periodic tiling.

In 1961 Hao Wang guessed that such S do not exist, but in 1964 R. Berger constructed a S satisfy
card (S) = 104. Later D. Knuth decreased the number to 92, and finally in 1974, R. Ponrose gave a
construction of S such that card (S) = 4, which is the original Penrose Tiling.

Suppose there is a crystal lattice L = {(x,y) : x,y € Z} C R? on the plane and let ¢ = 1+T\/g
be the golden ratio, we pick out the set of points 7' C L such that every (z,y) € T, the square
S={(mmn):x—1<m<x,y—1<n<y} C R? has an nonempty intersection with the line y =
(¢ — 1)x. Then the projections of all points in T onto the line create a 1-dimensional pattern that
is long range orientational ordered, but not translational symmetric. This can be seen as the 1D
quasicrystal, also a 1D tiling, if we connect two consecutive projections on the line and take them as
1D tiles. What linked the Penrose tiling with quasicrystals are the generalization to 5D spaces, when
an appropriate plane intersect with R® lattices and create the Penrose tiling pattern, which will be
finally proved as Theorem 2 down below.

2.3 Geometric properties

Apart from the original 6-pieces tiling, two types of the eventual version all consist two pieces,
namely “the kite and dart” and “the thick rhombus and the thin rhombus”. But the two types are
essentially the same, as there exist a transformation between them. As a remark, the Penrose tiles

e

Fig. 1. The thick and the thin rhombus.

Figure 3: The thick and thin rhombuses with arrows as matching rules
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Figure 4: The kite and dart tiles with arcs as matching rules

Figure 5: The substitutional tiles serving as matching rules

aren’t just two polygons of “kite and dart”, or “thick and thin rhombuses”, but along with a matching
rule to make sure the tiles cannot be combined together to form a trivial parallelogram periodic tiling.
The matching rules can be in the form of arrows needing to be matched along along a coincident edge,
or arcs inside the polygon needing to be continuous, or simply substitutional tiles as in the example
figures.

Using these tiles one can easily create a Penrose tiling, but the numbers of different Penrose tilings
are infinite, actually uncountable. Here two tilings are different means that one cannot coincide with
the other by shifting a finite distance without rotation. Nevertheless, any finite pattern in any Penrose
tiling can be found in every other Penrose tilings, and their numbers in every other Penrose tiling
are infinite. Futhermore, Conway proved a so-called local isomorphism theorem, stating that a finite
pattern of a circle with radius d in any Penrose tiling, can be found in somewhere at most distance

¢3d from any point in any other Penrose tilings, here ¢ stands for the golden ratio 1+T‘/5

3 Algebraic Structures

3.1 Notations and remarks

The main idea of this part is to prove that from five generating parameters 7o, v1, V2,73, 74 along
with the requirements Z?:o 7v; = 0 (thus it’s four degree of freedom) one can produce a Penrose tiling
pattern on R?, or name it, the complex plane C. I will like to name this Theorem 1 the pentagrid
generating theorem. Also by using the pentagrid generating theorem, we can prove the Theorem 2
mentioned above, which I will name it the plane intersection theorem.

A remark is needed, that in this section we will work on the Penrose tiling of thick and thin rhom-
buses, instead of the kite and dart pattern above. And the matching rules will be in the form of arrows
attached to each edge of the thick and thin rhombus, such that the matching of the two rhombus must
satisfy that the coincident edge have the arrows of the same direction. So therefore we can give a
definition.

Def 3.1. we call a tiling “rhombus tiling” if the tiles are the thick and thin rhombuses, and a tiling
“AR-rhombus tiling” if the two rhombuses are arrowed according to the matching rule.

109



We take ¢ as the quintic unit root ¢, and 6 = 2%, All the ) ; means Z?:o' We take [z] as the

roof function of x, means the least integer m satisfy m > x. So we will start from pentagrids.
3.2 Pentagrids
Def 3.2. Let v0,71,72,73,74 € R satisfy Zj v = 0, then define

Gj={2€C:Re(2¢7)+~€Z}CcC (5)
to be named as the j-th grid.

By some deformation we can see that
Gi={z:2=C(n—v;+ai),n€ZacR} (6)

is a cluster of lines with distance 1 rotated j# counterclockwise from the vertical initial state z =
-5 + ad.

Then we call

¢:=JG; (7)

the pentagrid (generated by (%)j)~
If there does not exist three gridlines intersecting together, we call G a regular pentagrid. Otherwise
singular.
In this paper we always talk about regular pentagrids.

3.3 Theorem 1
We now state the pentagrid generating theorem.

Theorem 1. By the following operations of a pentagrid G generated by (%‘)j: one can construct a
rhombus tiling and attach arrows to it to create an AR-rhombus tiling, which s a Penrose tiling.

Proof. We will first show the method to generate a rhombus tiling.
Define _
K;(z):=[Re(2(77) +v,| €Z (8)

and f:C— C as
£:) = S Ky ()0 o)

we now consider the behavior of K;(z). Due to the property of roof functions, we know K;(z)
does not change as long as Re (z( —J ) + v, is less than or equal to a integer n. Then with reference to
expression(6), we can find that K;(z) holds as a constant between two adjacent lines in G.

Thus we can observe the behavior of f(z), and know that f(z) changes(as a complex number, or
a vector) by ¢/ iff when z crosses a gridline of G;. Hence if we consider the intersection point P of a
gridline /; from G; and I; from G; and the four meshes A, B, C, D around P, with A, B on one side of
l;; and A, D on one side of /;, then we have

F(A) = f(B) = f(D) — f(C) = ¢ (10)
f(A) = f(D) = f(B) - f(C) =" (11)
5
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thus the difference under f between adjacent meshes, be like ¢/, form an edge of a thombus, since the
module of ¢7 is 1 for all j.
In other words, if we take f(C) C C as the set of vertices of rhombuses with edge lenth 1, we form a
rhombus tiling of the plane C. The proof of this statement only need a check of |f(z)| goes to +oo,
which is obvious if we take ‘

N(2) = K (2) — (Re (2¢77) + ) (12)

and notice both 0 < \;(z) <1 and f(2) = Re(z) + >_;(v; + Aj(2)¢).

The next thing we do now is to attach arrows to this rhombus tiling. As a remark, the arrowing
process is necessary since we have to make sure these rhombuses are put together to form a Penrose
tiling instead of some trivial parallelogram periodic tiling.

We will first assign an index to every vertice. Let A;(z) be defined as above, and we can observe

that
D Ki(2) =D A(2) (13)

this is because there holds both Zj ¢9 =0 and Zj v; = 0 as we supposed. Noticing that the LHS of
expression (13) is the sum of five integers while the RHS is the sum of five real numbers each in the
interval [0,1), we know that Y K;(z) € ZN[0,5). Furthermore \;(2) = 0 means Re (2¢(77) +7; € Z,
which means z falls on the gridline of G;. Since we suppose all pentagrids are regular, then for a fixed
z, Aj(2) = 0 can only hold for at most two j. Thus expression (13) cannot be zero, and we have

> Kj(2) €{1,2,3,4} (14)

and we call this value the index of the vertice f(z).

Now we will start attaching arrows according to the index of vertices. First we notice that adjacent
vertices in rhombus tiling represents neighbouring meshs in pentagrids, thus transporting along a fixed
edge only changes a unique K;(z) by 1, so the index difference between the starting and ending vertices
is also 1. Hence we only have to deal with the situation when a edge connects two vertices of the index
{1,2} or {2,3} or {3,4}. We will arrow as follows.

21 (15)
34 (16)

And between the edge of vertice 2 and 3 we connect with one-head arrow although the directions
are yet unknown. Noticing that in the original matching rules of thick and thin rhombuses, the direc-
tions of one-head arrows are determined after all the two-head arrows are fixed, then we have finished
arrowing the rhombus tiling. Now the only thing we need to prove of theorem 1 is this operation is
well-defined, that is, the neighbouring rhombus have the same direction of one-head arrow(if it is a
one-head arrow) on their coincident edges.

We will do some simplification. Without loosing generality, we can assume the edge connecting the
{2,3} vertice is horizontal, and by the map ~; — 7; — Re(d(™7) for every j, we still have 27 =0,
while in the expression of G;, Re (z(‘-j) + 7v; was replaced by Re ((z — d)C‘-j) + ~; and thus causing
the tiling pattern shifting d rightward for every d. Therefore we can suppose 79 = 0 and the 2-3 edge
in the rhombus tiling correspond to the imaginary axis in the pentagrid.

we suppose the neighbouring rhombus correspond to the vertice A, B of the pentagrid, and the
two vertice with index {2,3} correspond to the mesh P, @ of the pentagrid. Then by the simplification
above, we know that P, are adjacent against the gridline Gy. Furthermore we assume A is the
intersection of Gy with G, and B is the intersection of Gy with Gy.

Then by observing the matching rules of the thick and the thin rhombus, we know that the one-head
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arrow always points from the vertice of the acute angle to the vertice of the obtuse angle. Thus we
just need to prove the angel of vertice P in A and in B are both acute or obtuse. From the generating
function f(z) we know that the angle of P in A is the angle between the radial ¢ and the positive
real axis x > 0, while angle of P in B equal to the angle spanned by radial ¢ and = > 0. Drawing
them out we found when i=1,4 the angles of (? and z > 0 are acute while when i=2,3 these angle are
obtuse. Thus what we need to prove is that p and ¢ have different parity.

imagine z moving upward on the imaginary axis of the pentagrid, we have

K;(iy) = [Re(iy¢™?) + ;| = [sin(jO)y + ;1,5 =1,2,3,4,y €R (17)

since the pentagrid is regular and iy is already on Gy, then sin(j6)y+y; € Z can only hold for at most
one j. Thus noticing sin(16) + sin(40) = 0 and sin(260) + sin(30) = 0, we conclude that v +v4 ¢ Z
and yo + 73 ¢ Z.
we then let
91(y) := K (iy) + Ka(iy) — [ + 7] (18)

92(y) == Ka(iy) + Ks(iy) — [v2 + 73] (19)

and g;(y)(i = 1,2) have the form [a] + [b] — [a+b] with a + b ¢ Z, and by eumeration we know
9i(y)(i = 1,2) takes its value in {0, 1}.

Now we let y goes from —oo to 400, and consider the behavior of g;(y). Since Kj;(z) is invariant
as long as z do not cross the lines in G, and when z do crosses, K;(z) changes by 1, we know that
whenever iy coincide with G7, K;(iy) increases by 1 and thus g;(y) increases by 1. Whenever iy
coincide with Gy, K4(iy) decreases by 1 and thus g;(y) decreases by 1. The same work with 2,3 as it
is with 1,4. So here is our proof of p, g differ in parity.

First we proof p # ¢. This is because g;(y) oscillates between 0 and 1, thus the intersection with
lines in G; and lines in G4 alternates. The same works for G2 and G3, so we know that two adjacent
intersection points A, B cannot be from the same G;, which means p # q.

Next if p and ¢ have the same parity, then either {p, ¢} = {1,3} or {p, ¢} = {2,4}. We compute the
index of vertice P. Note that by simlification above, we have set edge P horizontal on the opposite
of 0-th grid. Therefore the index of @) is always one more of the index of P. By assumption edge PQ
was assigned with a one-head arrow, then vertice P should have index 2 and @ with 3, but since v = 0
we have v + 72 + 73 + 74 = 0, followed by the fact from enumeration that [y + 4] + [72 + 73] = 1.
Hence

Ind(P) = Z K;(iy) = g1(y) + g2(y) +1 (20)

where iy, on the imaginary axis, is between the point A and B. We suppose A is above B.

If p=1 and ¢ = 3, then when iy goes from B to A, it have already crossed G3 but not yet crossed
G1. Thus g>(y) have already decreased but g1 (y) not yet increased, which indicates g1(y) = g2(y) = 0.
If (p,q) = (3,1), or (4,2), or (2,4), we correspondently have (¢1(y),92(y)) = (1,1), or (1,1), or (0,0).
Without exception ¢1(y) + g2(y) is even, and thus Ind(P) is odd, which means it cannot equal to 2.
So this is a contradiction, and we finished our proof of theorem 1. O

3.4 Theorem 2

We will now state the plane intersection theorem.

Theorem 2. The vertices of the Penrose tiling generated by the parameters vg, v1, 72,3, V4 in Theorem
1 have the form ki¢7, where (ko, ki, ke, ks, ka) € R® satisfy the 5D cube {(z;); € R® 1 k;j—1 < x; <
k;,Vj} have an intersection with the plane below:
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ZSCJ' = O
II: Z(zj — ;) Re(¢?) =0

> (@ =) Im(¢*) =0

J

Proof. 1f (x;); € [], in other words satisfy the three conditions above, then the vector (x; —~;); € C®
is vertical to the following three vectors in C°:
ap=(1,1,1,1,1) = (¢Y);, aa = (¢¥);, and a_o = (("¥);. If we expand them to a basis of C, the
missing two vectors can be a; = (¢7); and a1 = (¢77);. Thus (z; —v;); € span(a1,a_1), and we
have 21, z9 € C such that A ‘

I’j — ’}/j = Zlcj —+ 22<7j (21)

Noticing the LHS of (21) is real and ¢ and ¢~/ mutually conjugate, we have z; conjugate to 2o, and
thus
2j — ;5 = 2Re(29¢™7) = Re(229¢77) (22)

Then for any (k;); satisfying the 5D cube attached to it intersects with [], there exist (z;);, or say,
225, such that

or say, _

ki = [Re(222¢™7 + ;)] (24)
hence Y j ijj = f(222), and thus is a vertice of the generated Penrose tiling. The other direction is
the same. O

4 Summarize

4.1 What we have done

In this paper, we first talked about crystal and tiling of a plane and the correlation between them,
then we discussed the similar correlation between quasicrystal and the Penrose tiling. Afterwards
we went through some of the geometrical properties of the Penrose tiling, and finally introduced a
mathematical approach of its algebraic structures, whose main idea is to generate a pentagrid from
five parameters, and present a dual relation between the intersection points of the pentagrid with the
rhombus of the Penrose tiling, and the mesh of the pentagrid with the vertice of the Penrose tiling,
assigning an index with each vertice and finally generate a Penrose tiling pattern by arrowing the
rhombus according to the index of its vertice.

4.2 Forecast

Upon the basis of the algebraic structure, more further properties were found and discussed, not
only in algebraic fields, but also analytic fields, such as viewing the space of all Penrose tiling as a
metric space, since it has a “natural compact metric topology” and discuss its properties as a strictly
ergodic dynamical system, which is done in Robinson, E. A. (1996). The Dynamical Properties of
Penrose Tilings. Transactions of the American Mathematical Society, 348(11), 4447-4464.

Other triggering thoughts are that mathematics again have gone in front of physics, for the Penrose
tiling was found in 1974, and its algebraic structures, which is the main topic of this paper, is found in
1981, just enough to get before the time when it was applied to explain the phenomenon of quasicrystals.
Just as before when calculus was found in the 17th centry, and Riemann geometry in the 19th, and many
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other unlimited examples, mathematics have presented us somewhat magical but end up conclusive
methods, tools and models for us to recognize our world.
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An Introduction to Ising Model
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Abstract

This article is an introduction to Ising model, including the combinatorial solution of 2D
Ising model and the thermodynamic properties of a large crystal.

1 Introduction

The Ising model is an important model used in statistical physics to deal with various phase
transition problems. A phase transition point of a crystal means a discontinuity point of its par-
ticular thermodynamic function (e.g., free energy, internal energy, specific heat, etc., as a function
of temperature T') or the derivative of some order of this function. In order to determine whether
a phase transition will occur in a crystal, we need to find a way to calculate the thermodynamic
functions. The main idea of the Ising model is to simplify the calculation of each physical quantity
by arranging the atoms in the crystal in a n-dimensional grid (n < 3) and considering only the
mutual energy between adjacent atoms in the grid.

In the following, we will give a concrete construction of Ising model. Take n = 2 as an
example. Consider a L-row M-column square lattice with N = L x M lattice points, one atom
at each lattice point, and two possible spin states for each atom: o; = £1,2 =1,2,--- , N. Thus,
there are 2%V configurations of the spin states of the particles at all lattice points. We assume that
the energy of this system consists only of the mutual energy between adjacent atoms. Under this
assumption we can obtain the energy (also called the Hamiltonian) of the particular configuration
o= (01,09, ,0N):

E, = —JZaiaj (1.1)
{i.5}
where the summation is over all {7, j} corresponding to adjacent atoms, and J is the mutual energy
constant.

According to statistical physics, all configurations of o are possible and the probability of each
configuration is proportional to e #%7 where 8 = kBLT, kp is Boltzmann’s constant, and T’ is the
absolute temperature.

What we are concerned with is the normalization constant Zy of this distribution, that is:

Iy = ZeiﬁE" (1.2)

Zn is also called the partition function in statistical physics. We will give the definition of the
relevant thermodynamic functions, and will see that these functions correspond to the partition
function and its partial derivatives of different orders, thus the solution of the partition function
is the key to solving the Ising model.
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Definition 1.1. The free energy 1y, internal energy Uy, and specific heat C of the system is
given by

Q/JN = —NﬁlkBTh’lZN (13)
1 e PEo 2 0 (NG
Uy =% ZU:E”Z—N = kpT 8_T<_kB_T) (1.4)
~ 0Uy
Cy = T (1.5)

The results obtamed by Onsager are as follows. We will prove this theorem by a combinatorial
approach in Section a

Theorem 1.2 (Onsager).

K

T 1n2+—/ / In ((cosh28)* — sinh 23(cos € + cosn)) dédn (1.6)

1
when | tanh | < =, where ¢p = lim ¥y
4 N—o0

2 Combinatorial Solution of 2D Ising Model

The main idea of solving the 2D Ising model by combinatorial methods is to transform it into
a combinatorial counting problem on graphs. The methods contain three main steps, which are
shown in the following three subsections respectively.

2.1 Transforming into a Graph Problem

First we will see how the problem is related to graphs. WLOG, we may assume that J =1,
or just let = J/kgT.

Consider a 2D square lattice with L x L sites, and denote all adjacent particle pairs by N/,
then we can naturally generate a graph G = (V, N) by the lattice, where V' contains all sites and
N exactly contains all edges. The partition function of the 2D Ising model on the lattice can be
calculated as follow:

AT Z e PEs

-y e

01,02, ,012 =+1 {2,]}6/\/

(2.1)

= Z H (cosh B + 0,0, sinh )

01,02, ,02=%1 {i j}eN
=(1- u2)’L(L’1) Z H 1+ oi0;u)
01,02, ,0,2=%1 {5 j}eN
where u = tanh 3, and the third equation holds because of 0,0; = %1.
Notice that
2L(L—1)
H (1 -+ O'iO'jU) = Z u™ Z H 0i0; (22)
{i,jYeN m=0 HeAm {i,j}eNu
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where A,, is the set of all subgraphs of G that contains m edges, and Ny is the set of all edges of
H.

By observing the degree of each o; in (@), we can see that since the summation is over
0; = *£1 for each i, only even subgraphs (that is, the degree of each vertex in the subgraph is
even) can make contributions to the summation. Let A be the set of all even subgraphs of G, and
m(H) = #,, then after a simple calculation we can obtain

Zpa =28 (1 — u?)~ LD (1 + ) um<H>> (2.3)

HeA

2.2 An Important Combinatorial Identity

In this subsection, we are going to obtain an important combinatorial identity, which trans-
forms the summation over_all even subgraphs into a product of paths, in order to simplify the
combinatorial expression () for the convenience of subsequent solving. But first we need to
explain some definitions and notations.

Definition 2.1. A path p over G is a sequence of directed edges (e, e, - ,e,), with each e
starting at the site where e;_; ended and never goes backwards over e;_1, k =2,--- ,n. A closed
path is a path that starts and ends at the same site. The equivalence class [p] consists of all
equivalent closed paths of p, that is, all circular permutations (eg, €541, ,€pn, €1, ,€x_1) and
their inversions (ex_1,- -+ ,€1,€, -+ ,€ex). A periodic path is a periodic sequence which repeats a
non-periodic sequence of edges which belongs to a closed path for m times (m > 1).

Remark 2.2. In this subsection, all paths we mention are closed path, for simplicity.
Besides, we need to define the sign and weight of a path as follows.

Definition 2.3. The sign of a closed path p is given by

s(p) = (=)' (2.4)
where 27t is the angle turned by a tangent vector while traversing p. And the weight of p is given

by
Wy (u) := s(p)u” (2.5)

where n is the number of edges in p.

Example 2.4. A path p is given in Figure m, whose 4 edges form a square. As we traverse p
counterclockwise, the tangent vector will turn by 27, since at every site it will turn by 7/2. So the
sign s(p) = (=) = 1.

Figure 1: A simple example of sign

With these definitions, we can try to obtain the identity shown in the following theorem.
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Theorem 2.5.

L) um™ =TT+ Wy (u) (2.6)

HeA [p]

where the product is over all equivalence class [p] of non-periodic paths.

This identity was initially proposed as a conjecture in lecture notes by Feynman in 1960, and
then proved by Sherman in 1960 and Burgoyne in 1963. The convenience of this transformation
lies in the fact that it turns the sum of subgraphs, which is difficult to compute, into a product
that is relatively easy to compute.

The proof of the identity contains two steps. First we will expand the product into edge-
disjoint paths, that is:

[Ta+Wp@)=1+> > Wy (W, (u)-- Wy, (u) (2.7)
7 k=1 [pr] ool o

where [p1], [p2],- -, [px] are edge-disjoint. After showing this, what remains to prove is that the
terms W, (u)W,(u) - - - W, (u) where at least one edge e; is traversed for 7; > 1 times all cancel
out. This part is a bit difficult, therefore is omitted here and only the sketch of the first part will
be shown as follows.

Sketch of proof of Theorem @ For each even subgraph H of G, the way to decompose it into
different edge-disjoint paths depends on all sites of degree 4 in H. We want to show that

> > Wy (W)W, (1) - - Wy, () = u™D (2.8)

k=1 [p1]U[p2]U--Ulpg]=H

WLOG, we may assume that H is connected, otherwise the equality can be obtained by simply
multiplying the equalities of connected subgraphs.

For each site of degree 4 in H, the paths will have a crossing at this site, which has three
types: selfcrossing, turning left and turning right (see Figure E) Let t; be the number of the ith
type crossing (i = 1,2, 3), respectively, and let ny = t; + t5 + t3. A simple identity is:

s(pr)s(p2) -+ s(p) = (=1)" (2.9)

which comes from the fact that a path without any selfcrossings has a sign of 1, and every self-
crossing make a —1 contribution to the sign.

U

Figure 2: Three types of path crossing
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Since every site of degree 4 can have all three types of crossings, the summation in (@) can
be written as:

S W @Wal) Wy ) =Y gy

t1ltolts!
k=1 [p1]U[p2]U---Ulpx]=H t1+to+tz=ng (2 10)
= (=14 1+ 1)nagymt)
_
Then after making an sum over all even subgraph H, the theorem is proved. Il
2.3 Combinatorial Approach to Onsager’s Formula
After the effort of the last subsection we have transformed the partition function into
Zpo =2 (1 —u?) HED T + Wy (w) (2.11)

[p]

In this subsection we will start from this and finally give a proof of Theorem .

Let’s consider all paths that start at a particular site P; and end at the same site P, = (z,¥)
in n steps. Since what we concern is the asymptotic properties of the system as L. — +oo, the
boundary conditions can be ignored, and thus we may assume that P, = (0,0). First we need to
define the amplitude of this union of paths.

Definition 2.6. The amplitude of a path p is given by

Wo(u) == a™a" u" (2.12)

where o = €4, and n;, n, are the number that p turns left and right, respectively. The upward
amplitude U, (z,y) is the summation of amplitude of all paths that start from (0,0) and moving
upward to (z,y) in the n-th step. Similarly is the downward amplitude D, (z,v), leftward
amplitude L, (z,y), rightward amplitude R, (z,y) defined. Moreover, if |z| + |y| > n (which

means no such path exists), then U, (z,y) = D, (z,y) = L,(z,y) = R,(z,y) = 0.

There is one additional note to be made about this definition: we should give the path a initial
direction, so that the turning from it to the first step will also be counted in. For a non-closed
path, we can randomly set this direction, for example all upward. But for a closed path p that
start and end at (0,0), we should let this direction be the same as the last step, which makes

W, (u) = W, (u) (2.13)
hold.

With the definitions above, we can easily get the recurrence relation of U, (x,y) as well as the
other three amplitudes as follows.

Proposition 2.7. For alln € N, (z,y) € Z?,

Un(z,y) = ulU,—1(z,y — 1) + 0Dp1(x,y — 1) + uaL,_1(z,y — 1) + uaR,—1(z,y — 1)
D, (z,y) = 0U,_ 1(m y+1)+uD, 1(x,y+1)+ual, 1(x,y+ 1) +uaR, 1(x,y+1) (2.14)
Ln(a:,y):u otz + 1y) +uaD, 1 (x+1,y) +ul, 1(x+1,y) + 0R,_1(z + 1,y)
R, (z,y) = ualU,_1(x — 1,y) + uaD,_1(z — 1,y) + 0L,_1(z — 1,y) + uR,_1(z — 1,y)
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Now we want to calculate these amplitudes at (0,0). The equations above contain translations,
but after Fourier transform these translations will be converted to phase shifts, making recurrence
relations a lot simpler. Here we use the discrete-time Fourier transform (DTFT), which transforms
a sequence into a periodic function.

Lemma 2.8 (DTFT). Take any F,(z,y) € Bu(z,y) := {Un(z,y), Dn(2,y), Ly(z,y), Ra(z,y)}, for
all £,m € [0,27], the DTFT of F,,(z,y)

Fu(&n) =Y > Fuz,y)e Etm (2.15)

T=—00 y=—00

1s well defined and the inverse Fourier transform holds:

1 27 27 . i
Foe9) = o /0 /0 B (€, m)ci & mdedn (2.16)

Since F,(z,y) = 0 when |z| 4+ |y| > n, the summation in () is actually a finite sum, so
it is well defined. Therefore the sum and the integral in (R.16) can be interchanged, by a simple
calculation we can verify that the lemma holds.

Apply the DTFT to (R.14), then the translations will disappear due to the summation and
the new recurrence relations are as follows.

Proposition 2.9. The Fourier transform of F,(x,y) satisfies:

6a(&,1) = (Ual€0), Dul€,m), L&), Bu(€,m)" = ub b1 (€,m) (2.17)
where the entries of M can be denoted by a,v := e~ h 1= e

v 0 av av
0 v v avu
M=1an an n o (2.18)
ah ah 0 h
Now it’s time to finally prove Theorem @
Proof of Theorem . Consider all closed paths that start and end at (0,0). Remind that if one
such path finally moves uﬁrd to (0,0), then its initial direction is also upward. That means

when solving ﬁn(f, n) by (2.17), ¢o(£,7n) should be set as (1,0,0,0)”, thus we can obtain
Oa(€.m) = ((uM)"(1,0,0,0)7), = (uM)"(1,1) (2.19)

Similar are the other three F,,(€,7). So the summation over all F,,(€,7) equals to tr(u)".
Combining with the inverse Fourier transform we can obtain

1 2 27 .
> F.(0,0) = G /O /0 tr(uM)"dedn (2.20)

FnebBn

This summation is actually the sum over all closed paths with length n (periodic and non-
periodic), according to (R.13), just differing by a constant. Since there are L? sites, we have

> W, (u) :—(2[;)2/”/ Wtr(uM)”dfdn (2.21)
p(n) 0 0
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2n
For each closed path p that repeats w times, it is counted for — times, and its weight is
w

Wy () = (~ 1) T2 () (2.22)

where pg is the corresponding non-periodic path. Therefore we have

=1 L (= 1wt
)

= In(1+ Wy(w)) (2.23)

— [ (1 + W, (u))

[p]

1
When |u] < 7 tr(uM) < 1. By uniformly convergence and by substituting () we get

[0+ Wit o // 3o M) ey

tr (In(f — ubM))dédn (2.24)

ln det(I —uM)d&dn

I
N}
—~
[\
R)
S~—
o
o
¥
O\

What remains is to calculate is det(I — ulM):

det(I —uM) = (u* + 1)? 4+ 2u(u® — 1)(cos £ 4 cosn)
= cosh™*2f3(cosh? 23 — sinh 23(cos & 4 cosn))

Combining (,,), we finally get

Vo
_I@_T_Lh_?;oL IHZLQ

lim (ln(2(cosh 2p3) 2(LA)) t3

(2.25)

L—oo

2 2w 2 oo
1 / / In (cosh® 2/ — sinh 245((3085 + cosn)) dﬁdn)
2(2m) cosh™ 273

272

=In2+ — / / In(cosh? 26 — sinh 23(cos € + cosn))dédn
(2.26)

and complete the proof. O

3 Thermodynamic properties of a large crystal

In this part,we will discuss the critical value of a large crystal, that is,the temperature(or
other thermodynamic quantities) at the singularity,which is exactly the point of phase change.
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To simplify the computation,we assume

¢ freeenergy

A = — prm— -1
kgT kgT (3.1)
We have
A=In2+ ﬁ/ / In(cosh® 23 — sinh 23(cos € + cosn))dédn)
T
h2
= In2cosh 2 —|— / / _ sin —— P —————(cos & + cosn))dédn)
cosh” 2/
(3.2)
= In2cosh2f + ﬁ/ / In(1 — k(cos§ + cosn))dédn)
™ Jo Jo
. = (2%)' ? 2n
=In2cosh2f — Z (W k
n=1
sinh 23 ) . .
where 2k = Tw,and the last equation comes from the power series of logarithm.The
cos

1

series converges for |2k(cos§ +cosn)| < |4k| < 1.For J > 0(k > 0), at k = 7 that is, at the critical
value 8 = Bc(or temperature To = 2Jkg" In"*(v/2 + 1)) given by

1 inh 2

L gy sinh25 (3.3)

2 cosh” 2/

1
it diverges.Similarly,for J < 0(k < 0),it implies divergence at k = 7 e =2Jkz' In (V2 —1)
The internal energy

9 Y
2 —_—
U=kel"57 ( k:BT)

(3.4)
2
= —J coth(283) [1 + (2tanh? 28 — 1) = F(4k)
T
where F'(x) is elliptic integral of the first kind
w/2 L
F(x) = / (1 —2%sin*0)"2dd (3.5)
0
F is a elliptic function with a property that
F =41 —a2b)] " asz —1- (3.6)
so it diverges at 4k = 1.
The specific heat C' is given by
O ou
gT _ (3.7)
= —(5 coth 28)*[2F (4k) — 2E(4k) + (2tanh® 283 — 1)(§ + (2tanh®28 — 1) F(4k))]
T
where FE is the complete elliptic integral of the second kind,defined by
w/2 L
E(z) = / (1 — 2*sin?6)zdo (3.8)
0

so C' divergent at the critical point.
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1 515: RITBERE T

GEitHIR (statistical physics) 27T H R BBV T A H 2 W R G, H AT
WHEONTER MR G E. XML R 2 (KL BEAE 10% A REER)

MRS, BEEZHAT BRI ILVFA K. T2, MUTEHE I H R s,

MG — A EER IR ) R G HEAT T T

SRR FE AR

AR (ergodic hypothesis): X} T—MIZ R %4%, & WK EE, K%
28 1 I A AT RE I OARAS o

FEWEERRIZ (equal-probability hypothesis): X ALTE PSR RS, E R NAIVIRES
() H AR5 A [R]

EGT R R R, A A D N 4l ) 5 F Bk B P 2 R, (HRES 5 i

15 A BEAE — Le M B2 fRI AL ) RS P IE I IEWR I, RIS IE R I T — BT P SR AR AN BROL ) R B

HARA G X PSR R I IERA I, EARAE E AR R A L HEATHES:, 27T LIS 2+ F 5 1
R, BETIRXEERMIETE, WA DLE RGBSR BATIGUE, TJC 2l S

ARG —E R ARG

B4R (ensemble) fRIZ KERAMFIZEMMER N IZ RGN ES . ENE— LT
A RGN FEA G BB I, Sl o SRRl — B[], 17 3 BT B0 T Aok 7
FeVi, TGS L0 2 H T W 2% FEAES O IR T, AT E AR E, sehr bR
XA RGN B REERFME . Gort B B R 25H DU R LR

fMIEM 4% (microcanonical ensemble): [F @k 74 N, RGLGEE F A V &
GRS LR R R o

IENZ4R (canonical ensemble): [EERI T4 N, WA T FIRR VRGN ) #

EIEMZHER (grand canonical ensemble): B EEH p, W T FER V [ RGHTXT
ISNERZ

YRRGAZINER, BTN AR A A R .

PE ORI BA TS, WA R R AN R S

SRR TR, RGN BRI — RIS R, BILHMILRES BB R — A E IRMIEREE. S8, Sm@m gt
TR TRT B
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ERIEN R, BT N, B,V &, Bl RA M SHMICRES Q B2 — M EeE. @
X ZGiH4E (entropy)S H9:

S(N,E,V) =k InQ(N,E,V)

H kg ~ 1.38 x 107237 /K N Boltzmann % #. @i —8ESATLEEE, X—& X 54
BT EE XTI E LS = g—g ST, IX R R G IO T 2 W B 1 2 RS R
IR TR WEHA, TS H RGN &M 2, T4 B R AT LTRSS
B R RAZHEA

EIEM RS BEIEN R, WA BT ROE N RZEH P RMAUIRES BOX AR, nTRLSH
BRI RS KRB WO ST 2, HE SR (partition function)Z(N,T,V) MERL S
R (grand partition function)= (u, T,V ). IENRLZEAT UAR R E AL RGH — R
Pz, MRS S KIEIL R S — N R G IR B HCP . T RAIEIR R, ErEm R
GuftihRE RN B SR L LA, Fbn] LA & BEE . A hgid, Bes s Eo 2
FR G AR PRI B A B I R G ORI, B IR SR ER0E B () 2R 4t AT LAAR
RECE N KPR 7, 2 3L R PTG R S, EUC 7 BRSO 2 6L R
GRS ST BATH M & SO B BAT & RGP EAR G 48 . BhAh, XK
e KRN

F(N,T,V) = —kgTIn Z(N,T,V)
J(M7 T, V) = —kgTln E(/JH T, V)

HA F 4 Helmholtz BHHE (free energy), J NE#FIEE (grand thermodynamic poten-
tial), EAIBIRI IR KL

2 MHETEEILS5ITE

VIR ER . AR SE A AR R, O A R R NI S A RO — AN
(phase). T#B H—"MHELAE R 75— M HHPIEFEFR NHEEE (phase transition), HLUIH LAY
IKEE VKA K ZE S R R A A . FEAR AR SRR ) 1) — SRS s B R AE U,
Se SRR CR Y, A LIS ATIRYE R R 5 R B LS B e S HAE A A
I BRI Hoa T 28 # T 3BE ST K — B I S RO E SRR N — BARE, —Bi i S H0E
SR o e S BN IE S RO AR, AR HE

DAERFE—DNEERM RS £ MEAEN V AR, 780 EF R R 70 754k, 4
THEN N, B RGN THEEA

U= > u(ry)

1<i<j<N

Horbrryy B 0 NS § DI TZEREES, u(r) ZoRWAEEN r 707 Z AR #EE.

PAMBRE v HLATHER: FE Db >a >0, FBE r <all, ur) =+oo: Hr >0,

wr)=0; Ba<r<bl, —oo<u(r)<-+oo. fEEFMIEEFME®RT, oFHE{EHE@E

EA 5 AT VT, IR AR IR AL G E . DR RPN AR S — AN R

700 7R, R T 223 o R PR ORI e e A5, A2
SLEAATTE BRI SR RS, BT RIS FE AR B BN Helmholtz [ I AERTE #7134
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RN TEIEM ARG RS . WEGIHENLR, SRERS RECh

M Q
= - § NN
H(M7V7T)_ N'y
N=0

y
|

QN:/"'/ech%ﬂdTldTQ...TN
\4

2rmkpgT H u
Yy = Tz eFET

T R L N THIAARR, BAR U REATHREL Qn SERR ERURIX N A7 Boek B IE I
REEECY R E Ty BN RGHIRE (fugacity), H b ~ 6.626 x 10734 - s A Planck
WHL, M RERV RS ENNR R T TUEH, = X F=AAREEMENTN. H
THER RS ERNHAZ MR, BRI 5200 1 = A5 N 1% 2 i
i, AEARA TR A LS I, MR Ui, LRGBS, XA SRR 2 A
FIRER AR . (RS b, IS BT 0 TR AR AR IR RN TR AR, SRt g B
FEIX BI04 T M.

HR2 404 F GE - ) BEOR AR A AR R 2 7E 20 tH4d 50 EARLART, XAl — EHALIE §r it
2. T 1952 IR T S5 A BOE NP R SCE S T — AT R .

3 BT IHETRIRAR

HFEAHOLT , SERRIA SR ARX T 0 TR AR AR B RIS AT ek £, 72U
BRSO s LA s, RUZE. B ARG 3 BR300 At A DG B S AR AR A
TITIW AT NIHEAT T AT .

X b s I RS, AR s % n] LR R A N B
p InZ
kgT 174

0 InZ
T oy V

BT FIRAT A, BRI RAAAE. 25 B NESEIEY] 7 LU 4R

Eﬂ31»EE%WEEFLN$Eﬁ%§%ﬂWEiﬁ%ng&VAmEﬁELH
Ny (B 2 R

o

FEAE R IX B BT, JosRIEMI A5 2E,
513 3.2 WV MW EMADEGRESOEER, efTRiaKany L AL+ bb 2
IR AR R ), A

lim In=Z(W,y) —InZ(V,y)

L—oco W =0

UL ]
O R HE AR O(V ) U, AR SRR, TR I 7 LT R R P RO
Wb
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ERR He, KAS V BeET W NE. BIEER S RBEE S, "R (W, y)
G Ao+ Ay 4 -+ A B H A 2 WAV B @ AR SO B B
HI vk .

BHEM Ay =Z(V,y), AT A, BT rEEREEAR, o rads (B
N a), FrUAAE—DMIERE M, FN0TEZRM M D7 Z AR A%
RLEROR S B th A EIR, ToRAAAE IR 6, 1615 AL < B(W - V)E(V,y)-

WW -V =A, BN TREEN o BTHTZERRERR, NA
A—-a) - (A—-(i—1)a)

il

R R EH, KA, 778 2(W,y) < (14 Ba)s=2(V,y), BamH

A _
A < B ( Z(V,y)

0<InEW,y) —In=(V,y) < %ln(l—l—ﬁa)
HT A~ L% 0 W~ L3 Frel gl B pgskiRay 0, B, 0

3138 3.3 [l L >0, WXFTIAKN 2L FIIETIRER W, NI
II’IE(WZ,y)

7

lim
1—00

= K(y)
FE1E

WERR W g >0 > 0, B W IR ST AN WL, BARES Wi W FURAEAERTI 7 T ECE
POZEZ ELL TR AT, B 3.2077. (290)%, A [ WIXFER) 7 THCRN I 87270 L2,
v NEEL MINAFEIER 5, 15

— —_]d 1 jo—ir2
:(ijy)<:8 (Wiay)'582 Loy

InE(W,,y) <8 " InZ(W;,y) + 827" L*yIn B

BAEAERA W, P ULEER T FURAL Ky 2°L — b BIETTE Vi, AT RAJRAER 877 A
Vi 1T AAE SN EAER, WA

8" In=(V;,y) < mE(W;,y)

m=(Vi,y) _ n=Wi,y) _ o mEWiy) n=E(Wi,y)  yInpg

W; = j%o W; = Jj—o0 W = W, 2L
BT lim 282 — 0, TSI 32005k, BRI B BRI AL o

ERHOIERR A O E 3.3, [EE y IFHESY € > 0, fAE - DEBRIIET W,

(1]

In (Wm y)

W - K(y)|<e
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s — K ANT 2L WIEI AR Qor MIRAFE IEHEHL no, MAHGAKAE 102 L 5 (no +
V2L 2. 0AKN no2 L TE/EN Qu, 0K (ng + V2L MIEHKN Qo K
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Q;

B, AWis e <1, W ny BEAGEW KR, Wi
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o o
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, MABME
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IR M AT QA NAEESE, B PR AT SER I (I DS R 802 i) R AR A2
B L) o ARBAFAE—DLL e C NED, o >0 NBEHESE C, MTRIKRKV, 5
Hy(V)¢R WAl z=y—nz=y—n WNE

w1 57) ()

i=1

T "
mh=EWVy) 1 = zi(V)
v _v<;ln<1 zl(V)> V)>
ER C Pt Z_(ZV)’ <1 TRIEFE In EITRRAS, #
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Hrp Ny
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mxfF n>1, WE
NP IR
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RS C WIEH |2;(V)| =2 00 BARTLAEEXS n > 1, HFH
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buv) <

EER M/V 2 LW, ey T AR EE, AT
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n— oo

N
Q|+

In=(V,y

i Canchy-Hadamard A, A TAEEME KN vV, 22U ) Ty 82 C R

EHL WA 2 =0, WA ~
In=(V,n)

v
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%
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vV 7dmy V. T(@lhy?2 vV 7

IR BR BIAAAE HI gy IR AT BR

H S B DA S 8 B AN R R A 5, BRATAT ARNE, £V — oo B

_ 9 »
- Olny kT

p

2 RRAL Y o

4 XTETRIRER

L 3ATREAT, TR LA BRSBTS RXIE, iR HEEY
BB R TR R SERRTEOLT, R A REBUESEL, A A BATAT LA PRI BLR
J&:

(1) HAAE-DMEEEANELMPXIE R, A TE®BRK V My e R, B
E(V,y) #0, MV — oo I, p,p ESEH EVIRZ y KIS RE, A AR,
FL b, MR p A p HGZ y KRB R E p SRV AR, DY ot y R
T PR AL R AR T A p B9 SR 0 A I B -

BUEW] p /& y BRI E p , HESEMIXT AN v, A

0’InZ(V.y)

(01ny)? =0

WOLENA] . 98 t = Iny, ML

HiEHHEA

el =
iU 0,1, M IBIHLE R, BN ¢ R o, TR R
2 famd =
mem, 7 CI0E mrrs, HRKT 00 BBl p 2 V — oo B y 105 HEHERYL

2

(2) BAMFLE (1) PRI, MR Vo MEK, RV > Vo, S(Viy) ¥ Ty 0%
FURJRAEIESH LA R, MIMERT , ZER MR, 5258 3 ARTREARAL, T4 lim “‘7“ f
Iny 1 # G BO T R BLATE S B G WAL, LT IR AR
d In=

PR, HEEED B AR A R XA, W R L W\}%T

AESE, MO AR, IR RIFAR . 2R, IRILSRHE, IEnT DI =20 DU
AR5, EXREE AR

130



UL AT U, e 3 4RI AR R s ERC O o B BT A AT A
ol g B 7 SRR TR, XA AT B T GIVE R A . St b, R 2Rl JF
FERANZRH G Y HE B R R 2 - EREH IS EAS NERE L. L
i1 Mayer KHAMEHAE 1937, 1938 H1)— RINCE A WA G ELERAHZ, B
XEEL A T IR K. B Mayer 4 TSRy BB SIN T RERCAUTEL, RS HE
BYEAE DAV, AR RS T RE I B T R . £ M = NHIEE — s ORI RS
—#B5y, HURAATE IR S Mayer BISHHT TXFHL, JREfRH T HAR R

5 HEXH

B NARZRIIE I B R S 5 B, (RESIESCEITE RIS 5, IONIZI K
B BN BB F S A R L, TS PR BB s B R AR A E A E LIS B, R S
A IR AR PR SR M R o (EG T e E RO AL O, THE E R IO FHE
HE R AHZA TR £, B ABE AR ZROCE T, BT “#A7 (lattice
gas) BERLEAT TATSL, gathh 7 HERC M RIEA, FFF R AT TR

BRI EN HR T, R — M M A RIET T AR, R R R
DT, T ZEAFEA AN ), BT R A s 10 T Z R EEN oo, KRR
VBRI AR SRR 28 = AO8 T R B BRI, R AR M B T AN K
Ising B b, =T RAFTBN ), ACAMENE, AXMBREEFETERE. 22, )
PR IOEE A, AbAT]gs B 1 BUR B RS B BRI 5

M
—_ MH n
= =ekBT g P,z

n=0

Hep 2 2 5RE y RIEE, ' RSB Ising B K SN R0

H., il ={1,2,...,M}, N
Po=> 11 II @

i€A jeT\ A

Fob AR T 0 n ATEER T, R A QP (f‘nf ) e as; = ek,

wij FBH @ MG AR § M SR AR, B wy = uj Po= Py = 1.

B ANGEH TSR

IR 5.1 ERAREAEF, FEXT 0 #£ 5, B w; <0, WERSEEEAN 2 KIS,
HR SIS i a5 b
XA EFRI S S 52, X T AR RN TR 4E%, DL A7 IRl 4E F RS R 2 R 7%
HIREl. BT efsT £ 0, WENEHSEARMOIA 2 M2 TR M T SBE R LRI,
AT R A — M B

EE 5.2 (FHE-URTREMNEEE) ¥ M > 2, a; € [-1,1], 1 <i,j < M H
i # jyai; =aj. 18Ty ={1,2,....,M}, T HTy WIEETE, icHFmE=Mo8 |1, 4
P, = E HHjeFM\Iaij(n:071727'-'7M)’ 2 33 2

|[I|=ni€l

M
P(z) = Z P,z"
n=0

(2 R AR i v AR A [ L

131



Pt 2 HA, RINEES P, = Py_,, TRA 2408, &ITA

M M
1 1 n Pz
n=0 n=0

Zn

WA z & P HIERN, 1/2 WRERZFR, BUILEATAGTIEY P BIE S AL AL R F N
HIAT (0 BARARZE R
N TIEMESS 18, 2. M ANSIANT I M e bk

‘,B(zl,ZQ,...,zM): Z (sz H aij>

ICT icl el
jelm\I

BEoE W, AL
B(z,2,...,2) =P(2)

22y Py 2 2 ) = Bz, 2, 20)
NTUEMER, 2. T NiEHgkuE s 1 LU 5]

5138 5.3 BXFTA a; AR £1 800, PB(z1,22,...,2m) = 0 H |2, = L,n =
1L,2,...,M, W |z,] =1,

WERBR ik M = m BTIZ IR N B, BEEERXT By BAREGL, FN P =1+ 216
SFM=2, f
Po (21, 22) = 1 + a12(z1 + 22) + 2120
Y Po=00, FH
1+ az2
22 + a1z
HT |an| <1, HIEETEY 2] > 1B, D7 |21 < 1, AEFRBHERE [20] > 18 2] > 1,
WLEH 2] = 2] = 1.

BAEHAT AN, R EIEMEE IR T M — 1, M —2(M > 3) oL, HXF M ASsAL,
FE—H (ar, a0, ... an), #15 |a,| > 1n=1,2,..., M), Bu(ar, s, ...,apn) =0, HF
TE— ng 8113 o, | > 1o BIEZIITA N an,; 1 anry, FRATEATLLUCHIXAS ng BLE M.

ILAE [ 2 (2172’27---72M—2) A (041,042;~-~7CYM—2)’ % mM(alp---;aM—%ZM—lazM) =
0, ¥ zp—1 BAF 20 BEEEL 2001 (20), WE zy—1(onr) = ap—1e

B P, a2, 2m-1,20m) B A+ Bzy 1 + Czy + Dzy 2y BUES, HA
A,B,C,D ¥15 2y 1,20 K, WAEH

21 =

A+CZM

AM-1 = _B+DZM

# D #0, WAFLERRBR

A .
= lim zpy_1=—

C
dM-1 |z | —o00 D

132



FENRBANVELEH D #0, [30-1] < 1. ANk, LHHESE C+ Dayy, BATE

(,B(Zl,ZQ,...,ZM): Z (Hzl H Clij)

ICTy \iel icl
jEFM\I
-3 (0o T ) 5 (T 11 o)
ICTy \iel icl ICTy \iel icl
Mel jerm\I M¢I Fjeram\I
= E <ZM Hzi : H Qij - H an; + Hzi : H aij)
ICT 1 el ) el JjeETMm—1\I el ) el
JeLMm\I JETMN\T
_ ang
= 2129 .«  ZM 2’7 . aij + Zz'ai,M . aij
ICT -1 jelp_a\I 7 i€l i€l i€l
JET M1 \I JeTM\I
o aip QoM AN —1,M
—2122...ZM§BM,1 ; go ey
21 22 ZM—1
+ PBar—1 (2101015 220205 - -+, ZM—1GM—1,M)
AYEE]
aipm anf—2,.M AM—1,M
C+DZM_1 :alag...aM_QzM_lf,BM_l < geeey s
(631 Qpf—2 ZM-1
_ aq Apf—2 ZM—1
= aipmazpf - - - GMA,M*BMA P )
aipm Ay —2.M AM—1,M
. ai,M—101pm A2 M—1020M AN —2,M—1ANM -2, M
—Oélag...OéM_QZM_lmM_g 5 gee ey
(631 Qg Qpr—2
a1 mM—1 A2 M—1 Apr—2,M—1
+ aipmaons - an—1, M Brr—2 o, Qg,..., ————— 02
aipm as an —2,M
N Vo
AT PUEH D 1IRIA, M D =0 EFhT
aq Qg Qpr—2
;’BM—Z ) gty = 0
ay,M—-101pm A2, M—102M AN —2, M —1AM—2,M

Q;

F o] > Lag| < 1, ik | —C ’>1, SR, B AR M — 2
4, M—105 M
SV E, FTUAAE D #£0, WA s AAEHWE C+ Dy =0, XENT

) b
Q1 Anf—2,M GM—1M

dm—1

FIH Jai| = 1ay] < 1, BLEAGIMEE P LR M — 1 %ar, mrkn -
M-1,M

Fﬁu |$M-1| < 1. %B/Z\Hﬂ ZM—l(ZM) %j@éi'ri’ mﬁﬁ_‘/l\ a/]\/[, %/@ |Oé/]w| > 1, H

Wy B ora(ay) R oy ]o IR 21,20, ong s TEECRERGMIE, T LIS

<617523"'aﬁM>’ ‘ﬁﬁ‘j& mM(ﬁlaﬁ%"wﬁ]ﬁ) = 07 |51| = |52| == |6M71| = ]-a |BM| > 1.
EE_XL}’E")I% %M(ﬁlvﬂ% .. 7BM) EE&‘ BM E@éﬂ%‘ri]%li&EgﬁZﬁmM(ﬁhﬂQ, .. 7BM) = AlﬂN[—’_

B =0, REZHimgn, A =050 T

IG Br-2  Bu-1 > ~0

PR 9
ai1np ap—2,M ap—1,M

<

Lo (

10
133



AR, XAATEE, BTl A7 # 0, W2 A'By + B =0 1 Bu BiiZEME—H . 535h,
HF 2 €C ol = 1, RANEEF] 2= 21, UK Por MBI NS, 73
mM(ﬁh 627 s 7517/[1) = mM(Bl_17BQ_17 cee 75]_\/[1)
= (8182 Bar) "B (Br, B2y -+ Bu) =0

Bl A'By + B =0, BT [Bu] > 1 FTLL By # By XS ZATEHAME—PET G FTLAS
HEISEIRNS M WG, 2, 5B, O

G 53551045 Pz, 2, ..., 2) = P(z) BIFHERE R 5.27E a;; € (—1,0) U (0,1) B
. BRI — AL, BADERHEE S — A5 H.

SI3E 5.4 W G REVH L NEENITE, {f.) 2 St 5 {f.} £G K
B LBk Emgremst £, B f WE G BREES, W FERN OB fHRAE G L
BHE R

MERR R f AMERN 0, HAFEZE R, BB F S E®, 71 20 € G M
r >0, FELL 20 NELD, » NERKESE DL D C G, f(z2) =0, H Vze D,z #
20, f(2) # 0.

f BT, ATRAEL 6 > 0, 1675 inf.cop |f(2)] = 6, AL N € Ny, 54
n > N B, f inf.cop |fu(2)] = §/2. H Weierstrass ®#, f/ 7&£ 0D L2—Fkshz| 7/
B, W) f R —BUREE £, B W f AR 20 SEBIF RO m H, DN a4 £ R B

. f'(2) . I (2)
2 = dz=1 dz=0
T Lo F2) T w5 Jop Fal2)
WL IE. BTN £ ER 0, WEE G B . O

TEMGERR AT ay; AN £1,0 BUREIL, 515 535518, LR P(z, 2., 2) = P(2)
SN, BRI T 1 80 1 iy W5 (o)), M SIS (~1,0)0(0,1) E,
B Jim aff) = aye i a1 <0 j < M OFFERISERIER 5 2R BRIZ T PO,
MASEM, EEEE, PO ST P, LEMERS 2| > 1 BHEMN, BR P
FAERE, TRUGE 54508, POE 2| > 1 FRHEA, Bl P() = 2 MP() &
T S R .

. g XA SR SRR, BERC D BB R BRI R ORI N AR BRI
oy, MR —E50 5 IFREAT, AR XA 2 I F TR A e AL b [RI XA
BT R MG RIAT, A8 SRR W] R AR AR, DAL SEf E 22 R — 4
F]RERCA B 73 BR B R R R

B 7R B E R, 2 T NIEFEARATTEE — RS 10 SCH S8 LBl 2 xRS SR () B 0 B K
AT THEZHUHE, RERAFETEZNNA T, EAEBNEREATEN.

6 ZEEk

[1] C. N. Yang and T. D. Lee, Statistical Theory of Equations of State and Phase
Transitions. 1. Theory of Condensation, Phys. Rev., 87, 404 (1952)

[2] T. D. Lee and C. N. Yang, Statistical Theory of Equations of State and Phase
Transitions. II. Lattice Gas and Ising Model, Phys. Rev., 87, 410 (1952)

3] XU, IS gt s, bt JEaUR A2 AR, 2022

11

134



Applied Math



An Introduction to Quantum Computing

Yijia Fang; Zhongjin Yan
May 2022

Abstract

In this article, we are going to introduce the basic results of quantum com-
putation and the most famous and important algorithms for this quantum
computational model.
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1 Introduction

In recent years, quantum computing has become a widely discussed topic.
The significance of studying quantum computing is that it may be more
powerful than classical models of computing, such as Turing machines. This
may allow quantum computing to be exponentially faster than normal Turing
machines. And, it’s very important that it is physically possible for quantum
computers to be realized. Next, we will show some basic results of quantum

computing step-by-step.

2 Quantum Superposition And Qubits

Ordinary computers operate with states built from a finite number of bits.
Each bit has two states, 0 or 1. For quantum computers, the analogical
objects are called qubits. Like bits, each qubit has two states denoted by 0
or 1 as well. However, the special feature of a qubit is that it can be in both
two basic states, denoted by 0 and 1, at the same time, while the normal bit
can only be one of these two states. As is customary in physics, we use Dirac
notation, |0) and |1), to denote the basic states. And a qubit is allowed to
be in any state of a vector on the unit ball of C?, written as

a|0) 4+ a1]1), where ag, a1 € C, |ag|* + |au|* = 1.

A state of this form is called a superposition of the basic states, and here
ap, oy are called amplitudes. We can find that |0), |1) are actually the basis
vectors of C2. According to the principle of quantum mechanics, when iso-
lated from outside, a qubit can stay in the superposition, until it’s measured.
When measuring a qubit, the amplitude wave collapses, and we will get |0)
with probability |ag|?, or |1) with probability |a;|?. Similarly, We give the

definition of the m-bit quantum register.

Definition 2.1. A m-bit quantum register is a system composed of m qubits,
whose state is a superposition of 2™ basic states, namely a vector on the unit

ball of C*", written as

Z Qayooan |T1, -y Tn), where Z |ty o [P = 1

z;€{0,1) z;€{0,1)
j€{17~~'7n} je{]-v'"’n}
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When measuring the register, we will obtain the value |x1, ..., z,) with proba-

bility |z, |2, and collapse the state of the register to the vector |x1, ..., x,) ||

Remark 2.2. Here C*" is actually (C2)®™, the tensor product of m spaces
of a single qubit C?.

Remark 2.3. For simplicity, we usually omit the normalization factor of

states. For exzample, |0) — |1) means \/L§|0> - \/L§|1>

3 Quantum Computation And BQP

3.1 Quantum Operations

According to the principle of quantum mechanics, the operations that we can

do on a quantum register are as follows:

Definition 3.1. A quantum operation for an m-qubit register is a unitary
transformation F : C*" — C?¥". It maps a quantum register to another

register linearly.

Remark 3.2. Quantum operations are all reversible, since it’s a unitary

transformation and we can do the inverse operation.

Remark 3.3. Quantum operations can be identified with unitary matriz

when choosing a certain basis, such as the basis {|x)|z € {0,1}™}.
Here are some important examples of quantum operations below.

Example 3.4 (Flipping qubits). Flipping the first qubit of an m-qubit regis-
ter means applying the NOT operation on the first qubit, which can be done
as a quantum operation mapping the state |b, z) to the state |1 —b,x) for any
be{0,1} and z € {0,1}™L.

Example 3.5 (Reordering qubits). We can exchange the values of several
qubits by applying a permutation on basic states, which is a quantum opera-

tion since it can be expressed by a unitary matrix.

Example 3.6 (Copying qubits). Notice that copying one qubit to another
as a classical operation is not reversible. In quantum computing, we use the

operation |x,y) — |z, ®y) instead, where the second qubit is often taken to

be 0.
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Example 3.7 (Rotation on single qubit). Regarding 1-bit qubit as a two-
dimensional vector. Rotation on a single qubit can be described by the matrix
(cos 0 —sind

. . Notice that it becomes flipping when 6 = 7.
sinf)  cosf

Example 3.8 (AND of two bits). Just like copying qubits, AND of two
bits as a classical operation is not reversible either. We can also use an
additional 0 qubit on z, and take the “reversible AND” to be the operation
|z, y, 2) = |x,y, 2®(xAy)). This operation is often known as the Toffoli gate.
Similarly, we can define a “reversible OR” to be the operation |z,y,z) —
|z, y,2® (zVy)).

Example 3.9 (The Hadamard operation). The Hadamard operation is the
1
map |0) to |0) + |1) and |1) to |0) — |1). The corresponding matriz is —

V2
1 1 . . .
L 1) If we apply the Hadamard operation to every qubit of an m-qubit
register, and denote x ® y to be the inner product of the space FL', then
|z) = |x1,29,...,2m) is mapped to Z (—=1)*®¥|y). Especially, |0™) is
ye{0,1}™
mapped to Z |z).

z€{0,1}™
However, we still need to give a precise definition of quantum computing.
First, only local operations are possible to be physically implemented and

applied efficiently. This kind of operation is called an elementary quantum

operation or a quantum gate.

Definition 3.10. An elementary quantum operation, or a quantum gate is

a quantum operation that only acts on one or two qubits of the register.

Theorem 3.11. We can realize any arbitrary quantum operation with ele-

mentary quantum operations.

Proof. See A. Y. Kitaev, M. Vyalyi, and A. Shen. Classical and Quantum
Computation. AMS Press, 2002, Page 65. n

Theorem 3.12 (Kitaev). For every D > 3 and € > 0, there is an integer
1 <100(Dlog1/€)? such that the following is true:
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FEvery D x D wunitary matrix U can be approximated as a product of unitary

matrices Uy, ..., U; such that

\Ui; — (Up---Uy)ij| < e forevery i,j € {1,...,D}
and each U; correspond to applying either the Hadamard gate, the Toffoli
gate, or the phase shift gate (1) (z) , on at most three qubits.
Proof. See A. Y. Kitaev, M. Vyalyi, and A. Shen. Classical and Quantum
Computation. AMS Press, 2002, Page 77. O

Remark 3.13. More generally, for a finitely generated subgroup of SU(D),
we can choose a sequence of generators no more than O((log(1/6))3%¢), whose
products approximate a given operator with precision d, by an algorithm of
O(poly(log(1/9))) time. See the Solovay-Kitaev theorem.

3.2 Classical Computation
Before defining BQP, let’s give a brief explanation of classical computation.
Definition 3.14. A Turing machine M is a tuple (I',Q, ) where:

o [ called alphabet of M is a finite set of the symbols on M ’s tape.

o @ is a finite set of M’s possible states.

e 0:QxT'—=QxTI x{L,R,S} is the transition function of M.
Definition 3.15. For a nonempty finite set S, we define S* :=J,—,S"

Definition 3.16. f : {0,1}* — {0,1}* and T : N — N. We say a Turing
machine M computes [ in T(n)-time if Yo € {0,1}*, when initialize M to
the start configuration on input x, M halts after at most T(|z|) steps with
f(z) on its tape.

Definition 3.17. T': N — N. A language L C {0,1}* is in DTIME(T'(n))

0 ¢ L
iff its characteristic function xr(z) = ¢ is in DTIME(T (n)).
1 zel

Definition 3.18. P:= |J,.,DTIME(n°).

4
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Definition 3.19. A Boolean circuit is a DAG(directed acyclic graph) with
0-in-degree nodes denoting the inputs and 0-out-degree nodes denoting the
outputs, and other nodes labeled with OR, AND, or NOT called gates. The
size of a Boolean circuit C, denoted by |C|, is the number of its vertices.

Definition 3.20. 7' : N — N. A T'(n)-size circuit family is {Cp}nen such
that C,, has n inputs and 1 output, and |C,| < T'(n).

Definition 3.21. T': N — N. Say a Boolean function f :{0,1}* — {0,1} €
SIZE(T(n)) if there is a T'(n)-size circuit family {Cp}nen such that Vo €

{0,137, f(z) = Cu(2).

Definition 3.22. A circuit family {C,}nen is P-uniform if there is a polynomial

time Turing machine that on input 1™ outputs the description of circuit C,,.

Theorem 3.23. A language L is computable by a P-uniform circuit family
iff L €P.

Proof. See Arora S, Barak B. Computational Complexity: A Modern Ap-
proach, Cambridge University Press, 2009, Page 111. O

3.3 Quantum Time Complexity and BQP

Now, let’s give the definition of quantum computing and the complexity class
BQP (Bounded error, Quantum, Polynomial time).

Definition 3.24 (Quantum computing and time complexity). Let T': N —
N. We say a Boolean function f : {0,1}* — {0,1} is computable in
quantum T (n)-time if there is a polynomial-time classical Turing Machine
thatVn € N on input (1,17 outputs (Fy, ..., Fru) such that Vz € {0, 1}*
we can obtain the correct value of f(x) with probability at least % by the

following process:
1. Initialize an m-qubit register to the state |x0™ ™), where m < T'(n).
2. Apply Fi, ..., Fr@y one by one to the register.
3. Measure the register and get a value Y .

4. Output Y7.

140



Let f:{0,1}* — {0,1}}, f(z) = (fi(2),..., fi(x)), we say f is computable
in quantum T'(n)-time if f;(x) is computable in quantum T(n)-time ¥Vj =
1.1

Definition 3.25 (class BQP). A Boolean function f : {0,1}* — {0, 1}

is in BQP if there is a polynomial p : N — N such that f is computable

in quantum p(n)-time. We say a language L C {0,1}* is in BQP iff its
0 z¢1L

characteristic function xr(x) = is in BQP.
1 ze€lL

Remark 3.26. Another definition of quantum computing and BQP is quan-}
tum circuit. A quantum circuit is a DAG(directed acyclic graph) with 0-in-
degree nodes denoting the inputs and 0-out-degree nodes denoting the outputs,
and other nodes denoting the quantum gates.

Definition 3.27. A language L C {0,1}* is in BQP iff there exists a P-
uniform polynomial-size quantum circuit family {Cy}nen over some finite
universal gates and a polynomial q such that ¥n € N,z € {0, 1}" have:

e v € L= C,(|7)]|0)®1™ accepts with probability >

wno

e ¢ L= C,(|7)|0)21™) accepts with probability <

Wl

Notice that some examples (flipping, reversible AND, reversible NOT)
of quantum operations listed above can take the place of the fundamental
classical operations (NOT, AND, OR). In fact, we can efficiently compute
any classical operation using quantum operations as long as we have sufficient
free qubits:

Lemma 3.28. If f : {0,1}" — {0,1}" is computable by a Boolean circuit of
size S, then there is a quantum circuit of size 25 +m computing the mapping
|2)|027F5) i Ja) | f ()]0 5).

Proof. Replacing the Boolean gates by their corresponding quantum opera-
tions, we get a map |z)|0%"5) — |2)|0™)|f(z))|z), denoted ¢. Next copy
f(z) to |0™) using copying operation m times. Then if we apply the reversing

operation ¢!, it will return to the original case except the copy of f(x), that

is, 7"+ [2)| f(@))|f (2)]2) = |2)| £ ()]0 F5).
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Corollary 3.29. PCBPPCBQP.

Proof. By Theorem 3.23, Definition 3.27 and Lemma 3.28, we know that
PCBQP. Since we can simulate a coin toss using a Hadamard gate, we get
PCBPPCBQP. m

4 Grover’s Search Algorithm

Theorem 4.1. There is a quantum algorithm such that, for every polynomial§
time computable function f : {0,1}" — {0,1}, we can find a string a €
{0,1}" satisfying f(a) = 1 in poly(n)2> time (if such string a exists).

Proof. We use an n+1+m-qubit register, where m is large enough to compute
the transformation |zo0™) — |z(0 & f(x))0™) by Lemma 3.28.

Initial state: [O"T1+™)

Step 1. Apply Hadamard operation on first n qubits.

Do step 2. and step 3. for 2/2 times as follows:

Step 2. Compute |xo0™) — |x(o & f(x))0™) ;

if o = 1 multiply by —1;

compute |zo0™) — |z(o @ f(z))0™) again.

Step 3. Apply Hadamard operation on first n qubits;

if first n-qubits are all zero, then flip n + 1st qubit;

if the n + 1st qubit is 1, then multiply by -1;

if the first n-qubits are all zero, then flip n + 1st qubit;

apply Hadamard operation on first n qubits again.

Step 4. Measure register and let a’ be the obtained value of the first n qubits.
If f(a’) = 0, repeat Step 2. and Step 3. for 2"/2 times until f(a’) = 1.
Output: o’ such that f(a') =1.

Notice that step 2 and step 3 reflects the vector around u = 515 >°_ 01y [T)
and e = 3,y |7), hence the vector rotates the angle 2(e, u) towards |a)
after one loop. Hence in O(1/0) = O(2"/?) steps, it will be so close to
la) that their inner product is larger than cosf. If measuring now, we get
la) with constant probability. Thus, this algorithm has time complexity of
O(poly(n)2™/?). O
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5 Simon’s Algorithm

Theorem 5.1. There is a polynimial-time quantum algorithm such that, for
a polynomial-size classical circuit of a function f : {0,1}* — {0,1}", find
the string a € {0,1}" satisfying f(x) = f(x & a) for every x € {0,1}" (if
such a exists).

Remark 5.2. The problem to find such a “period” of f is often called Simon’s

problem.

Proof. We use an 2n + m-qubit register, where m is sufficiently large to
compute the transformation |zz0™) — |z(z @ f(x))0™).

Initial state: [0>"T™).

Step 2i-1. Apply Hadamard operation on first n qubits;

compute |zy0™) = |z(y & f(z))0™);

apply Hadamard operation on first n qubits again.

Step 2i. Measure first n qubits of register to obtain a value y; such that
Y ©a=0.

Repeat until we get y; enough to retrieve a.

In fact, when k > 2n there will be n — 1 linearly independent y; with high
probability by the lemma below. U

Lemma 5.3. Choose n vectors uniformly at random from F3, then with

probability at least 1/5 the vectors are linearly independent.

o _9i 1 ., 3 _ 1
Proof. p = H H1—2 H(l 22._1)1>§e 1/2>5.D

=1

6 Shor’s Algorithm

6.1 Quantum Fourier transformation

Definition 6.1. For a vector f = (f(0),..., f(M — 1)) € CM, the Fourier
transformation of f is a vector f = (f(0),..., f(M —1)) € CM defined by:

M—

H

2mi

fl@)wil, ©=0,...,M —1 and wyy = e

§\~

y=0
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Remark 6.2. We know that the Fourier basis

{L <1 Wap s w;/[(M_l)x>}
\Z M z=0,...,M—1

is an orthonormal basis. So the Fourier transform FTy : f — f s a unitary
operation.

Based on the divide-and-conquer idea, we have the quantum operation
that change the state of a quantum register to its Fourier transform.

Lemma 6.3. For any positive integer m, we can change the state of a quan-
tum register f = Zizal f(z)|z) to its Fourier transform f = Zizal f(z)|z)
using only O(m2) elementary quantum operations.
Proof. Let W, = diag{w®,...,w?" 7} be a 2™ x 2™ diagonal matrix, H be
the Hadamard gate. Suppose we have run F'T5n-1 on the first m — 1 qubits.
Apply W on the first m — 1 qubits on |z1, ..., 2,1, 1), then apply H on the
last qubit, and move the last qubit to the first one. States are as follows:
FTom-1£5|0) + FTom-1 f1]1)
—FTym-1fo|0) + Wiy - Flom—1 f1]1)  (m quantum gates)
= FTym=1 fo(|0) + 1)) + Winer - FTm—1 f1(]0) — [1)) (1 quantum gate)
= (FTym-1fo+ W1+ FTom—1f1)|0) + (FTom-1 fo — W1 - FTom-1 f1)|1)
_>|0>(FT2mflf0 + Wm_l . FTmelfl) + |1>(FT2mflf0 - Wm_l * FTmelfl)
= f (1 quantum gate)

Let T(m) be the number of quantum gates used for FTom. Then we know
that T'(m) = T(m — 1) + O(m), so T(m) = O(m?). O

6.2 Reducing Factoring to Order Finding

Lemma 6.4. If odd nonprime n is not a prime power, then the probability
that a uniformly random element x € (Z/nZ)* has the property that ord(z) =
2r,r € Zy and {ged(n, 2" + 1), ged(n, 2" — 1)} N{1,n} = & is at least ;.

Proof. Only prove when n = pq for primes p > ¢ > 3. Let
¢ (Z/nZ)" — (Z[pZ)" x (Z/qZ)"

T (T, T4)

144



then ord(z) = lem(ord(z,),ord(z,)) and ¢(—1) = (—1,—1). Since all ele-
ments with odd order in (Z/pZ)* is a proper subgroup of (Z/pZ)*, it contains
at most half of the elements of (Z/pZ)*. So the probability that x, has even
order is at least 5. Let

Gy ={x € (Z/qZ)" | ord(x) = 27 x ¢, cis odd and j < I},
then Go < --- < Gio1 <G < -+ < (Z/qZ)*. Let

f:Gl —)Gl,1

z + 2% (mod q)

then ker(f) 2 {1,—1}, so #G,_1 > #G;/2. Let ord(z,) = 2%¢, and
ord(x,) = 2%¢,, where ¢, and ¢, are odd. Then the probability that s, = s,
is at most % So the probability that s, > 1 and s, # s, is at least %1.

When s, > 1 and s, # s, ord(z) = 2m%(rsa)lem(c,,c,) and r =
ord(z)/2. Since s, # s4, p(z") # (—1,—1), and 2" # —1(modn). So
"+ 1 # 0 (modn) and (z" + 1)(2" — 1) = 2 — 1 = 0 (modn). Thus we
have {gcd(n, 2" + 1), ged(n, 2" — 1)} N{l,n} = @. O

6.3 Shor’s order-finding algorithm

Lemma 6.5. There is a polynomial-time quantum algorithm that on input
(a,n) outputs ord,(a).

Proof. Let m = [5log(n)]. We use a m + poly(log(n))-qubit register. Since
x +— a”(mod n) is computable in poly(log(n)) time, we can compute |z)|y)
)y & (a”(mod n))).
The algorithm is as follows:
Step 1. Run QFT to the first m qubits.
Step 2. Compute |2)|y) — |2)|y & (a*(modn))).
Step 3. Measure last n qubits and get .
Step 4. Run QFT to the first m qubits.
Step 5. Measure the first m qubits and get x.
Step 6. Find %’ such that ged(p, q) = 1 and ‘2% — 2l g
Step 7. If a? = 1(mod n), output q.

10
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States here are as follows:

am_1
1
— x)|0"
77 32
=
—— |z)|a®(mod n))
M x=0
| Kl
== |z +1r)|yo),
VK 1=0
M —zy—1
xo is the smallest number s.t. a® = yp(modn), K = {$J
r

2m_1 K—1
1 (zo+ir)z
— Wom x

z=0 [=0
Lemma 6.6. The number of x € {0,...2™ —1} such that 0 < zr(mod 2™) <
r/10 and ged(|zr/2™] ,r) =1 is at least Q(r/logr).

Lemma 6.7. If 0 < zr(mod2™) < r/10, then before Step 5, the coefficient
of |x) is at least Q(%)

With these two lemmas, we know that with a probability of at least
Q(1/logr), the measured value = has the property mentioned in Lemma 6.6.
The property shows that, for ¢ = |zr/2™|, we have |zr — ¢2™| < r/10, and

2m 10-2m ~ 4nt

According to the theory of continued fraction, we know that in this condition

T c ‘ 1 1

the algorithm will output r. So the algorithm have a probability of at least
Q(1/logr), and then 2(1/logn) to output r. Then we can repeatedly run
it several times and take the smallest output to increase the probability of
successfully getting ord,(a). O

Finally, we come to the proof of the main theorem.

Theorem 6.8 (Shor). There is a quantum algorithm that on input n outputs
the prime factorization of n in poly(log(n)) time.

Proof. We only need to give an algorithm that on input n output a nontrivial
factor of n. Because we can run the algorithm recursively to get the prime

factorization of n.

11
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The algorithm is as follows:

Step 1. If n is even, return 2; else proceed to Step 2.

Step 2. For k= 2,...logn + 1, if n = m*, return m; else proceed to Step 3.
Step 3. Choose an a € {1,...,n — 1} uniformly randomly. Compute b =
ged(a,n) with Euclid’s algorithm. If b > 1, return b; else proceed to Step 4.
Step 4. Compute r = ord,(a). If r is odd, return “n is prime”; else proceed
to Step 5.

Step 5. Compute d = ged(a™/? — 1,n). If d > 1, return d; else return “n is
prime”. [

By lemmas above, we know that this quantum algorithm is polynomial-
time. And we can get an factor with a probability of at least i. Repeat it
several times then we can increase the probability of success to at least %

7 Conclusion

So far, we have given the definition of classical and quantum computing,
and we know PCBPPCBQP. Grover’s search algorithm, Simon’s algorithm
and Shor’s algorithm show us that quantum computing may be strictly more
powerful than classical computing. Since we haven’t found a polynomial-time
probabilistic computation for integer factorization, and we believe there isn’t.
Shor’s algorithm makes us believe that BPP#BQP, and shows us that many
encryption schemes such as RSA may be not safe after the quantum computer
is realized physically.
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On Symbolic-Numeric Methods of Integrating Rational

Functions

Chen Guanyi

May 31th, 2022

1. Introduction

Precise computation of integrals of rational functions turns out important in more advanced integrating algo-
rithms. Typical methods of rational integration are either numeric, which means aiming at an approximate output
(of an actual value), or symbolic, which means aiming at a precise formula output that exists theoretically.

Both kinds of methods have advantages and disadvantages: as for numerical ones, the output is usually accurate
enough especially for definite integration, yet on ill-conditioned integrals purely numerical methods are over-sensitive
to approximate processings, like integrating on intervals that nearly contain a root of denominator. For symbolic
ones, although precise algebraic expressions of indefinite integrals help further analysis of results (for example
asymptotic analysis), the formula is likely to be inaccessible when roots of denominator are complicated or even
impossible to be solved in radicals. However, proper hybrid methods that rely on both numeric and symbolic
processes may be able to combine their advantages and avoid their shortcomings.

Based on ideas of Article [1] and Book [2], we will first build basic definitions and theorems, together with some
fundamental algorithms; and then introduce two numeric-symbolic methods of rational integrations, called N-PFD
and N-LRT, give a posteriori computable bound of errors and compare their behaviours on typical examples to
decide which method seems better. Based on typical symbolic algorithms, numerical methods to approximate roots

are applied.

2. Basic Definitions, Theorems and Algorithms

2.1 Rational Integrals and Decomposition

Definition 2.1.1 A rational integral is the definite (or indefinite) integral of two polynomials with real
coefficients. (In wider range complex coefficients are considered, but not here.) Whether definite or indefinite, we
will use the notation [ f(x) = for one of the anti-derivatives of f(z).

According to Partial Fraction Theorem we’ve learned for rational functions, the following theorem is trivial:

P
Theorem 2.1.2 Suppose f(x) = (z) is the rational function to be integrated, then there exists a unique de-
Q(z) o o
composition (in the sense of differing a constant) of / flx) = H((as)) + DEQ:)) such that G, H, C, D are polynomials
T T

of real coefficients and H has no repeated roots.
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Proof: According to Partial Fraction Theorem, the only concern is uniqueness. Suppose there is another

» Gi(z) Ci(x) / Gi(z) G(z), . . . .
decomposition / x) = + , then — is a nontrivial rational function, yet the
P 10 = 5@ " D@ "H) " H@) Y
derivative of any nontrivial rational function has repeated factors on denominator, and gl EJ;% — I(;((x)) has none

1T xT

since the denominator is the product of some non-repeating factors of Q(z). Contradiction. [

C G
Definition 2.1.3 We call DE:U; the rational part of the integral / f(x), and / H((:c; the transcendental
x x

part.

A symbolic algorithm for finding out the rational part is necessary, since two parts of integrals have different
terms: One is rational and the other consists of log and arctan terms, and the rational part is relatively easier to
deal with. To build an algorithm, we first need some basic methods for polynomials which are able to apply on
computers:

Algorithm 2.1.4(Extended Euclid Algorithm, EEA) Suppose f, g € R[z](degf > degg), then we can find
u=gecd(f,g) and s,t € R[z] such that sf +tg = u and degs < degg, degt < degf unless the right hand side be zero,
by the following steps (regardless of multiplying a real constant in output):

Step 1: Let u= f,v=¢,S =(1,0),T = (0,1)

Step 2: If v = 0 go to Step 4;

Step 3: Otherwise do Euclid Algorithm u =quv+r,let L=S —¢T,u=v,v=r,S=T, T =L, and go back
to Step 2;

Step 4: print u = ged(f,g), S = (s,t).

All the non-trivial u,v’s that generated in order, from f to ged(f,g), is called the remainder sequence of f
and g.

Proof: It is obvious that when finishing any step, the formulas S-(f, g) = u, T-(f,g9) = v, ged(f, g) = ged(u,v)
remain unchanged, and in the last step v = 0, so u = ged(f, g). Besides the S in final output is the previous T, and

by induction the maximal degree of the second item of that T will not exceed

k k
Z degg; = Z(degui — degv;) < degf,
=1

i=1

where the second equality won’t hold because if in the previous step before u, v are changed, degv = 0 already
holds, then v should be 0 afterwards and the S produced in the same step will be directly printed, which contradicts
the assumption. By degt < degf we find degs < degg by sf +tg = u unless degg + degf < degu, which means they
are both constants and s,t are therefore constants. [

Algorithm 2.1.5(Square-free Decomposition) Suppose f € F[x] where charF = 0, then it’s easily seen
that f = H h! is unique (in the sense of multiplying a nonzero constant) where degh,,, > 0 and h; all in F[z]. We

can extraé?lthe h;’s by the following steps:
Step 1: Let u = ged(f, f'), v1 = f/u, wy = f'Ju, i = 1;
Step 2: Let h; = ged(vi, w; — v), viv1 = v;/hi, w1 = (w; —v))/hiy i =i+ 1;
Step 3: If v; # 1 do Step 2 again;
Step 4: Print all h;’s.
Proof: To prove the algorithm is valid, we consider if h; is the product of distinct square-free prime factors of

f, and if vy = u/ged(u,u') and wy = v’ /ged(u, w') hold. In fact, noticing that u equals f divided by the product of

2 149



all its distinct prime factors, the algorithm will repeats extracting all prime factors of order i once it can be viewed
as replacing the initial f by u in the first iteration and repeating until finish.

By simple computation h; = ged(f/u, fu'/u?). For any p*||f(k > 1), v,(hi) = 1 iff k = 1 is easily checked since
vp(u') > 0 and vy(u) =k — 1 for k > 1, and v,(u') = k — 2 for k > 2; for vy = u/(u*hy/f) and wy = u'/(v*hy/ f),
we only need to verify

ged(u,u') = u?hy/f,

where the factors of both sides will belong to f. For k = 1 both sides have zero order of p, and for k£ > 2 both sides
have k — 2, which proves the validity. (J
Algorithm 2.1.6(Partial Fraction Method) Suppose Q(x) = Hqi(ac) and degP < deg® where g;’s are

i=1
relatively prime. Then we can find fi, f5 s.t.

P _h [
— ==+ , de < degqy, de < de .
0 o Qg deah < degn, degf 2(Q/q)
Algorithm and Proof: Use Extended Euclid Algorithm for ¢; = s and Q = v to find 1 = su + tv, then
0
rP Pt P P
0 = —+ —S, so we can replace Pt and Ps by Pt(modu) and Ps(modwv), and the right hand side becomes 50
U v

where degPy < deg@, yet Q|Py — P, which means P, = P.
Repeating the process above we can find f;’s s.t. degf; < degg;, and

P_sfi
Qiiz:;%‘. -

Algorithm 2.1.7(Hermite Method) We consider the following steps to find the rational part symbolically
(Suppose degP < degQ):

Step 1: Apply Square-free Decomposition to @ and suppose Q(z) = qu(x)’ By applying Partial Fraction
i=1
Method we only need to consider the decomposition of fl((x))
qi(x)"

Step 2: For each i, notice that ged(g;, ¢;) = 1, we find polynomials a, b s.t. ag; +bq; = 1, and it is easily checked
that

/
-1 (i —rit

filz) _ / fia+ (fib)'/(i = 1) fib
ql(m)i 7’2

which means the order of the denominator left has decreased.
Step 3: Repeat Step 2 until all denominators are prime. In this way we extract the rational part successfully,
and with accurate form since the whole process is purely symbolic (given the context that coefficients are accurate,

such as when coefficients are in Q or wider structures like Q(v/2) in definitions of computer algebra systems).

2.2 Transcendental Part

Compared with the rational part, the transcendental part is more difficult to handle especially when it becomes

unavoidable to take approximate roots of denominator.
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Algorithm 2.2.1(Partial Fraction Decomposition, PFD) We focus on C[z] we actually find that the

C;

is able to be written in the sum of
(x) r — zZ;

G(x) _§
/ @) ;cilog(x — Zi),

G
transcendental part ’s, where ¢; is the residue of Vi at z;. We have

G(x)
H(x)
x and get ¢; = ¢; for z; = z;. By taking exponents, the following two formulas are trivial (in the corresponding

branch):

but in real form we must combine the items of complex roots. As has real coefficients, we push Z into

log(z — z;) +log(z — %) = log(z? — |2|?),

‘ x — Re(z;)
i(log(x — z;) — log(z — 2;)) = 2arctan(——————),
(log( ) — log( ) ( Tz )
so whenever we reach an expression of the partial fraction form we can express our result in real functions.
G(z
By simple complex analysis we know ¢, = H’(( k)), and whenever we find roots (such as when we are able to
2k

solve them out), we are able to give a symbolic anti-derivative.
The PFD Algorithm requires splitting H into irreducible factors, and in the context of precise calculation,

unnecessary algebraic numbers like V2 may be introduced for unnecessary problems like / . However, if we

2
%+ 2
focus on residues and their different following sums, we may introduce a new algorithm. For the same c as a residue,

the sum of all corresponding items is

c Z log(x — z;) = clog( H (x — 2)) = clog(ged(H, G — cH")),
irc;=c z€z}s:G—cH’|,=0
But we need certain tools to find ¢;’s and their following sums without computing the z;’s. Luckily, by the
concept and properties of the Rothstein-Trager Resultant, we are able to view ¢;’s as a root of a certain polynomial
and represent the logarithms again with respect to ¢;’s.

Definition 2.2.2 Define the resultant of two polynomials f, g by

Resw(fag) = det d)f,ga

where ¢, : P, X P, = Py, m = degg,n = deg f is the linear transform defined by

brq(sit) = sf +1g,

and P, represents the k-dimensional linear space of all polynomials with degree below k.

For convenience of computation, we select the standard basis B, = {1, z, . .. ,xk_l} for every Py, and represent
¢4 in the standard basis as a matrix S = S(f, g).

Definition 2.2.3 The matrix S(f, g) is called the Sylvester matrix of f and g.

Theorem 2.2.4 We reach the following directly from definition:

()ged(f,g) = 1iff ¢y, has a trivial kernel, iff ¢y, is bijective, iff Res,(f,g) = det S(f,g) # 0. (2)S(f,g) is a
(m+n) x (m + n) matrix with coefficients f,, ..., fo beginning from (¢,4) to (i +n,7) (1 < i < m) in the first m
columns, and g, ..., go beginning from (j —m, j) to (j,7) (m+1 < j < m+n) in the last n columns, and 0 in all
other positions.

Now we will find if we consider R(c) = Res,(H,G — cH') as a polynomial of ¢, called the Rothstein-Trager

resultant, we can find our residues by finding roots of R.
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However, it’s not easy to compute resultants. Although we know the definitions properties of Res(f,g) for
polynomial f, g (n = deg f > degg = m) it is still hard to be calculated quickly, especially as a determinant. Based
on special 'parallelogram’ structure of Sylvester matrix, a natural idea is transform and decompose the matrix
in smaller ones. Notice that we can link polynomial multiplication with matrix structure, we may do EEA to
decompose (f,g) and the Sylvester matrix at the same time. The following lemma is useful:

Lemma 2.2.5 Suppose f = qg + pr where n = deg f > degg = m > degr = d, f,g,r monic, p a constant.
Then

Resi(fvg) = (71)mnmeeSfﬂ(g7T)'

Proof: We focus on the matrix structure. Denote f = Z fiz" (fn = 1), and define g;, s, p;’s similarly.

i=0
In matrix form, the condition become
fn gm dn—m i 0 i
f”71 9Im-1 e Gn—m—1
: 1 ol o
90 5 : Prd
| fo | dgol| L 2 | LPTo ]

which means we can eliminate the first m columns in S(f, g) into coefficients of r by the last n columns, and
then switch the left and right parts to get

g”n
Im—1 Prd
(—=1)™" - det : o Im : - = (=1)""p™ det S, det S(g,r) = (=1)™"p™ det S(g, 1),

9o gm—1 PTo Pra

9o PTo |

where S, is the top left part of this transformed matrix, upper-triangular with diagonals all 1. [J
By extracting prime term coefficients, we directly lead to the following using Lemma 2.2.5 and induction:
Theorem 2.2.6 (Computability of Resultants) Suppose f = porg, ¢ = pir1 are the initial coprime
polynomials with pg, p1 € F, rg,r1 monic, and apply Monic EEA to represent the remainder sequence with form
p;r; where r; monic and p; € F, degr; =n,; fori =1,...,l. Then

l l

Res.(f,9) = (=) ([T o Resu(rin,me = 1) = (=17 ([ o),

j=1 j=1

-1
where 7 = g Nj_1M;.

j=1

Another important problem is computing ged(H, G — cH') for residue c¢. We can actually find ged(H, G —yH')
on field R(y) first, which can be done by EEA; Suppose the remainder sequence is Ro(z,y),. .., Ri(z,y). When

y is substituted by any specific value of y, the actual process of EEA won’t change in the beginning, since the
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decomposition into quotient and remainder is unique under restriction of degrees, and substitution gives a valid
decomposition, which means substitution into the corresponding R;(x,y) leads to the same result of the algorithm
in R[z] in every step till finish. So the moment that substitution into the next polynomial equals zero, the previous
polynomial in remainder sequence gives gcd(H, G — cH') after substitution.

Now, If we know ¢ repeats k times as a residue, then degged(H,G — cH') = k and there exists a unique R;
denoted by R;) such that deg, R; = k. In this case

ged(H, G = cH') = Rig)(, ),

and computation is finished. So under this algorithm being able to find ¢;’s are not enough: We need to know
multiplicities of them when all roots of H are exhausted, since we need to know which degree to substitute into.
Luckily the multiplicity of residues and their corresponding roots are also contained in the resultant, in the following
means:

Theorem 2.2.7 R(c) = M H — cH'(2))(M is a nonzero constant).
H(z)=0
Proof: We use a quite special view in this equality: H is fixed and the theorem is a claim for any arbitrary

choose of coefficients of G for deg G < deg H. The non-zero constant M must be totally determined by H, because

des  i5 equal when we only view ¢ as variable in two sides, yet in the left side, any single monomial

the coefficient of ¢
with degree deg H has coefficients all chosen on the first deg H columns in the complete monomial expansion of the
corresponding Sylvester matrix; In the right side ¢?°® has coefficient (—1)°®#. Hence in our special view M is a
constant once H is fixed.

As a statement for real-coefficient multi-variable polynomial identity we find it holds once it holds on a dense

subset of the whole space.

G(z)

s all
Hi(z) "
distinct. Since M is fixed, both sides is of degree < k for variable ¢ and same non-repeating roots with a total

Since H has distinct roots z1,..., 2, where k = deg H, we consider the choose of G that makes

number of k exist and exhaust on both sides, we find it holds naturally, and meanwhile M # O(for any given H in

our condition) is proved.

Now we only need to proof the choose of GG is dense. The linear map from coefficients of G as (go, ..., gx—1)
(Assume freely chosen in degree 0, ..., k—1) to (G(z1), - .., G(zk)) is bijective according to Vandermond Determinant
Theorem, so in any open ball in R* a choose of (go,...,gr_1) that makes HI(ZZ ] s all distinct exists, for H'(z;)’s

Zi

are non-zero constants here. [J
Corollary 2.2.8 The multiplicity of root ¢ in R(c) equals deg(ged(H,G — cH')).

By Corollary 2.2.8, we are able to extract all residues and its multiplicities totally into roots and its multiplicities
of R(c). We first compute R(c HU * by Square-free Decomposition and for roots of U; we know their

multiplicities are 7. Notice that When Computlng the resultant on field R(y) by Monic EEA, we solve calculating
the log terms simultaneously.
One last problem is left: there may be complicated complex log terms that needs combination, and we may

A+ Bi
first think the relation i(log( - + BZ)) = 2arctan(§) suffice, as in PFD Method. However, this relationship holds
i

only in the same analytic branch and in this case singularities of B may make this fail. Suppose we want to

26 — bt + 5a? 4+ 4
first-type discontinuous at v/2 and thus impossible. In order to avoid singularities we must introduce new methods

2 3
3 6
calculate / vt for example, the indefinite integral will be printed as arctan(l‘ ) which is
1 :I:

for combining log terms.
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Lemma 2.2.9 Suppose A, B,C, D € R[z], A,B,C,D # 0, BD — AC = G = gcd(A, B), then
d A+ Bi d —B + Ai d A+ Bi d AD + BC d D+ Ci

@ ¥ A T o ) ey T A et ) i e )
Proof: Denote % by P. Notice that
—-B+Ai A+ Bi P+i D+Ci . d P+

) = 2di arctan P,
x

“B-ai A-B p=) D= ‘@
the statement is trivial. O

from lemma and EEA we can develop a singularity removal method
Algorithm 2.2.10 (Rioboo’s Method) We start from Zdi log(A B

suppose deg A > deg B > deg G (if deg B = deg G, then this term can be directly transformed into a continuous

) and according to Lemma 2.2.9 we

arctan term.)
By EEA, we find C, D s.t. BD—AC = G(and all # 0 according to deg A > deg B > deg GG), and max{deg C,deg D} <
max{deg A, deg B}. Again by Lemma 2.2.9 we only need to compute on
AD+BC) il (D—I—Ci>
G dx D—-Ci
and this process finishes in at most max{deg A, deg B} + 1 steps.

2 arctan(

Therefore we build a new algorithm only making use of Square-free Decomposition and EEA:
G
Algorithm 2.2.11 (Lazard-Rioboo-Trager, LRT) Compute /H in the following steps:
Step 1: Compute Rothstein-Trager resultant £(c) in way of Theorem 2.2.6 and store all R;(z,y)’s;

Step 2: Make Square-free Decomposition of R(c) into H U,(c)’, find roots of U,’s and follow the following

formula:
/ 7 Z Z clog(Rl(]) x,c));
J=1 c:Uj(c)=
Step 3: Similarly, by combining conjugate residues and log terms, and transforming to arctan terms for log(X +

1Y) term by Rioboo’s Method, we manage to express the final result.

3. Numeric-Symbolic Methods and Error Estimation

3.1 Introduction: Difficulties in Introducing Numerical Methods

Now that we have got the brief basic knowledge about symbolic algorithms like LRT and PF'D Method, we find
that the procedure of the whole integration can be completely changed when numeric approximation of coefficients
and roots are introduced:

(1) For coefficients: In the context of rational coefficients or coefficients in fine algebraic express (Q(v/2) for
example), Coefficients need no perturbation; while in more complex cases perturbing coefficients into floats may be
necessary. In this case the multiplicity of square-free decomposition results, as an ’isolated’, 'zero-measure’ property
in space of polynomials may be destroyed;

(2) For roots: Even in situations of integer coefficients roots may be unable to solve in radicals. PFD requires
rootfinding of the denominator which is likely to destruct conjugate structures for roots(less likely to happen) and

repeated residues. LRT require rootfinding of resultant which may result in destroying multiplicities too.
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To solve Difficulty 1, a possible method is introducing approximated symbolic algorithms, such as finding
an approximate GCD by an approximate EEA, or doing approximate Square-free Decomposition in order to detect
nearby problems in increased structure. (The increase in multiplicity means the non-commonness of the problem also
increased, together with the efficiency of algorithms.) This also avoids ill-conditioning roots (within a distance too
small) caused by perturbing singular inputs to a nearby float-coefficient input, and is a kind of Singular-Problem
Detection in its nature. We may also apply this in the way which we introduce later, yet this means the actual
integration solves the singular problem instead of the input itself.

Let’s analyze this in detail. Approximate algorithms are only able to apply in parts possible to be viewed
’singular’, so it is applied in approximately but not square-free parts, assumed in denominators of the original

function, which leads the Hermite part in approximated sense. Suppose the input and the singular problem are
C G C G
f=5+ [t =51+ 7

then we computed the rational part as [%] and we must respectively replace the denominator of f into approximated
result to simplify the computed part left, which actually turns f into [f]. So the rest part we operate on is in fact
[ %] instead of / T Therefore all the steps left will work on the singular problem; when two numeric-symbolic
methods on the following transcendental step has any error, the error is in fact between the singular one and the
computed one, instead of the input and the computed one!

In this way, the nearby most singular problem is successfully detected and assuming we aim at getting closer
to this singular problem, we only need to analyze the error as in accurate-input situations, and suppose the rational
part is exact. we change the nearly-square parts of the factorization of ill-conditioned denominator into square parts,
and the Hermite algorithm actually printed can be seen as the exact rational part for a nearby singular problem
.Hence the difficulties of inaccurate coefficients (in the sense of inaccuracy to possible singular problems) are solved.

On the contrary, even when no singular problems are near, inaccurate input may be inevitable, yet we can still
control its influence. Besides, difficulty 2 seems also inevitable especially in more complicated situations of given
denominators. Although the error may be unavoidable in complicated situations, we still allow its appearance since
in realistic models complicated rational integrals are approzimations to actual systems as well. Once we manage to
control error in integration sufficiently, it can be made relatively smaller than model approximation error.

On this thesis we immediately find two methods available: First, we can also assume the initial input to be
f(x) € Q(z) since this is viewed as another approximation of complicated possible coefficients that able to be in
any demanded precision. We may always assume this: when no singular problems are near, we assume the initial
input in Q(xz) is already ezact for convenience in error analysis, and in this context purely symbolic algorithms
besides numerical rootfinding is available on computers. Difficulty 1 is totally solved in this assumption. Second,
we may develop formulas to make the error computable by the results and variables produced in numreic-symbolic
algorithms. By controlling error by computing it and decreasing the initial tolerance when it fails to reach our
expectation, we solve difficulty 2 as well.

Both the distance to the original problem, and the precision we’ve given our final result is important enough.
Now suppose the initial input is f(z) € Q(z), and due to algorithms we actually compute the integral of f. We will
provide two kinds of error analysis(where Af = f — f ):

(1) Backward Error: Defined by BE(f) = ||Af]le = 1%1%5( |Af|, representing the distance between what we

s

actually compute to the original problem; A computable backward error means we can control it to be smaller than

the error of approximation of model.
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b
(2) Forward Error: Defined by FE(f) = | / Af|, representing the difference in actual result of a definite

integral, and [a, b] should be chosen sufficiently far z;way from roots of denominator H. A computable forward error
means we can control the result of definite integral as precise as besides distance to the original problem,

In the following subsections we will show both of them are computable and approach 0 by O(e), which means
precisely controlling error by decreasing tolerance e is possible. Then we can add the procedure of Error Compu-
tation. We have a powerful tool in MAPLE computer algebra system to find roots in any demanded error tolerance
€, so the error can be made small enough as well if we decrease our initial tolerance.

Generally, by Singular-Problem Detection and Error Computation, we are able to maximize our efficiency.

3.2 Procedures of N-PFD and N-LRT

Now we introduce symbolic-numeric methods based on classical symbolic methods (PFD and LRT), denoted
by N-PFD and N-LRT:

Algorithm 3.2.1 An N-PFD procedure is based on a PFD procedure, but different in:

(1)Use numerical rootfinding and residue-computation instead of symbolical;

(2)Detect conjugate pairs and identical residues (may be used to combine terms) by a user-supplied tolerance
e., in order to revive structure.

Algorithm 3.2.2 An N-LRT procedure is based on a LRT procedure, but different in:

(1)Use numerical rootfinding towards all U;’s;

(2)Detect identical residues and conjugate pairs (may be used to combine terms) by a user-supplied tolerance

e, in order to revive structure before using Rioboo’s Method.

P(x
In both procedures, the input is a rational function f(z) = (z) (over Q), together with necessary tolerance
x

Q)

settings, for example a tolerance € for relative error in rootfinding. and in the end we actually output an expression

of a nearby integrand:
/f(x)dac = % + Zvi log(V;) + z w; arctan(W;),

along with an (linear) error estimation.

3.3 Error Estimations and Linear Error Computations

We consider the backward and forward errors based on N-LRT and N-PFD.
Theorem 3.3.1(Computable Backward Error) Suppose the input tolerance is e (relatively, which means

for any root r, |Ar| < €|r|). Then

BE(f) = maz,| Y Re(M(x,7y))| + O(¢®),

where the principle term is O(e) and 7, range in the evaluated roots (of different polynomials in different
algorithms), and M is computable. The bound is finite on any closed bounded interval without any root of Q(x).

Proof for N-PFD: Since the rational part is computed exactly we need only consider the transcendental
deg H
(z)

X C; .
= then we actually approximated ¢;
) ; o y app

part.(This also happens in the rest error analysis.) Suppose
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and v; to ¢ and ;. Notice that

T—y T—7 (x —v)(z =)
__¢ (Vi) A n CiAy; +O(A2)

T — Ay (x— ) (=Y — Ay;)

_ C/(PYi)APYi C?,AP}/z
= Ta—q T PO
0= H(v) = H(:) + H (5:)Av + O(Ay?)
}{(7@)
H' (%)
c(r) c(r) | H(r)
T r)z)H/m

Proof for N-LRT: Slnce/ Z Z clog(Rl(] z,c)) :>— Z Z

j=1c:U;(c)= 7=1 c:U;(c)=0 z(j)(x C)
Jj <m,1 <k <degU,)’s are perturbed, suppose 1nt0 c;r- Given that by partial derivatives of c;, we know

:>A%:_

, and |Av| < €|y, 1 <i < degH,

as an O(e) term. O

We have the obvious estimation M (z,r) = (

ale( )
and ¢ (1 <

m degU; 8Ri(j)( ,©) 9’ R;(j (z,¢) AR ;) (z,c) OR;(j) (z,c)

X
Ao emae,) = SO0 (R oG B = e BB Ay +O(Ael)
N ) = 20 (Rt T Tpma Figy (2,)? 5
m degUj
AN
23X ol m)de ) + O(|AdP),
j=1 k=1
Uj(cjk)

and similarly noticing Ac;, = — and Ac;ji < €|cj|, we have the obvious estimation M (z,r) =

U;(r)

&) (, T)U]/i()(j determined by r = ¢; ;) as an O(e) term. (In both algorithms the bounded statement is trivial.)O]
(r

Uj(cjx)

Theorem 3.3.2(Computable Forward Error) Suppose the input tolerance is e (relatively, which means for
any root r, |Ar| < ¢e|r|). Then
FE(f) = maz,| Yy M(ry, s, @)| + O(€%),
k

where the principle term is O(e) and 74 +isg (7, s, € R) range in the evaluated roots (of different polynomials

in different algorithms), and M is computable. The bound is finite on any closed bounded interval without any root
of Q(x).
Proof for N-LRT: Notice that when any function g has a primitive g*, we have | / z)dz| < |g"(a)|+]g"(b)],

so we only need to bound a primitive of the error function in the form of our theorem. Suppose ¢, = ar+iby, (ax, by, €
R, 1 <k < m) is a subsequence of all residues that only contain one of each conjugate pair, and R;(j = j(k)) is the

corresponding subresultant of ¢;. We are able to rewrite the transcendental part as

G < 1%
/ 7= kz::l(ak log(V}) + 2b, arctan Wlk ),

2k

where Wiy, = Re(R;(ck,2)), War = Im(R;(cy,z)) and Vi, = W + Wy, for complex roots (for real roots we

have Vi, = Wiy, since their conjugate are themselves), which means they together with their partial derivatives of
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ar and b, are computable. In this case we can estimate the error by linear approximation:

" 6Vk GVk CLAk + Aak

Afdx = 1 A Aa —Ab) ———

/ fdx = ;(Og(Vk) ax + (5~ o, Dt g k) 7
oW OWay, oWy, oWy, 2(by + Aby)
% — W A W- - W Ab
+ (W Bar 1k dar JAay, + (Way By 1k Dby )Aby,) W2 W2, )
+0(|Ad]]?),
U, (&) ‘ dx + Aay, 2(by, + Aby) dx 2by,
and by — Uj/(ék) = Aci, = Aay +iAby, we can change the 7 and Wfk T W22k terms into Vk and W

terms first to extract the O(||Ac||?) terms, and then replace the Aay’s and Aby’s in linear terms. Therefore the
functions M (ry, sk, x) of size O(e) are computable. O

Proof for N-PFD: Suppose v, = ap + 08k (ax, B € R, 1 < k < m) is a subsequence of all roots of H that
only contain one of each conjugate pair, and c(yx) = ¢ = ag + ibg, (ag, b € R, 1 < k < m). Following the notations
above we let Wy, = — ay, Wa, = —B, and Vj, = Wfk + W22k for complex roots (for real roots we have Vj, = Wy,
since their conjugate are themselves), which means they together with their partial derivatives of ay and f are
computable. Again we estimate the error by linear approximation:

m

Oay, 8a;C Vi OV
/Afdx = ;(log(Vk)(a kAa 35, —AB) + (Gak Aoy, + 6, Aﬂk)vk
281.be (Aay, + AB b b
+ écaz(— :;2 T sz) + 2((9al; Aoy + 8,6k ApBy) arctan(ay — x, Bi))
+O(|Adl]?),

since linear estimations multiplied by Ac«; or ABy we can replace the cg, ay, 8i’s appeared by their approxi-

mation ¢, dy, 8’s, and notice —IS{((&)) = Ay, = Aay, + iABy, we similarly replace Aay’s and ABg’s and find the
result M (ry, sg,x) of size O(e) computable. O

By proof of Theorem 3.3.2 we directly get the corollary:

Corollary 3.3.3 The error term M in Theorem 3.3.2 can be decomposed into M; and M, corresponding to

log and arctan terms respectively by the form given in proof; and both of them are O(e).

4. Experiments and Comparison: Which One is Better?

4.1 Analysis and Experiment Settings

To decide which one generally performs better, we have many dimensions in consideration, like efficiency,
stability towards singularities or precise ill-conditioned problems and so on.

Intuitively, The runtime and instability of N-PFD is generally decided by the degree of the denominator and
heights of the coefficients in polynomial; Yet the runtime and instability of N-LRT can be different exponentially
under the same degree and heights due to instablity of determinants. So N-PFD may actually be more likely to
perform better.

In order to test the actual performance of two algorithms, we select 5 experiments to compare their behaviour,
with the assumption that input is precise enough that approximate GCD don’t work. They test two algorithms in

different senses.
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1 .
xn —2’

Experiment 4.1.1 fi(z) =

1
E i t 4.1.1° = —
xperimen fi(x) o _|_127
Experiment 4.1.2 - - .
xperimen fa(x) p—

Experiment 4.1.3 f3(x) = [n,n]gie)(x), where [m,n],(z) denotes the Padé approximation of order [m/n] of

u, and Fi(z) = 6—;
x

. 2z
Experlment 4.1.4 f4(fIf) = m (t — 0)7
E i t 4.1.5 = ——(t — 0);
xperimen f5(z) o ( )

The first two experiments serve as a basic comparison of their runtime and stability in same size of denominator;
The third experiment tests their stability of performance towards large coefficients (for moderate n the coefficients
are already large); The fourth experiment tests when singularities are just outside [—1, 1], how near can we get the
interval bounds near singularities before the error exceeds a fixed tolerance radius(like 0.01). We assume the fixed
radius as its original meaning because this is not clearly illustrated in the context of the article: once we assume
the tolerance is some multiple of €, when e sufficiently small the tolerated interval would be somehow fixed since the
error term is O(e) and the constants multiplied is determined by x (in the sense of ignoring the o(e) differences);
this problems remains even when we assume the error to be relative. The last experiment tests how two algorithms
perform when the integrated function has nearly real singularities on the imaginary axis.

We also note that the interval of integration may be set to R, since the error analysis only requires finding the

maximum value of an error function on the integration zone, which is accessible.

4.2 Comparison of Runtime

For Experiment 4.1.1 and 4.1.2, we select n from 40 logarithmically spaced values from 8 to 377, and we find
the following results:

(1)The runtime (when error analysis is open) of two algorithms are shown in the figures below.

We see that in the same size of denominator, the N-LRT Method behaves considerably poorer in Experiment
4.1.2. In Experiment 4.1.1, the performance in runtime of two algorithms are near, but in Experiment 4.1.2 N-PFD
is clearly the winner with a runtime nearly identical to Experiment 4.1.1. This means the coefficients of resultant
truly get considerably larger as the problem are perturbed a bit, and the N-LRT can be really slowed down in
experiments because of this.

Also we find that N-LRT has a more unpredictable efficiency in error analysis, because when we turn off the
error analysis the runtime of N-PFD don’t change apparently while for N-LRT it changed apparently in Experiment
4.1.1 (not in 4.1.2). Given that error is usually several magnitudes smaller than tolerance, when we turn off the
error analysis N-LRT can win in Experiment 4.1.1, which means there are certain problems for N-LRT to behave
better. But this also show that error analysis bring more and unpredictable influence in runtime in N-LRT.

And for Experiment 4.1.3 the N-PFD Algorithm completely win in speed, which is shown in the following table:

which means, considering the robustness of efficiency towards high-coefficient problems, N-PFD performs better

as well.
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Fig. 1: Different Performances of Different Algorithms (Left: fi, Right: fs; Red: N-PFD, Blue: N-LRT)

Runtimes | N-PFD | N-LRT
n==§ 0.01s 0.04s
n=13 0.02s 0.18s
n=21 0.04s 2.58

Tab. 1: Runtime For Two Algorithms in Different Cases

4.3 Comparison of Precision and Singularity-Stability

For problems free from singularities, we set the integrating interval as R and compute the forward and backward

errors. Take n = 128 as an example in Experiment 4.1.1°, as we reduce the tolerance we get the following results,

showing both algorithms perform strongly although N-LRT performs better in several magnitudes.

€ FE of N-LRT | BE of N-LRT | FE of N-PFD | BE of N-PFD
934 810716 1-1071 2.1071° 2.10712
275 3.107° 2.10753 1-107% 1-10738
289 1-1077 2.1077 9.107% 8.107%
o144 6-10"% 7.-107% 3.10777 2.1077

Tab. 2: Forward and Backward Errors For Two Algorithms in Experiment 4.1.1°, n = 128

As for singularity problems like Experiment 4.1.3 (when n = 8, a singularity at 10.949), we test the minimum

possible width of a symmetric interval around the singularity before the error exceeds the fixed tolerance. The

results in article is follows:

this shows that even though N-LRT performs better on € sufficiently small, the decreasing of width for N-LRT is

13
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¢ | FEW of N-LRT | BEW of N-LRT | FEW of N-PFD | BEW of N-PFD
234 4.1073 6-1072 1-1071 6-1077
275° 7-107% 9.107'2 8.107% 3.1071°
2789 4.107% 2.10716 2.107%8 1-1071
9144 2.107% 1-10717 3-107% 6-10716

Tab. 3: Widths For Acceptable Forward and Backward Errors For Two Algorithms in Experiment 4.1.3, n = 8

not as stable and predictable as N-PFD, and both algorithms perform well with only slight differences. Furthermore
in the case with a singularity the error difference is smaller. Also, the singularity-stability for both algorithms are
already enough: The tolerated width can be made sufficiently small as e decreases, and when really so close to the
singularity as the magnitude shown, the Padé approximation of Ei(z) is no longer a good one, threrfore this width
is not a true concern in application.

Therefore, although N-LRT may perform better in numerical precision of the result, no significant advantage
is exhibited towards N-PFD.

Two additional tests in Experiment 4.1.4 and 4.1.5 also show the excellent precision and singularity-stability
with little difference. With sufficiently small € in Experiment 4.1.4, the tolerated width is even smaller than 2e (e in
single side), which means even wih ¢t = € the definite integral on [1, 1] is able to be computed. Also in Experiment
4.1.5, with the same input tolerances (The fixed radius default, and the ¢ is 27°*(also a default value)), the forward
error bound of two algorithms are 1.9 - 10757 for ¢ = 0.1 and only increased to 1.7 - 107*% for ¢t = 107'%. And also

two algorithms behave in little difference in two examples on numerical precision and singular stability.

4.4 Conclusion

In general N-PFD has more efficient and more predictable behaviour than N-LRT and therefore better.
In particular problems where exact integrals are needed N-LRT may be suitable, but as for precision there is little

advantage for N-LRT compared with N-PFD.

5. Future Works

Although two algorithms are already well enough, there are still particular special problems to be solved. One
example is taking better identical residue detection, such as when the detection tolerance is € = ¢4, several choices

of coalescing occur in integration of
4

R

where coalescing all residues and two groups of residues give two different expressions that may behave differently
near singularities. So a proper method to decide the way of coalescing according to implementation may be developed

in future works.
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An Introduction to Fast Fourier Transform

Weitao Wang

Abstract

The report will introduce the concept of Discrete Fourier Transform (DFT) and several appli-
cations. Next, we will focus on Fast Fourier Transform (FFT), an efficicent algorithm to compute
DFT. We will give detailed description of the algorithm and analysis of its complexity. It will be
shown that the complexity to calculate the DFT of an N-array is N log N with this algorithm,
compared to N2 by direct calculation. Results of numerical experiment will be provided.

1 Introduction to DFT

As FFT is an algorithm to compute DFT, we introduce the concept, properties and applications of
DFT at first, so that we can learn the motivation to develop the algorithm.

1.1 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)is a discrete version of continuous Fourier Transform. Given the
function f defined on finite points: 0,1,2,..., N—1, the DFT of f is also a function on {0,1,2,..., N—1},

which is defined as:
N-1

FG) =D fR)w*

, wherew is the principal N th root of unity

w=en

We can observe that DFT is an approximation to continuous Fourier Transform to some extent,
actually, let g a complex-valued function defined on R and has support on [0, 1], and

f=9g on 0,1,2,..,N-—1

, then when N is large enough, we have:
~ 1 . .
fcontinuous (]) = / e_Qﬂ-UJJf(x) dzx
0

1 —omikj
~ NZNf le =~
k=0

1

= NfDFT(j)

Therefore it’s not hard to believe that the DFT and its calculation is of some significance in many
fields across science and engineering. For the discrete nature of computer, we have to use DFT when
we need numerical results of Fourier Transform.

1.2 Properties of DFT
1.2.1 Inverse Transform (IDFT)

2
L

Fn) = 5 O fRye

The proof is omitted.
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1.2.2 Parseval Theorem
N—1 1 N2
n=0 k=0
The proof is omitted.

1.3 Applications of DFT
1.3.1 Signal Processing

In the field of signal processing, though continuous signals are often studied, in the real world we often
deal with digital signals, which are naturally discrete. For Fourier Transform is often applied in signal
processing, DFT also plays an import role. Besides, DFT can be considered as a sampling of Discrete
Time Fourier Transform (DTFT), which is actually a continuous signal.Oppenheim et al., 1997

1.3.2 In Number Theory

Amazingly, DFT has an application in number theory. The discrete version of Fourier Inversion formula
is a key step in the proof of Dirichlet’s theorem Stein and Shakarchi, 2011, which states that if ¢ and
[ are positive integers wit no common factor, then the progression

lv l+q7 l+2q7»l+k%

contains infinite prime numbers.

2 Fast Fourier Transform

2.1 Description of the Algorithm

By taking advantage of the periodicity of {1,w,w?,...,wN~! we can get an algorithm to compute

DFT of f(x) defined on {0,1,2,..., N — 1} with complexity of N log N, compared with N2 by direct
calculation. Below we describe the algorithm.

As we showed before, DFT could be considered as an approximation to continuous Fourier Transform,
or a sampling of DTFT in signal processing. It is reasonable to argue that as long as we can get N large
enough, we can choose whatever form of N we like. It means, N could be chosen as a prime number, as
well as the form of »™. We will see that there is real gain to choose N as a highly composite number.
For simplicity, we suppose

N =riry

to describe the algorithm, where r1 and 7y is not required to be prime number. We will see that the
result and procedure where
N =rire..Tm

is intrinsically the same when we learn the case that N = ryrs.

Recalling the formula for DFT:
N-1

FGy="_ Fk)w*
As N = riry, we can re-index as follows
j:j1r1+j07 j0:051>"'arl_17 j1:051>"'ar2_1

k:k17'2+k0, ]{30:0,17"',7'2—17 k1:O71a"'aTl_1

Then, we can write:

FGY =2 Fllirs + ko)wi72wiko (1)

ko ki

since we have by periodicity of w:

wikire — yGotair)(kire) — jdokirz
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we can write 1 as:

f(]) = ijko Z f(kira + ko)wjoklrz (2)
ko k1

And in 2 the inner sum »_, f(kirs + ko)woF172 depends only on jo and kg. Therefore we can define
f1 as:

Filjosko) =D fkara + ko)wiokm 5
k1
Then we can write: ) | |
f(jl,jo) - Z fl (j07 ko)w]17‘1+]0k0 (4)
ko

We can see from 3 that it needs 72 operations (An operation means a complex multiplication followed
by a complex addition, so as the following.) to get fi(jo, ko). And after that, from 4 we can see that
it needs r; operations to compute f (j1,Jo). For there are N points in total where we need to compute
the value of f , this two-step algorithm described above needs

T =N(ri+12)

operations in total.
After learning the case when N = ryry, we consider the case that

N=rirg-- -1y
Expressing the indices as follows:
J=Jotarzrmt -t jm1Tm
kE=ko+kirmo-r14+-+kpn_1m

Thus we have

f(jovjla"' 7jm71) = ZZ Z f(k07k’1,"' ,km,l)wjk (5)
km—1

k[) k}l
And we can separate 5 into m inner sums, as in 2, thus giving an m step algorithm, each step needing
r; operations respectively. Therefore the m-step algorithm requires

T=N(ri+ro+-+7mn)

operations.

2.2 Analysis of Complexity

As be shown above, we have the theorem about operations needed by FFT algorithm to compute an
N-point DFT. That is,

Theorem 2.1. Suppose N = rirg---1p,, to compute the DFT of f, which is defined on {0,1,2,--- ,N—
1}, with FFT algorithm, requires
T:N(Tl +T2+"'+T77L)

operations.

With the theorem, we immediately have the corollary: Suppose N = r™ the operations required
T(r) is:
T(r)=Nlog, N

Proof. By the theorem above, in this case, the total number of operations is
T = Nmr

And obviously
m = log, N

Thus we have
T(r) =rNlog, N
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T
log,

2.00
1.88
2.00
2.15
2.31
2.49
2.67
2.82
0] 3.01

<

= © 00 3O Ui Wi

Table 1: r and E(r)

Sampling Rate (N) | Time of DFT | Time of FFT

2048 0.28 0.02
4096 1.63 0.05
8192 4.47 0.10
16384 22.23 0.30

Table 2: Comparison between direct computation and FFT

Corollary 2.2. Suppose N = r™, the complexity of FFT is O(N log N).
Proof. By 2.2, operations required is rN log,. N, hence we know the complexity is O(N log N) O

The case that N = r™ is important because such indices enable a simple realization of the algorithm.
Now we consider the efficiency with different choices of r.
To compare the efficiency of different choice of r, we define the quantity E:

Definition 2.3. ()
T
E(r)= ———
") = Niog, ¥
where T'(r) is normalized by Nlog, N, thus representing the operations required for the same
number of N.

By 2.2, we have:

rNlog, N
T(r)= ——— 6
(r) Nlog, N (6)
r
= 7
logy @

The value E(r) for different r is listed below: (figures from Cooley and Tukey, 1965) It can be seen
that among the integers, r = 3 is the most efficient. However, the gain is not significant (about 6%)
compared to r = 2 and r = 4, and r = 2 or r = 4 offers important advantages for computation
because of the binary arithmetic of computers. It is more efficient both in locating in the storage and
in multiplication. Besides, even choosing r = 10 increases the computation no more than 50%, hence
it’s not absolutely unacceptable.

2.3 Results of Numerical Experiments

With a python program, we compare the time consumption of direct computation of DFT and FFT.
To do this, we generate a simple 1-D signal and observe the time consumption to calculate its DFT
with both methods while changing the sample rate (which is the N we discussed before). The code
can be found in the appendix, whose functions are taken from Kong et al., 2020. And the results are
in Table 2.
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Appendix

The code for the numerical experiments is:

import matplotlib.pyplot
import numpy as np
import timeit

def DFT(x):

nun

Function to calculate

as plt

the

discrete Fourier Transform
of a 1D real-valued signal x

nun

N len(x)

n = np.arange (N)

k = n.reshape ((N, 1))
e =

X = np.dot(e, x)

return X

def FFT(x):

nun

np.exp(-2j * np.pi * k * n / N)

A recursive implementation of
the 1D Cooley-Tukey FFT, the
input should have a length of

power of 2.

nun

N = len(x)

return x
else:
X_even = FFT(x[::
X_odd = FFT(x[1::
factor = \
np.exp(-2j *

21)
21)

np.pi * np.arange(N) / N)

X = np.concatenate (
[X_even + factor[:int(N / 2)] * X_odd,
X_even + factor[int(N / 2):] * X_odd])

return X
def gen_sig(sr):

20

function to generate

a simple 1D signal with
different sampling rate

EEEIS]

ts = 1.0/sr
t = np.arange(0,1,ts)

freq = 1.

x = 3xnp.sin(2*np.pi*freq*t)

return x

# sampling rate
bei=2

sr = 2048xbei
print (sr)
array=gen_sig(sr)

print (timeit.timeit (’DFT(array)’,"from __main__ import DFT, array",number=1))

print(timeit.timeit (’FFT (array)’,"from

_main_

import FFT, array",number=1))

Listing 1: Code for Numerical Experiments
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Integral Transformation and its Applications in Signal
Processing

Siheng.Liang
2022.6.12

13pt

Abstract
This article is an introduction to the integral transformation in signal processing.Including
Discrete Fourier Transform(DFT),Fast Fourier Transform(FFT) and Hilbert Transform(HT).

1 Introduction

Begin with a real-valued continuous-time signal z(¢) ,in the mathematical sense we can use
continuous — time Fourier transform and convert it from the time domain to the frequency do-
main.And the signal defined in the frequency domain is complex symmetric. Thus, the negative
frequency half of the signal spectrum contains redundant information with respect to the positive
frequency half.So the analytic signal was created to remove this spectral redundacy by deleting the
negative frequency half of the signal transform.The analytic signal has been demonstrated have
lots of advantages compared with the original real-valued signal.So how to form analytic signal is

very important.

1.1 Basic Definition

Definition 1.1 (continous-time signal). We said z(t) a continous-time signal while x(¢) is a con-

tinuous function from R — R
Definition 1.2 (Sample rate). Suppose we want to collect samples from a continuous signal,we
choose an interval T" and sampling at time interval 7. Then we have a discrete-time signal z(nT") =

z(n) and we called 7 the sample rate.

- 270

Definition 1.3 (Phase Factor). We defined the phase factor as Wy = e~ % and Wk =e i35k
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1.2 Integral Transformation

Definition 1.4 (continuous — timeFouriertransform). Suppose z(t) is a continuous-time signal

and f is frequency,we define Fourier transform as following

+oo
X(f) = 1 a(t)e~ it dt (1.1)

Definition 1.5 (inverseFouriertransform). The inverse Fourier transform is defined as following

+oo
(1) 1/ X(f)eiftdf (1.2)

:% .

Definition 1.6 (discrete — timeFouriertransform). Suppose we have a N-point discrete-time signal
{z(n)},its DFT is defined as following

N-1
X(k) =Y zmWx",  k=01,--,N-1 (1.3)
n=0

Definition 1.7 (inversediscrete — timeFouriertransform). The inverse transform of DFT is defined

as following

N-1
1
3(n) = + S X)W,  n=0,1,-,N-1 (1.4)
k=0

Definition 1.8 (continuous — timeHilberttransform). Suppose z(t) is a continuous-time signal,its

Hilbert transform is defined as following

- oo a(r
z(t) = l/ Ld7‘ (1.5)

2 Algorithm Optimization

Let’s review the DFT algorithm,if we have a real-valued N-point discrete-time signal, We

assume that N = 2¥ without losing generality.So we have DFT algorithm as following.
N—1
X(k)= > z(mWx", k=01 N-1 (2.1)
n=0

From (2.1) We can see that if we want to get X(k),we need

N-1

X(k)y=> o (2.2)

n=0

[\
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N — 1 times addition,and
2(0)e  Fk 4 g (1)e W 4o f p(N — 1)e " FW-Dk (2.3)

N times multiplication,that’s mean if we want to get {X(k)}(k = 0 ~ N — 1),we need N? times
multiplication and N (/N —1) times addition,so if we compute the DFT directly, the time complexity
of the algorithm will be O(N?)

The algorithm with time complexity of O(N?) are not suitable for larger data sizes,so we need an

effective algorithm.We begin with the property of WX

Property 2.1 (Periodicity). Wn(N K = =Wy, Wy MN=n) =Wy"k

Proof.
W;(N‘k) — iR W=k _ —ifFaN ifEnk _ €7i27rnW1;nk _ Wﬁnk (2.4)
W]’:](N_") — efizﬁ"(an)k _ e*i%"'kNei%"'nk _ 67227rkW—nk: W—nk (25)
0

Corollary 2.1. Wik = W¥ where r satisfies r = (nk) mod N

Proof. Assume that nk = Nq + r(q € Z),we have

W;\} _ Wnk Nq _ WnkW];Nq Wnk 2miq __ W;\l,k (26)
O
N
Property 2.2 (Symmetry). W;\L[’H_ = —Wgk
Proof. W;M—% — e iRk iR Y — _em Wk — Yk O

Use these two properties,decompose the expression of DFT into two parts.

N-1
X(k)= > a(mW§" k=01,--,N-1

n=0
y1 J1

= x(2m)Wimk ¢ Z @2m+1)W (2m+1)
m=0

= x(2m)WN/2 + Wk Z z(2m + )WN/2
m=0 m=0

Define G(k) = Y220 2(2m) Wik and H(k) = X220 o(2m + 1)Wh,
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Property 2.3. G(k) and H(k) satisfies G(k + &) = G(k) and H(k+ §) = H(k)
Proof. G(k+ %) = 22;01 x(2m)W]TV(/k2+N/2) = 3;01 J:(Qm)W]Z’jQ =G(k) O

Similarly, it can be shown that H (k) is periodic,so we have

G(k)+ WEH(k), k< % 1
X(k) = N N N (2.7)
k—IN
G(k—g)—WN QH(k—g), k25

So if we obtained G(k) and H(k) for k € {0,1,- - § — 1},to get X(k),we need to compute
WEH(k),G(k) + WkH(k) and G(k) — WEH(k) for k € {0,1,-- & — 1}.S0 we need & times
multiplication and N times addition.

We defined &-points discrete-time signal fi(m) = z(2m) and fa(m) = z(2m + 1) for m €
{0,1,-, 5 — 1}, we have

J1

G(k) = Y fi(m)Wyyzkm (2:8)
m=0
X1

H(k) = Z f2(m)Wijokm (2.9)
m=0

So G(k) and H (k) for k € {0,1,-- & — 1} is the DFT of {f1(m)} and {f2(m)},s0 we can use same
method on {fi(m)} and {f2(m)} for m € {0,1,-- & —1}.As we assumed that N = 2*,this method

can be used for v times.
For v = 3,the process of the fast Fourier algorithm can be represented by the following butterfly

diagram.

X(0)
X(1)
X(Q2)
X@3)
X(4)

Consider the time complexity of FFT,dividing the algorithm into v steps,at each step we initially
have a sequence of length N,and we need N times additions and % times multiplications to
obtain a new sequence as the initial sequence for the next step.So the time complexity of FFT is

O(Nlogy N).
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3 Applications

3.1 Analytic Signal

Definition 3.1. Suppose we have a continuous-time real-valued signal z(t) and if a complex-
valued signal z(t) satisfy Re{z(t)} = z(t) and Z(f) = 0 when the frequency f < 0,we call z(t) is

continuous-time analytic signal corresponding to z(t)

Let z.(t) = Re{z(t)} and z(t) = Im{2(¢) },we introduce the orthogonality between the real and

imaginary components of the analytic signal.
Property 3.1. Suppose z.(t) = Re{z(t)} and z(t) = Im{z(t)},we have
“+o0
/ ()2 ()t = 0 (3.1)

To prove this property,we first introduce two approaches to creat analytic signal z(t).

3.1.1 Creat Analytic Signal from Time domain

Suppose z(t) is a continuous-time real-valued signal,we will prove that z(¢t) = z(t) + iz(t) is the

analytic signal corresponding to z(t).

Proof.

Lemma 3.1 (Dirichlet integral). f::; Sinift) dt = wsgn(f)

We just need to show for f < 0,[ _ 4oox(t)e "/t + iz(t)e=itdt = 0

F(z(t) = /+OO z(t)e 7t 4 i:v(At)e*iftdt

= /+OO x(t) cos(ft) — ix(t) sin(ft)dt + i /+Oo /+Oo geﬂﬁdet

= [ aweostsn —wsingrae s L[ [ D i
+o00 . oo 3

= | a(t)cos(ft) —ix(t) sin(fe)dt + / (1) G~y

=0

O

By this method we can also obtain that the Fourier transform of the imaginary part is a

conjugate odd function.
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Property 3.2. Suppose Z;(f) = F(iz(t)),we have

X(f), f>0
Zi(f) =40, f=0
_X(_f)7 f <0

3.1.2 Creat Analytic Signal from Frequency domain

Suppose X(f) defined over the frequency interval —oo < f < 400, then we defined

2X(f), f>0
Z(f) ={X(0), f=0
0, f<o0

Use inverse Fourier transform to obtained z(t),we prove z(t) is analytic signal.

Proof. We just need to show Re{z(¢)} = z(¢)

Re=(1)} = 5 (=(0) + (1)) = 5-

Notice that X (f) = X(—f) and -+ f:r;o X(f)etftdf = x(t),we completed the proof

Now,we prove the orthogonality between the real and imaginary components of the analytic

signal.

Proof. Notice that z.(t) = z(t) and 2 (t) = z(t) = L [*> 20 qr

—o0o t—T

[ +: )zt = & / o 2(t) [ :O f(T)

_ i/? %det

By symmetry,we obtained that [ [ %drdt =0.

3.2 Discrete-Time ” Analytic” Signal

Now,let’s consider the discrete-time situation,suppose we have a N-points discrete-time signal

+oo
/0 (X(f) + X(f))eildf

(3.2)

O

{z(n)} obtained by sampling a bandlimited real-valued continuous-time signal x(nT) = z(n)

at periodic time intervals of T seconds.There are two properties we wish to satisfy in order for

z(n) = z.(n) + iz;(n) to be an analytic-like discrete-time signal.
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Property 3.3. The real part of z(n) must exactly yield the original discrete-time sequence.
zr(n) =x(n) vne{0,1,-,N—1} (3.4)

Property 3.4. The real and imaginary components must be orthogonal over the finite interval.

i zr(n)zi(n) =0 (3.5)

Consider three cases of the analytic-like discrete-time signal that differ in their sample rates.Suppose
X(k) is the DFT of z(n)

3.2.1 Computing Standard Discrete-Time ” Analytic” Signal

We use same method as the continous-time situation.We defined

And we use inverse transform to obtain z(n).However,this method is not suitable for the discrete

case.Consider the data vector as following.
z(n) = [4,2,-2,-1,3,1,-3,1]
Use (3.6) we get z(n) as following.
2(n) = [3.875—0.3964, 2.125+3i, —2.125+1.811i, —0.875—2.2934, 2.875—1.104i, 1.125+3i, —3.125—0.311i, 1.125—3.7074]

We notice that the real part is not equal to the original data.The problem arises at the boundary

point.Processing the boundary points, we obtain the following correction formula.

X(0), k=0
QMM,lgkgg—l
Z(k) = (3.7)
x@), k=t
2 2
0, g+1§k§N—1

Now,we prove that (3.7) satisfy Property3.3 and 3.4

175



Proof. We prove Property3.3 at first.Notice that

N

2(n) = % S 20wy (3.8)
k=0
1 i . N
= N(X(O) + 2 2X (k)WRF + X(?) cos(nm)) (3.9)
And

N—-1
X(k) =Y a(n)Wx" (3.10)

n=0

We calculate the factor of each z(m),while m € {0,1,--, N — 1} let it be A"

|
(1+2 W]]f,(mfn) + cos(nm) cos(mm)) (3.11)
k=1

1

A7n —
" N

So if m = n,apparently that A7 = 1,and if m # n,let ¢ = W' ™",we have

1 — cos 1
AT = (1 — cos(mm) cos(nm))(1 + q) (3.12)
(1-q)
Notice that ¢ = %,We get that A™ + A™ = 0. So we get that Re(z(n)) = z(n)
Next we prove Property3.4.Notice that
1 ) 1 .
zi(n) = o-(2(n) — 2(n)) = ;(Z z(m)AJ") (3.13)
m#n
So we just need to prove that.
N—-1
x(n) Z x(m)A =0 (3.14)
n=0 m#n
Notice that A7" + A7, = 0.We completed the proof. O

3.2.2 Computing Decimated Discrete-Time ” Analytic” Signal

It is usually desirable in digital hardware implementations of digital signal processing operations to
use the lowest sample rate consistent with preservation of the signal information without aliasing.So
sometimes we need reduce sampling rate.The following equation shows that the %—points analytic

signal can be generated directly from the N-points analytic signal.

X(0) + X(%), k=0
Z(k) = (3.15)

N
2X(k), 1<k<5 -1
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Use inverse DFT and scale by factor % to obtain decimated discrete-time “analytic” signal z(n) of

half the original sample rate.

Proof. We proof that Re{z(n)} = z(2n)

2(n) = 55 D LKWy

Notice that

X(k) =) x(n)Wrk (3.16)

Use the same notation as in the previous section.

N_1

1 3 m—zn
A7 = (1 + cos(mm) +2 ST o) (3.17)
k=1

So if m = 2n,we have A2" = 1 and if m # 2n,we have A™ + A™ = 0.The orthogonality can be

proved in a similar way to the previous section.So we complete the proof. O

3.2.3 Computing Interpolated Sample Rate Discrete-Time ” Analytic” Signal

In some cases we need a more accurate reconstruction of the signal, so encrypted sampling is

performed.

N
X(k), OSkS;—l
1, N N
X -
2 (2)’ K 2

N N
Y(k) =40, 5 H1<kE<NM - —1 (3.18)
fX(E), k:NM—ﬁ
2 2

N

X(k), NM—?+1§k§NM—1

Compute the NM-points inverse DF'T and scale by M,we obtained NM-points discrete-time signal
y(n).We prove that.
m(ﬁ), n=pM pe{0,1,--,N—1}
— M 3.19
y(n) = (3.19)

0, else
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Proof. We assume that n = pM then we have

N-1
1 . 1, N, a1 N p(NM-Y) —n(k+NM—N
y(n) =M 52 (3~ XWREF + 5X(G)Wah + X)Wy 4 D X)Wyl )
k=0 k=& +1
| Nl 5-1 N-1
k(m— k(m—
=5 (X em)(Y] W™ 4 cos(mm) cos(pm) + Y W)
m=0 k=0 k=5 +1
Use same method as (3.11) we have y(pM) = z(p),and for n # pM we have y(n) =0 O

We called y(n) a trigonometrically interpolated discrete-time signal from z(n). The following

algorithm tell us how to form the analytic-like signal of y(n) by N-points discrete-time signal x(n).

X(0), k=0
2X (), 1§k§g—1
7(k) = NN (3.20)
(5)7 - 5
0, gnngngMfl

Use same method as 3.2.1 and 3.2.2,we can easily verify that it satisfies the properties 3.3 and 3.4.
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Interpolation and Corona Problem

Liu Yao, Li Xiaoran

June 2022

1 Introduction

Let B denote the Banach algebra of bounded analytic functions in |z| < 1 under the maximal norm.
(We'll prove B is a Banach algebra in section 2)

For f1,..., fn € B, consider I = I(f1,..., fn) the ideal generated by f1, ..., fu.

If I = B, then there exist g1, ..., g, € B such that

Jigr + fag2 + o+ fagn =1
1
|f1( )| |f ( )| maxlgigani”

Corona Problem says if f1, ..., f, satisfies
[fil + -+ [ fal 26 >0

then I = B.
This is the main motivation of this paper. We’ll prove it in section 9.
The relationships between section 2 to section 9 are as follows:

Section 7 Section 6
|
Section 2 \ Section 8
T l
Section 3 Section 4 Proposition 4.1 Section 4 Proposition 4.2
|
Section 4 Theorem 4.1
|
Section 5 Section 9

Section 4 Theorem 4.1 and section 5 study the secondary motivation: interpolation.
Interpolation studies what conditions on ay, az, ... € {z: |z] < 1} and wy, ws, ... € C does there
exist f € B such that
fla,) =w,, v=12 ..

We will use the notation Aj, As, ... for numerical constants.
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2 Hardy Space

Definition 2.1 (Hardy Space). Denote H? (1 < p < 4+00) the norm space of functions G analytic

in |z| < 1 under the norm
1 " 0\ |p %
Gl = lim (27r /_7r G (re”)] d9> (2.1)

The lemma below shows that the limit in (2.1) exists, maybe infinity.

Lemma 2.1. For every analytic function f on |z| <1, (5= fo% |f(7"ei9)|p)% grows when r grows
O<r<1).

Proof. For 0 <r < R< 1,

e = o [ e R a0

:% %f(Rew)l—zgcib_(gﬁ(g);) e
e < [ g B it as

< (/OZW % - QT;S(;E);) e |f(RePdg)

= (- / T <Re1¢|pd¢>%

2 0

Theorem 2.1. H? is a Banach Space

Proof. We only prove the completeness.
Let G1,Gs, ..., Gy, ... be a Cauchy sequence in HP.
V0 < r <1, choose R such that r < R < 1.
Ve € R, choose N such that Vn >m > N, |G, —Gnllp <e. ThenVz e D, ={a e C:|z| <r},

1 Gn(§) — Gm(8)
Gn(z) — Gp(2)] = —/ ——=d
Gn(2) = G = g7 | T
R [?™ |G, (Re") — Gm(Rew R 1 " 0
< — i i
< 277/ R — 2| 7"/0 o n(Re") — G, (Re™)|dO
R S " 1 R
< — Y|P r <
<G 5 IGH R =GR PN < G = Gl
< R
h R—re
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So G, uniformly converges on D,. as n — oo. Since r is arbitrary, we conclude that G,, uniformly

converges to G on any compact subset of |z| < 1 where G analytic on |z| < 1.
For 0 < r < 1, since G,, converges uniformly to G in D, as n — oo,

1/ i0\p i/ﬂ 0\
5 _W\Gn(re )| d9—>27T _W\G(re )|Pdo (n — o)

i " i0y|p T i " i0y|p g
= <2W /4 G(re®)| de) = lim_ (% /ﬂr\Gn(re )[Pdo

< 1
< nglfoo 1Gllp (by Lemma 2.1)

= G € HP

And it’s easy to prove
[|Gr, — Gllp = 0, n — +00

O

In the case p = 400 , H* consists of all bounded analytic functions in |z| < 1, with norm
[Iflloo = sup{|f(2)|, |2| < 1}. Denote B = H*°. In the remaining contexts, || - || refers to || - ||oo

Proposition 2.1. 1 <p < ¢ < +oo, if f € HY, then f € H? and ||f|l, <||fllq
Proof. For any 0 < r < 1,

1 2 0 (p 1 i 27 0\ 1q N
<—/O |F(rei®)PdB)t < ( / F(rei®)|1do)

2 2T

= |I£1lp < If1lq

Now enumerate some properties of Hardy space in [2] p.96-p.100 without proofs:

Proposition 2.2. Let f € HP, 1 < p < +oo and denote its zeros in |z| < 1 by (1, (o, ...

multiplicity. Then Y (1 —|(;]) < +o0
Proposition 2.3. Let f € HP, 1 < p < 400, then Elfe LP[0,27] such that
fre®y = f(0), ae and L', asr—1-
and ||fllp = (35 Jo " 1F(®)[rde)"/»

Denote f(e') = f(6). Moreover,

. 1 [ 1— 72 .
0y _ i
106 = 5 | g €. web. deR

Proposition 2.4. p > 1, f is a LP function on the unit circle. Then 3g € HP such that g(e

F(e) if and only if [ f(e?)e™"?d0 = 0 for all n > 0.

with

w) —
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3 A Useful Theorem

Theorem 3.1. Let 0, be a sequence of open subintervals of (0,1). Denote by ol, the interval
obtained from o, by adjoining to o, equally long intervals on both sides, and let the length of o, be

l,. Then the conditions
> L (3.1)
0;Co},

for all i and a fizxed constant C > 2, imply
o) 1 1
SN[ f@an<ac [ i (32)
v=1 Y ov

for all square integrable function f.

Proof. We first reduce the theorem to the case that all o, have the form (2%, %), where k,n € Z*.
As we know, every o, is included in the union of at most four equally long intervals of the form

(£, EEL), where 5 < . We can get it by this. First, o, C (0,1), then divide [0,1] through
the half to [0, ], (3, 1]. Second, divide the interval which intersect o,. Continue until one interval
[£ kL] € 5,. Let w; be the intervals obtained as above and let m; be the length of w;. (3.1)

2n 2n
imply that
l; Cl;
domi= ) m< Yy o5 < <20m =cmy (3.3)
w; Cw; ojCa; ajCog
ko k+1

so it is sufficient to prove it by assume o, = [57, 55 ].
Let X, (x) be the characteristic function of w, and introduce the kernel

K(lL‘, y) = Z Xu(x)Xu(y)/mu

oo

S L[ s = [ e [ K nswa

v=0 v

< lf(m)2dx% 1d:v( 1K(»M/)f(y)dz,/)2
{/0 0 0

We write m;; = m(w; Nw,), and

where ; = <~ [ f(x)dz. If we can prove F < AC' Y ;7 | 27, then

NGz
iniy( | @)y’ < {/01 f(m)zdm}é ACixf — AC {/01 f(:c)%m}é {2 ;(/w f(ﬂc)dx)2};

To discussion F. First, we pay attention to a fact that w; C w; or w; C w; or w; Nw; = . Denote
G ={i:w;}. Let G1 be set of i where w; is not contained in any larger interval w;. Let G2 be the
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set of all i € G — G where w; is not contained in any larger interval w;. Denote G3 the same, so
as G. Denote i € Gy,let G, be the set of j where w; C w; and j € Gpqp, v =0,1,....

For i € G,denote a, = ZjeGiV m;,and we have

We claim that under the condition (3.5) and (3.6), we have
1
an <4(1—=)"ap
c

We can assume ag = 1.Let N > ¢ Take {b,},by = 1;b,, = 0 when n > N, and satisfy
Zbl,:cbn, n<N-—-c¢

we have b, = (1 — 1)". Hence,

aN—c < bN_c = (1 - %)N_c
which is our assertion.
%
szzZFxJ+Z$JZZ\/—IZ
v=0jeG;, m] v=0ieG;,
SRS WP I,
=1 i v=0;€G;,
Wedeﬁnek>0byk2:1—%
=1
2 > Y v
i=1 mi v=0j5€G;,
(oo} 1 [ee] oo
S D SISO DN T
i=1 " " v=0 e v=0
I S 1 <, .,
SR R X mi o
=1 v=0 Jj€G J€G
ST DD R Y A= D Y K D 4
p=1ieG, v=0 JEG v=0v=0 JEG4v
4 oo o . 4 oo
Sﬂszzk (1,/{;)22%2
7j=1 v=0 i=1
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Theorem 3.2. Let u(z) be a non-negative measure in |z| < 1 and assume that
u(S) < Cl (3.7
holds for all sets S of the form
S={re® :r>1-1,00<0<6,+1}, 1<1 (3.8)

Then there is an absolute constant Aig so that
[ 16GIrane) < awclol; (39)
D

for all G € HP p > 1.Conversely, if (3.9) holds for a certain constant C , u(S) satisfies (3.7) with
C independent of S.

Proof. Let us first assume (3.9) holds for some constant C' and consider S as (3.8).

Let
1
1—la] \?
Glz) = [~
9= (=)
where a = (1 —[)e®® () then

Gl = /% il Chul) N Y il —1
6“91 l)P 21 Jo 1 —=2(1—1)cosf+(1—1)2

1—(1-1)2 20— 12 20—-12 _ 1

G(z)lF = > > =
Q) T—zaP |5 -20-D2° 2 ~ 2

By (3.9), u(S) < 2C1.
Now we prove the converse. Denote

—1-n _n V 2w (1/-|—1) Y
TVn:{ZZQ 1 <1_‘Z|S2 ,Wgargz<2n+1} (310)
wheren:(),l,-..;vfovl’ Jon+l
vl
Let zp, = (1 — 27 n)€2n+12 ,and w,,, be the range of arg z for z in r,,,where n = 0,1,--- ;v =

0,1,---,27 — 1. We first assume G # 0, since otherwise by Proposition 2.2 and [1] Chapter 5
Problem 2, assume A is the Blaschke product constructed by the zeros of GG, and replace G by % ,
the left side of (3.9) increases because A(z) < 1, but the norm of G doesn’t change.

If we replace G by G , we change the situation to p = 2 . It’s sufficient to prove there exists
a absolute constant A; such that for any harmonic function u with boundary value f € L%(0,27),

we have
27

/ u(z)?du(z) < A,C f(0)%ad0 (3.11)
D

0
because, assume (3.11),for VG € HP,G = u + iv , where u, v are hormonic functions, and

LJ&@MMM=AJ()MHMNdM)<&C/ 2+ [o(2) Pduz) — G2

T
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Back to the proof, we have

JRCRICED S IO e, (3.12)

n€Z,0<y<2n+1i_1

where z,,, is the max point of u in 7,,, and 1 — 27" < |z| < 1 — 27" For 2,,, we denote w?
be the arc w;j, j < n which arg(z,,) belongs,and denote wjl- = arc wit1;, wj_l
Proposition 2.3

1 [ 1—r? < 1—r2
u(zn)” = (ﬂ /0 14172 —2rcos(f — qb)f((b)d(b)Q = (ZO 27 /wf’ 14172 —2rcos(d — ¢)f(¢)d¢)2

Jj=

= arc wW;—1,;- By

Where z = re?. The k; € {—1,0,1} is chosen so that w’.C is disjoint with wjfll. When on

|q5 0| € 5551y 3),J <n, when j = n,[¢ — 0] can be zero. We have

Zun

1 1—r?
o /wfa (r—1)2+2r(1 —cos(6 — ¢) 1(#)dd)”

’I’L

<.
I
=)

D
gil (r—1)2 jgém(;%yfwmm2
Z_J;ﬂ Lo it g @F (<20
Z_;;ﬂ/w T 1_zr(2j11)2f(¢)d¢)2
Z% /w —i 22_7:11);22}% F(@)d)?
[

tvj:
3|~

92j—n— 1f ) ¢)2 SZ]ﬁ%QBj—Qn(/k]‘ f(¢)d¢)2221
j—o v j=0

J

<.
I
o

n

= A ) 297 / . F(6)de)* < As Z 223” " / F(#)dg)?

j=0 “j k=—1j=0 wj
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with (3.12), we get

JRCZICEID SR e, (313)

neZ,0<v<2ntl_1

<4 Y a2 Y 223”“/ F(6)do)? (3.14)

neZ,0<v<2nt+tl_1 k=—1j=0
oo 29t 1 2j
— 4’3 3 ¢ / F(@)d6)* 3 2" (rn) (3.15)
= n=j

= Az Z i ( 2J+1/ f(¢)dp)? (3.16)
j=0 =0

where v is that argzyn € Wi—1,5 me Uwi+1 E We denote /\ij = En}j 2j_nu(TV7l).
For every k,m, let S,,, = {rew O R S 7L, B g P VH)'QW}

2n7 2'n+1 2n+l
SooXi= > o) > 277 = > 2" u(S,) (3.17)
wij CWikm Tun CWkm j<n SunCWim
< D) amTre2Th Sy 2T < A C2T (3.18)
Sun CWikm nzm

Now given f, we modify A;;. If A;; > 5 we do not change A;;. If Aip < 3 , we add Aj1 to Ag; 0 or
A2i+1,2 and replace A;; by zero. This can be done so the right hand 51de of (3.16) increase, since
the corresponding two integrals for j = 2 have the integral for j = 1 as their mean-value. We do
this for all \;; and obtain coeflicients Ag;). We now treat /\g) in the same manner adding /\g) to a
suitable )\;13) if )\g) < 272, Continuing in this way obtain coefficients Aj; which satisfy (3.17) with
A5C replace by (As + 2). (3.17) imply that

A

27m < Jim o (A5 4+ 2)C27™ 3.19

- 27 < 271'( +2) ( )
(3.17) imply that
) Py
-i < @ < —-m
d o2i< 5o < (A5 +2)C2
WZjCka W;jcwknl

where w; denote the w;; where Aj; # 0. By Theorem3.1.

3 27
Z Z 2j( ) f(¢)d(b)2 ;A(AS‘FQ)C 0 f( )
j=1 o<i<2i+1_1; w
ij#o
8
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(3.19) imply that

Y Y 2 / (@)

J=0 o0<i<2i+1_1;

Xp;#0
1 2m
<—AfA(As +2)C f(z)?dx
2 0
O
4 0-1 interpolations
Theorem 4.1. b,,c, € C mutually different, |by| < 1,|c| < 1, v = 1,2,... > (1 =1b,) <
v=1
+o00, > (1 —¢)) < 400, B(z) = fil;z ‘Z”‘, Cz) =[] %l?l ([1] p.157 Problem2 shows
v=1 v=1 vz v v=1 Y Y
that B(z) is holomorphic in |z| < 1 with zeros exactly at b, , and similar for C(z))
Then 3f € B such that
f(bu) =0, f(cu) =1 v=12.. (41)
if and only if 36 > 0 such that
|B(z)|+ |C(2)| =29, V|z| <1 (4.2)

If (4.2) holds, (4.1) can be solved with ||f|| < ~41,6 < 1/2
Proof. Assume f € B satisfies (4.1), then

f=Bg, [f=1=hC, |lgll=Ilfll, [nll=If-U<I|fI+1
= Bg—Ch=1
= 1< [lgll[B()| + [[RI[IC(2)] < (IF1l + D(IB(2)] + [C(2)])
= [B(2)| +1C()| = (Il + 1)~

For the converse, we need two propositions:
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Proposition 4.1. ay,...,as,w1,....,ws € C, |a,| < L,v =1,2,...,8, a1,...,as mutually different,

S
- ay—z |ay]
A(z) = EEa then
v=

1.

inf{|fll, f€B, fla,)=w,, v=1,2,.. s}—sup{IZ a”w”|,GeH1,||G|\1=1}

(4.3)
2. 3fo € B such that fo(a,) =w,, v=1,2,....5, and

||f0||:1nf{‘|f||v f€B7 f(au):wua V:1727'-~75}

Proposition 4.2 (Carleson’s lemma). ay, ..., as € C mutually different, |a,| < 1, v =1,...;s, A(z) =

S

Gp—z |“”| 0<e<1/4,0 <k < A1g (A14 is an absolute constant less than 1/8 we’ll determine

1-a,z a,
v=

later)

Then there exist a finite number of disjoint regions Qu, ..., Qp, in |z| < 1 with rectifiable boundaries
['=U_,0Q; satisfies

1. ay,...,a, €U§:1QJ
2.Vz €T, e <|A(2) < "

3. Let j1 be the measure on |z| < 1 defined by u(E) = arc length of ENT (E is a Borel subset
of {z,]z] <1}) ,then ¥Vl € (0,1], 6y € R,

p({re® | 1—1<r <1, 00 <0< +1}) < Ase?l (4.4)

Now assume (4.2) holds with § < 1/2
for s € N | define

S

B = [ =0 H o]

l/ - cl/Z Cy
v=1 v=1

Choose € € (0,1/4], x € (0, A14) so that €* = §/2 and let I" be the curves in Proposition4.2 with
respect to ci, ..., cs, €, K , then for z € UQ;,

e < |Cs(2)| < sup{|Cs(2)],z €T} <" < (4.5)

| >,

= |By(2)| 20— |Cs(2) = 2 > 0 (4.6)

For G € H!

L[ Gk v Gl _§ Glev)
27”/ Bs(z)C's(z)d E_:BS(CV)O;(CV) Z i(BS(Z)CS(Z))‘ZZCV

10
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By Propositiond.1, suppose fs in B such that fs(b,) =0, fs(c,) =1, v =1,2,...,s, and
[fsll = inf{IIfIl, f(by) =0,f(cr) =1, v=1,2,.... s}

) _
—swﬂ;;iBJd S @ Hleh =1

= sup{|— G(z) z =
~ sl [ Fierdsh G e el =1)
o

égY%”gﬂwﬂ/W@mmLGeHmwm=l}Uw@@&um
< (g) Lt A16A156 2||G|l1  (by Proposition4.2 3, Theorem3.2)

_ A15A16(§>_1_3/5
27 2

Notice that f, is independent of the choice of € and &, so let kK = A14/2, € = (5/2)"‘_1

A15A16 o

Ifll < 22280 2

) 1—6/A14 < 6—1411

By [1]p.225 Theorem 3.3 and Arzela-Ascoli theorem, a subsequence of {fs}7> convergent to
£ € By then [[f]] <674, f(0,) = lim filb) =0, fle,) = lim_fu(c) =1 o
S——+00 S—+00

Proof of Proposition 4.1. For f € B satisfying f(a,) =w,, v=1,2,...,s and G € H',||G||, = 1,

2m
Hmznﬁh:l/ m@%mimo

0
27T 10

e 2
| G ingy)

)
_ L ()(Z)
27TZ/|1 () l

‘Z f(au ‘Z al/ wu

A'(ay)

~inf{|fll, f€B, flay) =w,, v=1,2,...,s} > sup{| 32°_, Gg?(gww GeHY |G| =1}

For the remaining proof, we need two lemmas:

Lemma 4.1. 1 < g < 400, g, € HY, n=1,2,... . If g, converges uniformly to f on any compact
subset of |z| < 1, then ||f]l, < liminf ||g,]|lq
n—o0

Proof. For any 0 < r < 1, because g,, converges uniformly to f on |z| = r,

1 2w X 1 27 .
(5= | \atreiran) /e = timint(o [ lanre)[70)! /7 < il

n—oo

= |[fllg < Timinf [|g,[[,

11
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Lemma 4.2. 1 < ¢ < 400, g, € H?, |lgnllq < M, n = 1,2,... . Then there exists a sequence

of positive integers {ny} such that g, converges uniformly to a holomorphic function f on any
compact subset of |z| < 1

Proof. For any 0 < r < 1, by Proposition 2.3

Ry S e E———
In 21 )y 1472 —2rcos( — qb)gn

i0 I i¢
= 19a(re) < 5 | e lon(@)1do
0 r

27 14+1r2—
L+r 1 [ 147 1+
< - i¢y|1ayl/q — < M
e [ o = gl < 1
i0 L+r
= supllga(2)], [2] < r} = supllga(re)], 0 € R} < 1M

Therefore {g,,} uniformly bounded on |z| < r.
By [1] p.225 Theorem 3.3 and Arzela-Ascoli Theorem, there exists a subsequence of {g,} con-
verging uniformly on any compact subset of |z| < 1 to a holomorphic function f. O

For 1 < ¢ < 400, denote my, = inf{||fllq, f € H, fla,) =w,, v=1,2,...,s}
Choose g1, g2, ... € H? such that g,(a,) = w,, v =1,2,...,s, n = 1,2,... and ||g,||, decreases
and tends to m, as n tends to infinity.

By Lemma 4.2, we can assume g, = f,; on any compact subset of |z| < 1. Then f;(a,) =
w,, v=1,2,...,s, and by Lemma 4.1,

||fq||q <mq :an{”fl'(b fEHq7 f(a’l/) :wl/a V:172a"'78}

= [|fgll =mq
Now let 3 < ¢ < +oo.

For n,¢ € R, g € H?, f(z) = f,(2) + ne'?A(2)g(z) satisfies f € H? and f(au) = w, V=
1,2, ..., s. Therefore

1 falla < [1fq +ne® Agll, (4.7)

| £4(e) +ne'® A(e™)g(e™)|9 = ((f; +ne'® Ag)(f, + ne™'*Ag))e/?
= (|fo* + n(fsAge ™™ + f,Age™®) + n?|g|*) "/
_ dfg +ne®Agl” _q
dn 2

By mean value theorem,

|fq + e Ag|12 (f,Age ™ + f,Age’ + 2n|g|®)

dl| f4 + ne'® Ag||
dn

i f\z\zl(‘fq + ﬁ€i¢A9|q - |fq|q)d0
B 771310 27

n=0

= lim 4

@ Agl92(f, Age " + F. Age'® + 2en|g|?)do
Loy . 47r|fq+6ne 91T (feAge™? + f,Age’® + 2en]g|”)

12
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where € € (0, 1) relevant to n and 6.

|fq + ene’® Ag|972| fyAge™ ' + f,Age’® + 2en]g|?|
< (Ifql +nlgh) =221 fql 9] + 2nlg]?)
<2772(| £l + 072191 2) ( fql 19l + mlgl?)
2972 (| ol gl + 17 Mgl 4+ nl £l 72 gl* + 172 fol 19177
(g —D[fq|? + [g]? N n(q —2)|fq|? +2|g|? 42 |fgl? + (g —1)|g|? L piLgl)
q q q
< O fg]" + 19]?)

where C' is independent of 7.
The boundary function of f, and g is L9, so by bounded convergence theorem,

<2973

d + el? Ag||4 ) _ ) _ .
MatnZA0E i [ g, ene g2, e + T, Age'® + 2enlgl?)a0
n o 0= Am
"’]_
q - Arpo—id | F i
= [ i Age 4 T, Age )
jz=1 47
By (4.7),

|fal2(f;Age " + f,Age’?)df =0, Vo eR
|21=1

Let ¢ =0, 5, we get

B+ 7, Ag)0 = 0 (45)
/|z|1 o7 2(—if, A + iF, Ag)d0 = 0
* | fol*™2(=f4Ag + [, Ag)d8 = 0 (4.9)
Add up (4.8) and (4.9),
/||1 7T, Agdo =0, Vg e H
Let g(z) = 2™, n=0,1, ...,
/0277 Fa(@)]42F, () A(?)e™0d8 = 0, n=0,1,..

Notice that |f,(e”)[72f, (") A(e??)e~ is L' on 6 € [0,27]. By Proposition 2.4, There is a
function F; € H* such that F; =m} =927 f,[772f A on |z| = 1. We have

1 1

2w " 27 " g1
1Bl = 5 [ mi ol as < ml - [ 15000 T = ml g <

13
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1 27 ) 1 27 10 (10 i6
mg = ml*q*/ | fa(e'”)|%d0 = —/ CEDIET)
0 0

4 2 2m A(e?)
s (4.10)
_ L Fq(z)fq(z)dzz Fy(a,)w,
2mi |z|=1 A(Z) =1 A/(au)
By Proposition 2.1, for any 1 < g1 < g2 < 400,
Mgy = |[feallaz 2 I faxllgr = Mgy

= lim m, exists and my > lim m,
q—+o0 q——+0o0

By Proposition 2.1,
fallr < N fallg = mg <Moo, V3 < g <400

By Lemma 4.2, there exists an increasing sequence {qx} of positive real numbers greater than 3
such that g tends to infinity and f,, converges uniformly to fy on any compact subset of |z| < 1.
Then fy(a,) =w,, v=1,2,..;s

By Lemma 4.1,
I[follp < hm [ farllp < kETOOHf%qu = kglfoomqk = Einoomq V1< p<+oo
= Moo < HfOHoo: hm ||f0||p hlfoomqgmoo
= |lfoll =moo = lim mq (4.11)
Notice that ||Fy,|l1 < 1,k =1,2,..., by Lemma 4.2, we can assume Fy, converges uniformly to

Fy on any compact subset of |z] < 1. By Lemma 4.1, ||Fp||; < 1
Replace ¢ in (4.10) with g and let k tends to infinity, and by (4.11), we get

: FO(aV)wV

Moo = S
v=1 A(au)
= Il S € B, fla) = v =120
FO(au wl/ a,j ’U)l, 1
ST A p{|z A(ayy 1 GG =1}
an{||f||7 fEBa f(au) = Wy, v=1 .. S}—Sup{|zy 1 Gxga(”a)zl;”L G6H17||GH1 — 1}

And fj satisfies
folay) =w,, v=1,2,...;s

Lfoll = moe = inf{IlfIl, f € B, flay) =wy, v=1.2,....s}

14
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5 A General Interpolation Theorem

Theorem 5.1. Let {z,}7° be a sequence of mutually different complex numbers in |z| < 1 such that

I1

veN, v#pu

2y — 2y

——| 241 >0, =1,2,.. 5.1
T 1 H (5.1)

Then for any sequence {w,} of complex numbers in |z| < 1, there is a function f € B such that
f(zu) = Wy
Remark 5.1. (5.1) implies Y (1 — |z,]) < +o0
v=0

Remark 5.2. [3] proved that for any bounded complex number sequence {w,}, there is a function
f € B such that f(z,) = w, if and only if (5.1) holds.

Denote p(z,w) = |F%| (]z| <1, |w| < 1)

1—zw

Lemma 5.1. (/1] p.251 Exercise 13) If f is an automorphism of {z, |z| < 1}, then p(f(z), f(w)) =
p(z,w) for all |z] <1, Jw| < 1

Lemma 5.2. For |z, 22|, |w| < 1,

[p(z1,0) = plz2,w)|
1= p(z1,w) p(z2,w)

,0(2’1,10) + p(zz,w)
1- p(zlv w) p(z% w)

N

p(z1,22) <

Proof. By Lemma 5.1, we can assume w = 0. It’s sufficient to prove that

2] = o] 2] + Juw]

< plz,w) < )
1— 2| [w|

LA V|2l <1, Jw] < 1
1= [2] |wl

Denote C(zp,7) ={2€C, |z — 20| =7}, 20€C, reRy
Fix w and |z| = r < 1. Let z range on C(z¢, r). Write p(z, w) in a form of Mobiiis transformation:

p(z,w) =

1
z—w‘:w w 1‘

1—zw l—zw w

z € C(z0,7) = 1 — 2w € C(1,r|w])

N 1 cC 1( 1 n 1 ) 1( 1 1 )
1— 2w 21 —rlw]  14+rw]” 2 1 —rjw] 1+ r|w|

(1l
1—7r2w?’ 1 —r?|w|?
1w 1 1— |w? 1 1 1—|w? 7w
= ——-=cC — e
l—zw w wo 1-rw|? w  |w| 1-r2|w}?

_c ( (r’ = Dw[* r(— |w|2)>

w(l —r2wl?)’” 1 —r2|w|?

15



(2 = D0wf* | (1 [w]’)
= > —
Gl 2 | S =) | ~ 1= el
e L
I T E IR T R T
(2 =Dl | 0= [wP) _ |2 +]ul

lp(z,w)| <

w1 —r2w?)| 1w 1 2] [w]
O

Proof of Theorem 5.1. Consider an arbitrary decomposition of {z,, v = 1,2,..., s} into disjoint sets

Ip and I¢. Let
2y — 2 2y — %
B(z) = || = Il
(2) 1-2z,2 ¢(z) 1-2z2

z,€1B zv€lc
Denote 5
D,={z€C, |z2| <1, p(z,2)< gl}, vr=1,2,...,s
Vg ={z€C, |z|<1}\< U DV)
zy,€IlB

ch{ze(c,z|<1}\< U D,,)

zv€lc

(5.1) implies that

5 <1, p(zv,2,) 2 01, Yv#p (5.2)
Suppose 3v # p such that D, N D, # 0, choose z € D, N D,,, then
(2,2)) < — @z)<ﬁ
P2, 2y 37 P 25 2p 3
By Lemma 5.2,
I I
z2,2y) + p(zu, 2 3+ 3
p(Z;uZu)g p( ) p(# ) < 3 1 31:751<61
L—p(z,20) p(2p,2) ~ 1—3 %3
contradiction to (5.2).
Therefore D, are mutually disjoint, hence
VeUVe = {Z e C, |Z‘ < 1} (5.3)
By definition of Vg, B(z) has no zeros in Vg. So
min |B(z)| = min |B(z)] (5.4)

z€Vp 2€0Vp

Since

dVp ={z€C, |z|1}u< U {z € C, |z<17p(zvzy)51}>

zv€lp

16



Now calculate |B(z)| on each item above. First, |[B(z)| = 1 if |z] = 1. Now suppose p(z,z,) =

%1, z, € Ip. By Lemma 5.2 and (5.2), for any u # v,

p(zv, 2u) — P2y, 2)
L= p(zvs 24) p(20:2)
_ (1 = p(zv, Z#)) (p(zl,, zu) = p(2v, 2) (1 + plz, 24) + p(20, Zu)z))

p(2,2u) 2

+ p Zl/7z 2
Ry ERER ) ()
1- V) v — 4. 3
S ( Pz z#)) (p(z 2u) — 3 ) +,0(Z,,,Z,,)2
1= p(zv, 24) p(20, 2)
> p(zuvzu)Q
S BE =p52) I oo
ZHEIB,M#V
(5 53
IHPZZH szuyzu /El
I u;ﬁu
By (5.4),
53

|B(2)| = 31 Vz€eVp (5.5)

Same for C(z), we have
53

c@Iz % view (5.6

By (5.3), (5.5), (5.6),
53
IBEI+1CE 25, VIal<1 (5.7)

and define ug = 0. By

Now, let w, = u, + iv,. We arrange {z,}§ so that u; < us < ... < us
=1,1<i<vy, f(u) =

Theorem 4.1 and (5.7), choose f, € B, v = 1,..., s such that f,,(zl)
3
0,v <i<sand||fu]l < ( )~411, Then

S

9(z) = Z(UV —uy—1)fu(2)

v=1

satisfies g(z,) =u,, v =1,2,...;s , and

53 N
lgll < Z\uu w1l < (5~ <|u1|+Z uu1><8<§> A

Similarly, there exists h € B such that h(z,) =v,, v =1,2,...,s and ||h]| < ( ) An
Then g + ih satisfies g(z,) +ih(z,) = w,, v =1,2,...,s and ||9 +ih|| < ( ) A Let s — 0o
and choose a convergent sequence. O
17
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6 Construction of I

In section 6,7 and 8, our aim is to prove Proposition 4.2 rewritten below:
Ay —2Z |au|

1-a,z a, ’
v=1

0<e<1/4, 0 <k < Ayy (Ay4 is an absolute constant less than 1/8 we’ll determine later)
Then there exist a finite number of disjoint regions 4, ..., €2, in |z| < 1 with rectifiable bound-
aries I' = UY_,0Q); satisfies

Proposition 4.2 ay,...,a; € C mutually different, |a,| < 1, v =1,...;s, A(z) =

Loai,..,as € U5_, Q;
2. VzeT, e<|A(z)| < €"

3. Let p be the measure on |z| < 1 defined by u(E) = arc length of ENT (E is a Borel subset
of {z,]z| < 1}) ,then VI € (0,1], 6y € R,

p({re? | 1—1<r<1,00<0<0p+1}) <Az (6.1)

We will follow the notation from Proposition 4.2 in section 6 and 8.

Recall
Tyn = {z : 2n1+1 <1l—|z2|< 2%, I;nir Largz < W}
Choose N € Z. such that . .
) <27V < P (6.2)
Divide 7, into 22V regions:
{z : 12—:+{fv <1l-—|z| < 1;}:&1, 27r(;n—:12£v) Largz < W} . ki1=0,1,...,2V -1

Denote the 22V regions above by 7,,, (i), i = 1,2, ...,
For 0 < § < 1, define
z: |zl <1, |A(2)] < €}

z: 2| €1, |A(2)| > €}

N

By [1] p.251 Exercise 13 (b), A’(z) < 1_3}2‘2 < %M for |z| < 1. Therefore for 21, 22 € 7,,(i), by

mean value inequality and (6.2)

1 2
2n+1+N + 2n+1+N)

[A(21) = A(z2)] < ( sup |4 (2)]

Ze’!‘un(i) (63)

1+2r 1
+em < (1+27)

= 2n+1+N 27n71

w1 ©

Define
o= U Tun (1)
Tun (1)Na(e)#D

18
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By (6.3),

a(e) C a C a(2e) (6.4)

Denote 3 = b(e"), then o N 8 = () because 2¢ < €*

We first construct a subset of |z| < 1, called P, consisting of some boundaries of r,,(¢) and
separating a and 3. Then choose a subset of P, called I" such that I' is the boundary of | 9€; and
ac o, and (JOQ)Np =10

Assume P = () first and add lines into P by the laws below:

1.
2.

3.

Add all boundaries of r,¢(i), v =0,1, i =1,2,...,22" and the circle |z| = 1 into P.

(a) If ro; intersects 3
Add the arc |z| = 1/2, 0 < arg(z) < m/2 and the segments 1/2 < |z]| < 1, arg(z) = 0,7/2
into P. Say {z: 1/2<|2| <1,0< arg(z) < 7/2} is a t-set.
For every r1 = r91(i) C «, suppose 11 = {z : ¢1 < |2| < dq, u1 < arg(z) < v1}. Add the
arc |z| = ¢1, u1 < arg(z) < v1 and the segments ¢; < |z| < 1, arg(z) = uy,v; into P.
These lines together with |z| = 1, u; < arg(z) < vy enclose a domain called h(ry). Add
into P all boundary lines those 7,,(7) C h(ry) for which n < N + 1.
Next we consider those ro = r,2(i) C anN{z:0 < arg(z) < m/2} which aren’t contained
in any h(r1) appeared above. We do a construction similar to r; and add into P the
corresponding arcs, segments and boundary lines of those 7,,(i) C h(rz) for which
n<N+2
Next we consider those r3 = 7,3(i) CaN{z:0 < arg(z) < m/2} which aren’t contained
in any h(r1) and h(rz) appeared above and do the same things as 71 and ro. This process
ends when no r,,(4) with the required properties remains.
The process will surely come to an end because o C a(2¢) and |A(z)|=1on |z| =1

(b) If ro; doesn’t intersects

Proceed o0 and 791 separately according to the same rules in (a) and (b). If rog intersects
B, then say {z: 3/4 < |z| < 1,0 < arg(z) < m/4} is a t-set. Similarly, if r9; intersects
B, then say {z: 3/4 < |2| <1, /4 < arg(z) < 7/2} is a t-set.

This process is continued until n large enough such that r,,, C g for all v.

r11,721,731 are proceeded in the same way as r91. Call rog1 Ur;p ={2z: 1/2 < |2/ < 1,0 <
arg(z) < 7} and rop Urgy = {z: 1/2 < |2] < 1, 7 < arg(z) < 27} the s-sets of the zeroth
generation. Call all t-sets appeared above belongs to the zeroth generation.

. In the construction 1. 2. 3. described above, we have obtained a number of disjoint sets h(r;).

If the range of arguments of numbers in r; is [27t27%, 27 (¢ + 1)27%], we have included in P

all boundary lines of 7., (¢) inside h(r;) except those in sets s C h(r) :

2t it o))

s = {z c1-277 <2 €1, 5 <arglz) < o (6.5)

ok

For different s’s, the ranges of arg(z) have no interior points in common. We say that these
s-sets belong to the first generation. We now proceeds 2 for ro ,, and ro¢11,; C s and add lines
into P according to the roles given. This construction gives new t-sets, of the first generation,
and s-sets, of the second generation. The process ends when no new s-sets arises (i.e. until
s-sets don’t intersect «).

19
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Figure 1: s-set and t-set

It is easy to see that P separates o and /3 in the sense: if 7 is a continuous curve joining « and
5, then ~ has to intersect P.

P divides the unit disk into finitely many regions, and each region couldn’t intersect « and
B simultaneously. If a region intersects «, call it a-region, otherwise call it S-region. Then [ is
contained in the union of all closure of S-regions. Let €2 be the closure the union of all a-regions.
and Qy,...,Q, are all connected components of 2. Let I' = 90 C P, then

aCQ=ay,..,as €Q

and=0, BNIN=0 =VzeT, e<|A(z)| < €"

Now we have seen that I satisfies 1,2 in Proposition 4.2. To prove T satisfies (6.1) in Proposition
4.2, notice that I' C P, so it’s enough to prove

p{re® | 1-1<r<1,00<0<00+1}) <Ase . VIe(0,1], 6 €R (6.6)
where ¢/ (E) = arc length of ENP for E C {z: |2] <1}
We'll prove (6.6) in section 8.
7 Harmonic Measure

Definition 7.1 (Harmonic measure). [5] Let D be an connected open subset of CU {oco} whose
boundary is disjoint union of some simple rectifiable curves.

Any continuous function f : D — R determines a unique continuous function Hy : D — R
such that Hy harmonic in D and Hylop = f.

20
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For each x € D, there is a unique probability measure w(xz, D) on 0D such that for any contin-
wous function f: 0D — R, we have

Hy(z) = - f(y)dw(z, D)(y)

The measure w(x, D) is called the harmonic measure with respect to D and x € D.

Lemma 7.1 (Maximal principle). w(x,y) be the harmonic measure with respect to D, then any
harmonic function get its maximal value in OD.

Lemma 7.2 (Hall’s Lemma). H = {z: Re(z) >0}, E is a closed subset of H, D = H — E,
E* ={ilz|: z € E}.

Denote w(z) = w(z, H\E)(OF), z € D. Then w(z) is the bounded harmonic function on D for
which w(iy) = 0(—o0 < y < +00) and w(z) =1 for z € OE. Let w*(z) = w(z, H)(E*), then

ey L xdt
wilz) = T /E 22+ (y—1t)? (7.1)

Forx+iye D,

2
w(z +iy) > sw*(z —dlyl) (7.2)
Proof. Suppose first that E consists of finite number of radical segments
{rewk:ak<7“<bk}, k=1,2...,n; |9k|<g
with the intervals (ag, by) disjoint. Let
z+ 5
G =1
(:0) = 2]
denote the Green function of H, and consider the funtion
UG) =5 [ 26G0ds, (=€
z - 27T 5 5 Z7 S’ - 7/,'7’
where ds is the element of arclength on E. We claim that
w(z) < U(x), x>0 (7.3)
and 3
U(z) < 2 Re(z) > 0. (7.4)

For |¢| = p, Re(¢) > 0, the function %G(x, () attains its minimum for £ = 0; hence

2x
(EQ + p2’

éG(x,o > | =p

which gives

™

U(x)}l/E* ° dp = w*(x)
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which prove (7.3). Fix z =  + iy, and let M(p) be the maximum of %G(z, () over the part of the
circle |¢ — z| = p where Re(¢) > 0. Since pn this circle

1 1 4x€
-G(z,{) = =In(1+ —
is decreasing function of &,
In(22 —1), z>p
M(p)={ =P 4p
(°) { % z<p

Now let ¢(p) denote the total length of the part of F which lies in the disk | — z] < p. Since
d(p) <2p and M(p) is a decreasing function, we have

U < o [ sty :—Jg/wwmwﬂm

2
<—7/ pdM (p / M(p)dp= =+ = <
T Jo 2 0w

Thus (7.4) is proved. Then we have 3w(z) — U(z) = 0 on dD, so by the maximum principle, the
same is true in D. Thus the function

N Lo

o(z) = Su(z) - (2

is non-negative on positive real axis; while p(iy) = O0fory € R, and ¢(z) > % for z € E. By
maximum principle, then ,

. 2, .
w(a:+zy)>§w (x + 1), x>0,y <0.
By symmetry,
2
w(z +iy) > qwiz —dy),  @>0,y>0.
For general compact set E, choose € > 0 and consider
Se={z:w(z)>1—¢€}

Clearly, OF C S.. Choose a set E which consists of a finite number of radical segments with
nonoverlapping projections, for which E* = E*, let w(z) be the harmonic measure of E. By what
just proved,

B+ i) > 2@~ iyl)

since E* = E*. The function w(z) — &(z) vanishes on the imaginary axis, is > 0 on 0F, and is
> —e whenever it is defined on E. Thus by the maximum principle,

wla+iy)+e > Do +iy) > 50" (@ —ily)

for (z +1iy) € D. Now let ¢ — 0, and the lemma is proved for campact sets FE.
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Finally, suppose F is closed but unbounded. Let E,. be the intersection of E with disk |z| < r,
let E* be its circular projection, and let w,(z) and w?(z) denote the respective harmonic measures.

Then 5
w(x +iy) > w(z +iy) > gw;*-(x —ilyl) (7.5)

for each point = + iy € D, and we have the w}(z) — w*(z) pointwise as r — co. This completes
the proof. O

Corollary 7.1. H ={z:Im(z) > 0}, E is a closed subset of H, D =H — E, E* = {|z| : z € E}.
Denote w(z) = w(z, H\E)(OFE) is the bounded harmonic function in D for which w(y) =
0(—0 < y < 400) and w(z) = 1 for z € OF (w(z) is also called harmonic measure of E re-

spect to H — E). Finally, let
1 ydt
()=- [ 4 7.6
v w/E*yu(o:ft)? (0

be the harmonic measure of E* with respect to H.
For (x +1y) € D,

w* (—|z| + iy) (7.7)

[SVI )

w(z +iy) >

Let R be the annulus p < |z| < 1, and let E; be a closed subset of R which does not divide the
plane. Let wy(z) be the harmonic measure of Fy with respect to R — F and let

E; ={e":re € By} (7.8)

be the radial projection of E; onto the outer boundary of R. For fixed 8 < 7/|1Inp|, let F} be the
part of FEf such that |6] < 8|1n p|.

Lemma 7.3. pr% ¢ Eq,
[Py < V3pl(e™ + e 4 1w (p?) (7.9)

Proof. The mapping 1 , )
¢ =E+in =2/ e = pin/pe=m0/Inp (7.10)

maps R to H, and denote ¢ be the inverse of 9. Define set E = {( € H: ¢(¢) € E1},E* =
{€ € H:p() € Ef},w(() be the harmonic measure of E respect to H — FE, w* be the harmonic
measure of E* respect to H. Since

u@) = [ uyte. iy
up(w) = /é)E up(2)wy (w, 2)dz

Let z = o(y), w = ¢(x),u = u; o ¢, then

ul() = /8 u(w)en (@), (1) (1)
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w(z,y)dy = wi(p(x), e(y))de(y)

then

mw=éﬁmmwz/ w1 (p(@), o)) (y) = wr ()

dE;
the same,
w*(z) = wi(p(z))
when [z| < \/p, ¢ =& +in = (2), and £ < 0, so by Corollary7.1

1 im 2 fus) 2
wi(p?) =w(e¥) = 2w () = Zwi(p?)
Let F* denote the image of F}* under .
V3
2 ; 1 2dE
(o} =@z - [ e
e § 4 (=5 =97
_ V3 CE s V3 IF|
T AnAl S o2 p e B p 1 S AP e A 1
In the end, §
|F7] < V3|Inp|(e™ + ™ + L)wi (p?)
O
8 Discussion of P
This section is to prove (6.6), which is rewritten below:
p({re® | 1-1<r<1,00<0<00+1}) <Az VIe(0,1], 6 €R (8.1)

where ¢/ (E) = arc length of ENP for E C {z: |z] < 1}.

We'll simplify it.

First, it’s enough to prove (8.1) for I < 1/2, because for 1/2 < 1 < 1, from the first construction
law of P,

. 1
u’({rew\1—l<r<1—7,00<0<90+l})

2
/ 0 1
SEre® [1-1<r<1-3)
<on+r_ L -3 or < 2Nl (2 4 1)(1 — -
X (_5)4‘ W'W\ (7T+ )(—5)
1

<2x202m+ e t2r+1)( — %) (by (6.2))

1
<4@2r +1)2%e 21— 5)
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V.21 (v+1) 27
2n

}, neN,v=0,1,..,2" -1

1 -2 1)-2
tunZ{z:O<l—|z|<” (VJ;THL?T}, neN_,v=0,1,..,2"" -1
It’s easy to see that any set of the form {re? | 1—1 <r < 1,00 <0 < 0o+1}, 1 €(0,1/2], 6y € R
is contained in s,y U s,41,,, for some v and n such that [ < 1/2" < 21
If we have proved

1
W (sun) < A18€_2%, Vn,v (8.2)
Then
. 1
P {re [1=1<r <1, 00 <O <00 +13) </ (sm) + 1 (sv1,0) < 241567 o < ddige

which implies (8.1). So it’s enough to prove (8.2).

Notice that all t-sets (we have defined t-sets in section 6 the second law of construction of P)
are of the form t,,,. Denote T = {t,,, : t,, is t-set }. The equation below is the final simplification
of (8.1):

1
w (tn) < Alge—QQ—n, Vtyn €T (8.3)
Lemma 8.1. (8.3) = (8.2).

Proof. Suppose (8.3) holds. For any s, choose the smallest s-set S (maybe of zeroth generation)
containing it.

Notice that a t-set either disjoint with s,,, or containing s,,, or contained in s,,. The t-sets
in S of the same generation as S are disjoint. So s,,, either contains some t-sets in S of the same
generation as S, or is contained in a t-set in S of the same generation as S.

For the former case, P N Sy, C 9Syn U (JP Nty ) where ¢, takes all t-sets in s,,, of the
[1/71' (V' +)m
on’ on’

same generation as S. These t,,/’s argument range (i.e. ) ) are disjoint, therefore

Z=>3 a7+ hence (8.3) = (8.2).

For the latter case, s, is contained in a t-set tg. Let hq, ho, ..., h, be all h(r;) contained in ¢y in
the law 2(a) of construction of P, and the s-sets at the bottom of these hy are denoted s1, s2, ..., Sp.

Each s; is of the form s,/,, either disjoint with s,,, or containing s,,,, or contained in s,,,. Sk
containing s,, is impossible because S is the smallest s-set containing s,,. So sj either disjoint
with or contained in s,,,.

By construction of P,

Pﬂt0:8t0U<CJ Pm hk\sk >U<CJ (Pmsk)>

= PNsyn COsyn U < U (Pn\se) ) U ( Pﬂsk)> (8.4)
SLCSun

SECSun

Denote [ the length of argument range of hy, then I < 2%. Now estimate the length of
‘%C%w

three parts on the right side of (8.4):
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e Length of ds,, < 47;;"2.

e By construction of P, it’s easy to show that

length PN (hi\sx) < 2(N +1)2V1, < 22V F1,
<

2
8(2m +1)% 2l (by (6.2))

= length | (P(hi\sk)) < Y length P (hi\sk)

SLCSun Sk CSun
1
< 8(2m + 1)%¢ 21, < 16m(27 + 1)2e 2 —
k; ( ) k ( ) on

e Same as the former case, it’s easy to show that (8.2) holds s-sets. So

length U (Pﬁsk) < Z length (PN sk) < Z %5_2@ < A185—22in

SkCSun SECSun SkCSun

Add the three parts, we get (8.2).
So it’s enough to prove (8.3).
Proof of (8.3). Choose an arbitrary ¢,, € T, n € N. Recall

1 v-2m (v+1) 2r
tyn:{z0<1—|z|§2n,2n+1§argz<W}
1 1 v-2m (v+1) 2r
TVn:{Z:2n+1<1_|Z|<2n7 2n+1<argz<2n+1}

By definition of t-sets, 7, N 3 # 0.
Choose zy € T, N B, let p = |z0|3, 20 = p/3e  Ei = aNr,,. Then z ¢ E.

1 1 1

1——<\z0|<1—2n+1 = (1-=—=)P<p

1
n n (1 o on+1

3
) <1—2—n

N

=F Crn, CR={z:p<|z| <1}

Let Ef = {e" : re’® € Ey} , F} be part of Ef such that |6 — 6y| < 7| Inp|
Notice Vre? € By C 1y,

™ 1 1

|0 — 6p] < o < (=3m)In(1 — W) = —rln(1l — W):g < —mlnp =7|lnp|

which implies E} = FY.
By Lemma 7.3,

|B5| = [F7| < V3Inpl(e™ +e™™ + Dwi(pte™) < A1g2 "wi (pF ™)

here wy(z) = w(z, R\E1)(0E1).
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Denote D = {z : |z| < 1}. w(z, D\E1)(9E1) is a harmonic function on D\E; with boundary
value 0 on 0D and 1 on F;.By maximal principal, 0 < w(z, D\E1)(0E7) < 1. Let

0 ,z2 € 0D
fi:0(R\E1) = R: fi(z)=11 ,z € OE,
w(z, D\E1)(0E1) ,|z|=p

Then w(z, D\E1)(0F)|r\g, is the harmonic function with boundary value f;.
=W DVENOE) = [ A)de(s R\E))

O(R\E1)

- / du(z, R\Ey)(y) + / w(z, D\E)(OE)dw(z, R\E)(y)  (8.6)
OF

[z|=p

> / dw(z, R\E1)(y) = w(z, R\E1)(0FE1) = wi(z), z € R\F;
OE;

By (6.4), E1 C o C a(2¢) C D. Let

0 ,z € 0D

f2: 0(D\a(2¢)) = R: fa(z) = {w(z,D\E1)(3E1) .z € Da(2e)

Then w(z, D\E1)(OF1)|p\a(2¢) is the harmonic function with boundary value fs.

= w(z, D\E))(OE) = / foly)dw(z, D\a(20)) ()

9(D\a(2¢))

~ [ w(e D\E)OE ) dw(z D\a(26))(0) ®.7)
da(2e)

< / dw(z, D\a(2¢€))(y) = w(z, D\a(2¢))(da(2€)), z € D\a(2e¢)
da(2e)

Notice that (log|A(z)|)‘D\ 20 is a harmonic function on D\a(2¢) with boundary value 0 on 9D
and log(2¢) on da(2e).

= log|A(z)| = /(9 - )log(?e)dw(z,D\a(Ze))(y) = log(2¢) - w(z, D\a(2¢€))(da(2€)), z € D\a(2e¢)

Let z = zg € 8 C D\a(2€), by |A(z0)| > €" and 0 < e < 1,

w(z0, D\a(2€))(da(2¢)) = loli;};f;” < ;Zig; llog )l o, (8.8)

"liog(e)] — log2 =

) _
)

By (8.6), (8.7) and (8.8),

w1 (Z()) < 2K (89)
By (8.5) and (8.9),
|E7| < A1o27 " (8.10)
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Suppose t,, belongs to the j-th generation. Let L, be the total length of argument range of
all t-sets contained in ¢,,, and of generation g, ¢ = j,7 + 1,... . Suppose [, ...,l, are lengths of
argument range of each t-set contained in ¢,,, and of generation j 4+ 1 respectively. Then by the
construction of P,

Ljp1 = Zz |E7| (8.11)

By (8.10) and (8.11),
A2k
Ljt1 < Aio26-27" = %Lj

Recall that in Proposition 4.2, we required 0 < kK < A4 and said A4 would be determined
later. Now it’s time: let 0 < A4 < 1/8 and %7;4“‘ < 1/2. Then

L; (8.12)

N | =

Ljtq <

If we replace t,,, by any t-set contained in t,, and of generation j + 1, a correspondent (8.12)
still holds. Add these correspondent (8.12)s, we get

1

Lj+2 < 5Lin
Similarly,
1 .
Ly < iLga 9=17J,Jj+1,
(oo} oo 1
=Y Ly<) 5oL = 2L; (8.13)
9=J g9=0

For a t-set ¢y with length of argument range ly, denote sy, ..., s, all s-sets of the next generation
contained in ¢y;. Suppose lengths of argument range of sy, ..., s, are [y, ..., [, respectively. Denote
t1,...,tq all t-sets of the next generation contained in t3. Then

N (to\(g m) - U (&si U (Pm (h(rk)\si))>

1<i<p, h(rg)*s;

where h(ry)*s; means s; lies at the bottom of h(ry).
Recall T = {t,n, : tyn is t-set }.
For each 1 <@ < p and h(ry)*s;,
length 0s; < 4;
<

length PN (h(rk)\s;) < 2(N + 1)2V,

q P
= length PN (to\ Ut ) D (442N 4 1)2V); < 22V Zz 6(27 + 1)%¢ 2l
i=1

1=1 =1
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= (tyn) = length PNt,, = Z length PN (to\(

q
toCtun, to€T =

Ue)

=1

< > 162r+1)%
toCtyn, to€T

=16(2r +1)% 2 L, <322 +1)% °L;  (by (8.13))
9=J

1
= 32027 + 1)26*22171 = Awe o

9 Corona Problem

Under Theorem 4.1, we want to get a more powerful Theorem, and that’s the Corona Problem.
Theorem 9.1. Let f1(2), fo(2), -+, fu(2) be given functions in B such that
@)+ 22+ + [ fn(2) 26> 0 (9.1)
<

for some 6. Then I(f1, fo, -, fn) = B. Furthermore, if ||f,]| < 1L,v = 1,2,--- ,n, and §
there exists p,(z) € B,and absolute value A1z > 1+ Aja so that

1
27

n
Zpl/fu =1 lpo || < nlondis §—Aizn (92)
v=1

Before prove the theorem, we need the following theorem.

Theorem 9.2. Let A(z) be the finite Blaschke product and assume that the set z = {z : |A(2)] < §},0 <

%, has the (simply connected) components D1, Da, ..., Dy. Let Fi(z) be holomorphic in D; and as-

sume |F;(z)| <1 there. Then the interpolation problem
flay) = Fi(ay) a, € D;, f € B (9.3)
has a solution f with | f| < 6.

Proof. Choose a € so that €® = € and construct I relatively A(z) and €, and define F(z) = F;(z),z €
D;. By Proposition 4.1 there exist fq satisfied (9.3), such that

1 F(2)G(z)

sup |— dz|
IG|l1=1 211 T A(Z)

g G(au)Fi(GV)
Ifoll = sup |} —F——|=
0 Gt sz:l Al(ay,)
<o /F G()ldz < 04,
O

Lemma 9.1. Let f(z) be an analytic in the open unit disk D and continuous in D. Suppose
0<|f(2)| <1 onl|z| =1 and let E is nonempty. Then there exists a sequence {B,(z)} of finite
Blaschke products with simple zeros, such that | By (z)| — |f(2)| uniformly in each closed subset of
(D — E), and B,(z) — f(z) uniformly in each closed subset D.

29

207



Proof. Let S be an arbitrary closed subset of (D — E). Because f(z) # 0,|z| = 1 ,therefore has at
most a finite number of zeros in D. Then, since it’s clear that a finite Blaschke product can be
approximated by one with simple zeros, uniformly in D, it’s enough to suppose f does not vanish
in D. We can assume f(0) > 0, and we have,

1 2m it )
s =ew{o [T S mlrear)

Now let wy, = €2/ and let

fal2) = exp {jl o 1n|f<wk>|}
k=1

— Wk

Then f,(z) — f(z) uniformly in S. Let

€ = f%1n|f(wk)\

so that )
Ogekg—flnuzdn (9.4)

where £ is the minimum of |f(z)| on |z| = 1. Choosing n so large that &, < 3, let
1-— pi = 2¢; A = PrWik

and define

H ap arp — 2
lak| 1 — a2z

Note that |ag| = 1 if €, = 0, so that the correspondmg factor in B, (z) is trivial. A calculation gives

\ak 2, Jak — 2 lag =27 5
2l (B, (2) =S In _ o 4
n|Bn(2)] = Z 2\2 kz_:l(\l—dkzP +Z o Y
|ak—z\ — |1 — agz|? |ak—z| — |1 —apz|?
= @)
;( |1_akz‘2 )+Z ( \l—dkz|2 )

:zn:((IZ\Q—l){l—lakl +ZO (121> = 1)( 1—\ak|))

pt |1 — agz|? [1— ayz|?
—2(1— |2*) Y erll — a2 2 + Z 0(2¢;,)?
k=1 k=1

—2(1 — |z Zek|1 —apz| 2 +n0(6,)% = —2(1 — |2|*) Z x|l —apz| ™2 + 0(8,)

k=1 k=1

uniformly in D.

n

n 1.2
lfu(a) = = 30 R ) = - Y e

k=1 k=1 1= @2
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From this we can deduce,

2 . 1 1
eI )I;Ek(“ —pewpz]2 |1 —wkz|2)+0(5n)
_ 2o 2P = pR) = 20](1 — pr) cos(6 — 2
=—(1- ‘Z| );ﬂc( |1_Pk@kz‘2‘1_wkz|2 )+O((5n)

- 22(26,,) — 2|2|(v/3,) cos(6 — 2k
() 3 g (@) S Al cos6 Z BT

|1 — prwrzl?|1 — wrz[?

= 0(+/dy)

Hence In|B,(z)| — In|f(z)], which implies |B,(z)| — |f(2)], uniformly in S. Since B,(0) > 0, it
also follows that B,,(z) — f(z) uniformly in each disk D,, by

By (2) 1 [P e’ 42 Byle®)
= — - 1 —|dt 1
exp{Qﬂ_/O et — z n| f(eit) | -

O

Proof of Corona Problem. We first assume that (9.1) holds and prove (9.2) by induction on n.
n =1 is clear. Let us assume (9.2) holds for n — 1, since Theorem 9.1 is invariant under conformal
map, (9.2) satisfied for all simple connected domain.

Consider first the case when f,,(2) is a finite Blaschke product B(z) with simple zeros by, ba, . . ., bs.

The set |B(z)| < g has the components D1, Do, ..., D,. In each D; there exist functions P;, such
that

n—1
2
S Pu@f) =1 [Pyl < (n = Di(5) A
v=1
by theorem 9.2, there exist functions p, € B,v =1,2,...,n — 1, such that
2
pu(bj) = Pu(bj), bj € Di; Pl < (n— 1)!(5)("71”1“’413
the function p,(z) defined by
n—1
pa(z) = (1= Y pu(2)fu(2)B(2)""
1
belongs to B, and now {p,(z)}] satisfied (9.2) with exponent nA;s.

For the general case, we choose p < 1 and replace f, by g,(2) = f,(pz). If we can prove (9.2)
for an infinite sequence p,, — 1, we have proved it generally. Since if

2 nAj:
D Potpr =1 gl < nl(5)" (9.5)

by Ascoli theorem we can take subsequece {p,} such that for every v = 1,2,...,n. p,,, converges
uniformly on every compact subset of D, thus converge to a holomorphic function p, with.

n

2 n
Sopdi=1 lpl <5
v=1
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We choose p so that g,(z) # 0 on |z| =1 and choose G,,(z) analytic and # 0 in |z| < 1 such that
|G (e”)] = min(|gn(e”)| 71,2571, (9.6)

since G analytic and # 0, we conclude that log‘—él is harmonic function with bounded value

max(log|gn (e*?)], logg). Since harmonic function get its maximal value on the boundary, we deduce
|G| = min(|g, (e?)|1,2071) > min(%,l) =1
We will prove that the functions g1, ga, . .., Gngn satisfied (9.1) for 3. Since if |g,(2)| < 2, Then
lg1| + |go| + -+ + |gn—1| = 5. Otherwise, |gn| > 2, |Gngn| > $.
By lemma 9.1, there exists a sequence {By(z)} of finite Blaschke products with simple zeros
converging uniformly to G, (z)g,(z) outside any neighborhood of the set on |z| = 1 where |g,(2)| <

g. We apply the above result to gi,...,g9,—1, Bx and let £ — oo and observe that

N >,

lim [ inf (|gi| + -+ [gn_1] + |Bx|)] =

k—oo |z|<1

(9.7)

This is because we can choose a sequence of neighborhood U,, converging to H = {|z| = 1 : g,,(2)| < £}.

To each U,, we choose B,, such that
1

We can choose N, such that Vn > N, |g1(2)| + - + |gn—1(2)| > $,Vz € D — U, and (9.7) satisfied
Vz € U,.

Thus we can obtain a selection of convergent subsequences, coefficients p1,...,p, € B such that

p1g1+ -+ (PrGn)gn =1
By above special case,
2
Ipn Gl < ()

Finally,if (9.2) not holds, there is a sequence z;, so that lim f,(z;) = 0. This then imply 1 is not
j—o0
in 1. U
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Sumsets and Arithmetical Progression

Rui Rao, Di Wu

1 Introduction

We are interested in the structure of the sets and the sumsets. For example,
if we consider two sets A and B in R, both having n elements and these
elements being ’general’, their sumset

A+B:={m|m=a+b,ac Abec B}

will consist of n? elements.

But interesting things happen if they do have some relations such that the
sumset have only elements of order O(n). This means some of the sums are
the same, and we can guess easily that they have some artihmetical relations.
For generality, we will work in a torsion-free abelian group. That will cover
many of our applications such as integers, Euclidean spaces and so on. The
relation and the result will be described in what follows.

Definition 1.1 (Arithmetical progression). Assume G is an abelian group,
a,q1,q2...qq € G, l1,l5...1, € N*. Then we call

Plg,q2-. qa; i, la. . lg) ={n:n=a+z1q1 + 22¢2- -+ + 2494, 0 < 2 < I}

a d-dimensional arithmetical progression. We call the number of its elements
the size of the arithmetical progression.

Now come to the main theorem following Z. Ruzsa [1].

Theorem 1.2 (Z. Ruzsa). Assume G is a torsion-free abelian group. For
any a > liwe can find d = d(a),C = C(«) such that, for any A,B C G
satisfies |A| = |B| = n and |A+ B| < an, there is an arithmetical progression
P,dimension at most d and size at most Cn,with A C P.

Remark 1.3. The d(a) and C(a) can be given explicit formulas.

1
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2 Finite abelian groups

In this and the following two sections, we will show the tools and lemmas for
the proof of the main theorem. Most of these proofs are taken from [1].

First we introduce some notations about sumsets. We have defined A+ B,
similarly we define

A—B:={n|n=a—-b,a€ A b€ B},

and
24 := A+ A.

By the same way we can define sumsets like 34 and 4A — 5B, etc.
This section we deal with finite abelian groups to get some useful esti-
mates. We will focus on characters first.

Definition 2.1 (Bohr set). Assume G is a finite abelian group and let
1
V1,72 - - - Y& be some characters of G, 0 < e < 5 then the set

B(v1,72 ...k €) =49 € G : |arg v;(9)| < 2me for all j}
will be called a Bohr (k,¢)-set.

Lemma 2.2 (Bogolyubov). Assume G is an abelian group of order m, A C
1

G,and |A| = n = pm,then D = 2A — 2A contains a Bohr (k, Z)—set, with

k<372

Proof. Step 1: Denote I' the set of characters of G. For v € ', write f(v) =
Yaeay(a). We have the following orthogonality

—  ]0,a #0,
> (w0 - {1,a:b,

By direct calculation, we have

D 1FMIP=mn,

and
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Now we consider

hiz) =Y 11" ().

We claim that if h(x) # 0, then z € D. If 2 ¢ D = 2A — 2A, then we
calculate

hx) =Y f()*F()>y(x)
= Y A a®) (= (—d)y(x)

~v€l,a,b,c,de A

= Z Zy(m—i—a%—b—c—d)

a,b,c,deA vy
= 0.

And this proves our claim.
Step 2: Let 7y be the principal character (i.e v(g) = 1 for all g € G).
We split I' — {70} into two parts:

Iy ={v: f(v) > v/Bn},
Ty ={y: /(1) < v/Bn}.

1
Then we construct the Bohr (k, Z)—set B where these ~; take all v € I'; and

k = |T'1]. We want to show B C D. By step 1, it suffices to show that
h(xz) # 0 when x € B. If x € B, Re(y(x)) > 0 for all v € I'1, so we have the
inequality

Re(h(x)) > n* + Re( Y [£(7)*y())

v€el's

>nt =180 (DI ()P)]

>nt — BnPm =0

so we have B C D.
Step 3: In this part we prove that k = |I'y| < 872. By the definition of
I'y, we have

km?B = kpn® < 311 < SOOI = mn = m?3,

vel ~el’
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so we get k < B2,
Il

Next we consider cyclic groups only. We prove Bohr set must contain
arithmetical progressions. By Freiman homomorphism (introduced later),
this is enough for our purposes. Let G = Z/mZ, and we use residues to
express the element of G. Its characters can be expressed with an residue u:

'Yu(x) _ 627riuz/m'
Lemma 2.3. Let m be a positive integer, wuy,us,--- ,ur be residues with
(ug,ug, -+ ,up,m) = 1, e1,e9,-++ , & real numbers satisfying 0 < g; < =,
then there are residues qi,qa, -+ ,qr, and li,ls, -+ 1 € N such that the set

P ={z1q1 + x2q2 + - - - + zpqr | || <1},

is contained in B(uy,ug, - ,ug; 1,2, ,€x). And the sums in P are all
distinct with

|P| > dm,
here . .

Lo
Proof. Let L be a k-dimensional lattice (seen in a R-vector space) of (x1, z9, -+, xy)
satisfying
T =2U, -, T = xup mod m,

with some integer x. Since we have the coprimality condition, every space of
m” have exactly m points in L, hence its determinate is m*~1.
Let @ be a rectangle defined by

Q= {(z1, 29, - ,xp) | 2] <&y, Vi}

Let A1, -+, )\, denote the successive minima of () with respect to L. A
classical result of Minkowski show

detL mbk—1
vol@) CEyeeEg

AMAg - Ay < 2F
By definition of \;, we can find {a;} C L linearly independent with a; €
Q\;, and if we write

a; = (ailaa'iQ? T 7aik‘)7

4
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then |a;;| < A\ie; and a;; = ¢;u; mod m for some ¢;(< m). For

m
l; = ,
[k/\z‘]

we set P = {x1q1 + x2q2 + - - + 2xq | |z;| < I;}. Direct calculation shows

PQB:B(UJLU?V“ y Uk; E1,E2, "+ * 7€k)-

Next we show sums in P are all distinct. If xq,--- ,2x and yq, -,y
correspond the same value in P, then z; = x; — y; satisfy

Zzz‘% =0, |z <20,
Multiplying u; we get
Z zia;; =0 mod m,

But

| Z ziagj| < Z 2006 < Z QTZ& <m,

thenz zia;; = 0, so Z zia; = 0. But {a;} is linearly independent, z; = 0,

i i
which is what we want. Then immediately we get

mk

Pl ™ s
P> o, oy 2 0m

Combining lemma @ and lemma , we get an important result.

Lemma 2.4. Letm be a prime number, and A be a nonempty subset of Z./mZ
with |A| = Bm. There are residues q1,qo, "+ ,qr, and ly,lo, -+ lx € N such
that the set

P ={21q1 + 22go + - + pqp | |25] < L},
1s contained 1 2A — 2A. And the sums in P are all distinct with
P > om.
here
k< B2
5 = (4k)7".

5
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3 Freiman homomorphism

In this section we introduce homomorphism in the sense of Freiman, and
study its properties. This concept can be defined in general abelian groups.

Definition 3.1. Let Gy, Gy be abelian groups, Ay C G1,As C Gy and r > 1
a fixed positive integer. If a mapping ¢ : Ay — As satisfies that for any
Ty, Ty Y1, Yr € Aj(not necessarily distinct), the equation

Tyt + T =yt Y
will imply
O(z1) + -+ o) = ¢(y1) + - + o(yr),

we call ¢ a Freiman homomorphism of order r, or F,.-homomorphism. We
call it a isomorphism if it is one-to-one. When we do not specify r, we mean
r=2.

Lemma 3.2. Let G, G be abelian groups. If P' C G’ is a Freiman image
of a arithmetical progression P(q1,--+ ,qq;l1, -+ ,la;a), then there are ¢, a
such that

P'=Plqy, - ,qgl, g d),

and the homomorphism is given by
pla+r1q1 + -+ 2aqa) = a’ + 21¢) + - + Tagy.

Proof. we define
a = ¢a), ¢ =¢(a+q)—o(a),

and we can prove by induction that
pla+ziqr+ -+ Taga) = @' +21q; + - + 144

We use induction on
r=2x;+ T+ Ty,

and by the definition of ¢/ the statement is correct when r < 1.
Now assume that r > 2 and the statement holds for all smaller r, and
let’s just further assume x; > 1, then by the definition, we have

Plat+a1qit+r2gs - +4qa)+é(a) = ¢lat+(z1—1)q1+22g2 - - ~+2aqa)) +P(at1),
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¢la+z1q1 + Tago -+ + Taqa) = @' + (z1 — 1)qy + 22q2" - + wagy + d' + 7] — d

= d' +x1q) + Tagh -+ Tagy,
Then by induction we complete the proof. O

Lemma 3.3. Let G, G’ be abelian groups. A C G, A’ C G’ are F,-isomorphic
sets. Write r = r'(k + 1) with positive integers r', k,l. Then kA —lA and
kA" —1A" is F.-isomorphic.

Proof. For
x:a1—|—~~—|—ak—bl—---—blEk:A—lA,
we define
U(z) = d(ar) + -+ + dlag) — ¢(b1) — -+ — ¢(bu),
where ¢ is the F,. isomorphism between GG, G’. We can check easily that it is
well defined and is a F}.-isomorphism. ]

4 Estimate of sumsets

In [1] there are two lemmas the author didn’t give proof (lemma 5.1 and
lemma 5.2). These two lemmas is useful in the final theorem.

We need some preparations for the proof of these lemmas. In what follows
we are always dealing with finite sets in a fixed torsion-free abelian group.

X+ B
Lemma 4.1. Set fp(X) = | |;| | If X satisfies fp(X) < fg(Z) for every
Z C X, then fp(X) > fs(X + C).
X+ B Z + B
Proof. Assume k = %, then | |—Z|—| | >k for all Z C X, and we will

use induction on |C| to prove this lemma.

If |C] =0, it’s trivial.

If for any C with |C] < s, this lemma is correct. For |C| = s, we take
co € Cand let C' = coUC", where |C'| = s—1,1let T = (X +¢o)N(X +C"—¢p)

IX+B+(C'Uq)|=|X+B+C+[(X+B+c) \(X+ B+
<|X+B+C'|+|X+B|—|T+B|
<KX +C|+EX|-kT|=k(|X +C'|+|X|—|T))

7
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because
| X| = |X +co| > |T].

If we divide both sides | X + C|, then we finish the proof. O

Lemma 4.2.
|A||B - C| < |A- BJ||A-C].

Proof. Consider the following map
D Ax(B-C)— (A-B)x (A-0),
axx— (a—by) X (a—cp),

here we takes by = b(x) as fixed for each x such that there exists ¢ € C
satisfying by — ¢ = x and ¢q is by — .
The following chain show & is reversible (hence injective):
(@ —bo) x (a—cp) —=(a— by, by — o)
— ((l — bo, b() — Cg, bo) — (CL, bo, C()).

]

Lemma 4.3 (lemma 5.2 of [1], see also [2]). If |B| = n,|B + A| = an, then
for any positive integer k,l, we have

kA —1A| < o*n

X+ A
Proof. Take X C B such that | |;(|—| |

| X + A
| X|

takes the minimum.

By lemma 4.1 we have < «a and

X +mA||X| < |X + Al X + (m - 1DA| < o] X]||X + (m—1)A|--- < a™|X].

So using lemma 4.2 we get

X + RA||X +14] _

kA — 4] < <
| X
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Lemma 4.4 (lemma 5.1 of [1], see also [2]). If A C Z,r > 2,N € Z s.t
rA—rA| = N, then for any m > 2r(N — 1) there is a subset A" C A satisfy
the following statement:
A
) 14) >
r
it) A’ is F.-isomorphic to a subset of Z/mZ.
Proof. Choose a large prime number ¢ s.t. ¢ > max{rA —rA}, now consider
the map

2" 7)qn N g — {1,2, ... q} SN z/NZ,
which bring A’s subset A’ to the subset B’ of Z/NZ.

Next we choose A1, Ay and A’ to make this map a F,-isomorphism and

A
|A'| > |—| It’s obvious that the first two map is F,-isomorphism, so we need
r

to ensure that the map

7/qZ — {1,2,...,q}
and

{1,2,...,q} = Z/NZ

are Fj.-isomorphism.
First, for a certain A\; we choose Ay that the map

Z/qZ — {1,2...q}
is a F,-isomorphic on A’:

Since there is always a integer k s.t the set {k+1+¢Z,k+2+qZ... k+

A
[Q] +qZ} has Ll elements in |A”|, here A” = {\jx + ¢Z, 2z € A}, under this
r r
condition we can choose Ay = —k and |A'| = {z|k < Az < k+ [g],x € A},

r
then map
Z/qZ — {1,2,...,q}
is a Fy-isomorphism on A’.
Then we choose A\; to make
67— L)l 82 7)q7 — {1,2...q} "3V 7/NZ

a F,.-isomorphism, if
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ar+ay+ - +a, #by +by+ -+ by,
but
Plar) + ¢laz) + -+ + d(ar) = ¢(br) + (b2) + - -+ + o(by),
take
d=ai+ay+---+a.—b—by—---—=b. >0,

then by the definition of ¢, we know N|t (where t = Ad mod ¢ and 0 <

t < q), because ¢ is a prime, for each d there are only [%] bad \;. And

there are at most N different d, so there is always A\; and A\, satisfy ¢ is a

F,-isomorphism on A’, where |A’| < @
N

5 Proof of the main theorem

We finish the final proof.

Proof of the main theorem. Since A is finite, we can assume that A C Z" for
some v.
For any 7, we can find a set Ay C Z that is F,-isomorphic to A. In fact,
the map
(ay, - ,a,) — a; +tag + - +t" ta,,

will work for sufficiently large t. We will use the case r = 8.
Now we use lemma for 2A5 — 2A,, getting

1245 — 24| = |2A — 24| < a*n.

And we apply lemma @ with 7 = 8 and any prime m > 2r|2A — 2A|. So we
can always choose m prime with

m < 4r|2A — 2A| < 32a’n,

and get A" C A, that is_Fg-isomorphic to a T" C Z/mZ with |A’| > n/8.
Then we can use lemma to get a k dimensional arithmetical progression
P C 2T — 2T with |P| > én, and ¢ and k depend on « only.

Now we come back to A. T is Fg isomorphic to A* C A, which can be
extended to a Fy-isomorphism between 27" — 27" and 2A* —2A* (lemma )

10
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The image of P, denoted by P*, is still a arithmetical progression in 24 —2A
(lemma @)

Select maximum subset aq,--- ,a, € A such that P* 4 a; are pairwise
disjoint. This is always possible. and since any of them belong to A + P* C
3A — 2A, we have (by lemma @ again)

< |I3A — 24| < an A"

TSP S en 6o
Now A can be covered by

Ac @i+ P =P C{ar, - a} + PT— P

since for any a € A,Ja; such that a + P* = a; + P*. Easy to see the set
{ai, -+ ,as} is covered by

P(ala"' 7a5;17"' a1a0)7
and P* — P* is still a k£ dimensional arithmetical progression with
|P* — P*| < 2F|P*| < 28|24 — 24| < 2%a’n.

Combining these two arithmetical progressions, we finally get that A is
contained in an arithmetical progression of s + k£ dimension with its size
bounded by 25 a*n. The proof is complete. Il

6 Review

This theorem can be applied to many situations, such as B = —A or B =
A, and we can easily get many similar results. But there can be certain
improvements.

One thing is that this theorem doesn’t state what happens when there is
torsion part. We guess the whole theorem is correct in any abelian groups
and even these constant can be as the same. The problem is that lemmas in
Section 4 which offer certain estimates are central in the final proof, while it
seems hard to be stated in torsion cases. We may need some subtle changes
in these proofs.

11
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Another thing is that although d, C' is independent of n, they seem to be
too large (d is in fact exponential on «). The first theorem of [4] says if we
restrict ourselves to the case B = A, we can have

d<a+1, for sufficently largen

which is just linear on «. Although we are dealing general cases. we think
polynomial bound should be enough. The key point is lemma @ It is a
general result while we use it in a much more specific case.
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Newlander-Nirenberg Theorem

Xiong Jiangnan

June 10, 2022

1 Introduction

Definition 1.1. A complex manifold is a manifold M, together with:

(1) Atlas {(Ua, ¢a)}, where U, C M open, ¢, : U, — D™ homeomorphism.
where D" is the unit open disk in C™.

(2) Transition map ¢, o qﬁgl : 95(Us) = ¢a(Uy,) is holomorphic.
Note: (2) implies that the transition maps are biholomorphic.

These data are called the complex structure on M.

Definition-Lemma 1.2. Let V be an R-vector space.

(1) A complex structure on V is a linear map J : V — V s.t. J? = —1

(2) Complexification of V' is the tensor product Ve =V ®@g C

(3) Given complex structure .J, we can regard V' as a C-vector space by setting i-v = Jv,
we denote this C-vector space by V.

(4) J can extend to a C-linear map J : Vg — V¢ which commutes with the complex
conjugation, inducing a decomposition V¢ = V(C1 e V(g L

where V(Cl’o is i-eigenspace, V(g’l is (—i)-eigenspace.

(5) We have isomorphisms: V¢ 2 V" C-linear, V¢ = V; C-linear.

Similar constructions can be made on manifolds.

Definition 1.3. An almost complex manifold is a manifold M?", together with (1,1)-
tensor .J, which is a complex structure on (co)tangent spaces pointwise. More precisely:
(1) J e (M, T*M ® TM), called the almost complex structure.

(2) Vpe M, J,: T,M — T,M is a complex structure on T, M.

(2’) Vpe M, J, : TyM — TyM is a complex structure on 7M.

Proposition 1.4. A complex manifold admits a natural almost complex structure.

Proof. Let M be complex manifold of complex dimension n.

Then its underlying real manifold M, is of real dimension 2n.

We have canonical R-isomorphism T'M = T M,.

Multiplied by ¢z on T'M gives an almost complex structure on M. O

1
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There are various examples of almost complex structures which do not arise from
complex structures, for example S This inverse problem is answered by Newlander-

Nirenberg Theorem.

Theorem 1.5 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. Then
there is a complex structure on M which induces the almost complex structure J if and

only if J is integrable.

Remark 1.6. For smooth manifolds and smooth J, this theorem is a corollary of Frobenius’

theorem. We treat with weaker smoothness in this report.

2 Local Representation

Let M be a manifold.
Lowercase letters j, k, [, - -- denote indices from 1 to n.
Greek letters u, v, A, --- denote indices from 1 to 2n.

The Einstein summation convention is employed.
Recall the complexification TM¢ = TM ®g C, when M is R-manifold

If M is a complex manifold, (27) be a complex coordinate.

The induced almost complex structure can be described as follows:

(27 = Rez’,y’ = Im 27) is real coordinate for the underlying manifold Mj.
dz’ — idz’ gives the almost complex structure J : da’ — —dy?, dy/ — da/
Moreover, dz7, dz’ form a R-frame of T'(My)c.

The extension J : TgMy — TgMy is d2? — id2?, dz7 — —idz?

Now assume (M, J) is an almost complex manifold.
Let (z!,--- ,2°") be a R local coordinate system.
We can introduce complex coordinate (not necessarily analytic) by

Zj:$j+i'xj+n, Zj+n:'z_j:xj_i'xj+n

All complex coordinates (z#) in this report satisfy the convention 277" = 2,

refer to it as (27), without explicitly mentioning (z7).

Let J € I'(M, T*Mc ® T Mc) be the natural extension.
Then J has local representation

0
A
J = Jﬂdz“ ® @
Jdt = Jyd!
B, \ 0
Tom =g
2

and we often
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Now J is almost complex structure means
AU v
INJY = =0, (24)

Definition 2.1. A function w = w(z) of (z7) is called analytic with respect to the almost
complex structure J, if

Jdw = idw, Jdw = —idw (2.5)
A chart (¢*) is called analytic w.r.t. J if each (7 is.

Lemma 2.2. J is induced by a complex manifold if and only if M can be covered by
analytic complex coordinate charts.

Proof. Let (¢*), (n*) be two coordinate system analytic w.r.t. J
We shall prove that the transition map (¢7) + (1) is holomorphic.

Y
It suffices to prove that 877k = (. Calculate as follows:
a¢
o on’ =k
j
dny’ = ade( + de( (2.6)
Jayp = 27 = gack + =L o L ydct (2.7)
¢ ag
o’ —k
idn = Z@deC — deC (2.8)
J_
(2.6) +i(2.8): a—ﬁkdg’“ =0 (2.9)
a¢

This lemma shows that the question whether the almost complex structure comes from
a complex manifold is purely local.
We now discuss this local problem.

By diagonalization, we can apply a suitable linear transformation, and then assume
that (2.5) holds for Z = (27) at Z =0, i.e.

Jdz1(0) = idz?(0), Jdz'(0) = —idz’(0) (2.10)
Under this assumption, we now give some equivalent description of (2.5).

Lemma 2.3. For w = w(Z), the following are equivalent near Z = 0.
(1) w is holomorphic w.r.t. J
(2) Jdw = idw
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Oow  Ow . 0w .. Ow  Ow ow v,
(4) i @Jj + ﬁjj = @ij + ﬁjjm
Ow  Ow Jh _|_8_wjk+n

(5) Vi = g ren + oz i

Proof. (1) = (2): trivial.
1

(2) = (1): J preserves complex conjugate.
0 0
(2) = (3): dw = a—u;dz“, Jdw = 8—UZJ§fdz’\, compare the coefficients.
2 z
(3) <= (4): trivial.
(4) <= (5): We restate the problem in the language of matrices:

Jk o gktn Ow Ouw
= [JH*] = J J — | — | 9z
J[A]LmnﬁﬂyX Ewl[%}

To prove that (il — J)X = 0 is equivalent to the last n rows.

ik — gk gt

T T — J J J

== [T ] .
. 6k — J5(0) —ﬁﬂm)} F o]

il —J)(0)= |7 " g T | = : 2.12
( )(0) [—%J@ ik — Jr(0) 0 2il (2.12)
. iok + JF00)  JFM(0) 21 0

I =7, 7 = 2.1
(il +7)(0) lﬁm@ id% + JE (0) 0 0 (2.13)

Claim: A € CN*N | A? =], then rank(il — A) + rank(il + A) = N
The claim is an easy linear algebraic problem, we omit the proof.
By (2.12), the last n rows of i — J is linearly independent near Z = 0.
By (2.13), rank(i/ + J) > n near Z = 0.
Now by Claim, rank(i/ — J) < n near Z = 0.
So rank(il — J) = n near Z = 0, and its row space is generated by the last n rows.

The proof is completed. 0
Now we can solve from Lemma 2.3.(5) to obtain that
ow e Ow
g7 "ok (214)
where a¥ is defined near Z = 0 by [a%] = [i6} — JFEr] 7 [JE,, ]

More precisely: (6% — J¥ M af = J!,
Then (2.14) is equivalent to that w is analytic w.r.t. J.
Note that a%(0) = 0.
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3 Integrability Condition

Assume that we are given analytic coordinate (¢7) w.r.t. J, then:

oI oI
Jd¢? = id¢/, C - = aj, 8; (3.1)
a¢’ ¢/, o¢ 0 o¢

d¢? = a7 +a—dk aldl k@Zldzk azl(dz+akd ") (3.2)

l l l 3=k : j aCJ l

Let u' = dz' + a},dz", then (3.2) is d¢? = R

j —1
Let [b}] = [%} , then u! = bd¢/

du = dbl A d¢7 = gg‘k b} A (3.3)

This leads to our first formulation of integrability condition.
The integrability condition: the exterior differential of u! is a sum of exterior products
of 1-forms with u*.

This formulation is close to the modern description of integrability condition. (We'll
return to it in the end of this report)
However, it’s not easy to use. We shall reformulate it into a more computable form.

Define operators L; = % — %
0 , 0 0 m O
taty = (5 ~okgn ) (55~ a)
02 4 0 Oap 9 o o2 +alaa;n 9 alam 92
C0zhoE Moow 0zF 0xm U 9zFoxm M 02 9 R 021027
82 62
Note that 90— Do we get:
oa™ oa™ oa™ oa™ 0
LilL.— L.L: = L et B 194\ 9 4
ok TR (azk “ou oz 821)827” (34)
m aa;n l aam .
Let L7} = ok %, —~-, then (3.4) is
m m a
LjLy — LiLj = (Lj,k - Lk,j)az_m

5
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Proposition 3.1. The integrability condition is equivalent to that L; commutes with each
other.

Proof. By (3.4), L; commutes with each other if and only if LY} = L}

du™ = d(dz" + a7'dz’) = da]' A d7
—a;nd A dz7 a]d A dZ
8zl z z —I—a— Z

"dz /\dz]—i—L L dZF A A7

J 7] 8
51 dz! A dZ + al,

0z
Oaf | kA 35i
= u /\dzj—l—Lmdz A dz?
02!

oa’" :
= (a;dzJ)Au + L7 dz" A d7

It LTy, = Ly;, then L7 dz¥ A dz7 = 0, the integrability condition holds.
On the other hand, assume that for 1-forms v, = vhkdzk + vl7k+ndik

L dz ANZ = A
Then we have:

L) W28 AF = v At = (0 d2” + osadz®) A (A2 + aé‘dij)
= ”hkdzkdzl + U dZ¥ 2! + vpaldz?dZ + vy pnaldztdz

= vhkdzkdzl + (Vkjan — 1, kA )dzjdz + U ktn @y Ldzkdz
By comparing coefficients, we get

Uik = Uk,

!
Uk,jtn = ULkA;

Therefore
vl7k+na§ = vmyla,’:‘ag = vhma’,:‘aé- = U jinly = vl7j+na§€
PAZF AT = vy pgaidzt AdE =0
We get L7}, = Lj";. The proof is completed. O

Conclusion: If J is induced by a complex manifold, then the integrability condition
holds: L; commutes with each other.

We now need to do the converse. Assume that the integrability condition holds, to
find a complex analytic coordinate system (¢7).

6
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Lemma 3.2. Assume that the following equations hold:

02" g 0Z™
___m

ac ac’

(3.5)

Then (¢7) is analytic w.r.t. J

k
Proof. Evaluation at Z = 0, then 8—(O) = 0.
a¢’
: A : 02"
Since (z*), ((*) are two coordinate system, det acx #0

07" \ . .
Then — | is non-singular near Z =0
_8_@_0_@7821+8Cj87" b 8‘”‘8(]4_0{787”_87"
N (9Zk 0 8Zk az™ 8Zk 5’Ck ozt ogz™ 5’Zk B 8Zk
Therefore L,,(? = 0, (¢7) is analytic w.r.t. J O

L’

4 Integral operator

Through this section, we use z,(,--- to denote single complex variable in C
We want to solve equation of the following type:

e (4.1)

Definition 4.1. Define an operator 1" as follows

rr¢) = = [ L) gsaz (4.2)

2m Jpz—C(
where D = B(0, R) = {2 : |z| < R} for some fixed R > 0
Example 4.2. For all ( € D = B(0, R)

1 dzdz -
Tl(C):%/Dz_C:C (4.3)

Proof. Let z =z +iy =re?. Let S(0,7) ={z€C:|z| =7}

L dzdz -1 dzdy —1/ dr/
2mi Dz—(’_ T Jpz—C Or)z

dé ire®de
or) = /S(O,r) z—C B /S(O,r) iz(z = () N /S(O,r) iz(z = ()
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If(=0,then VO<r <R

1
(b(T)Z/ dz =2mi-Res— =0
S

(0,r) ZZ(Z — C) z=0 7,22
It ¢ #0,
. 1 27
QWZ.}Z{ZGUSZ'Z(Z—C) =-7 if0<r<|(]

o(r) =
271 - (Res + Res

1 1 '
S

In both cases,

1 fdzdz -1 [F o2 g -
5 DZ_C_W/O¢<T)TdT_/O C7“d7“— C =
O
Theorem 4.3. Let o >0, f € C*(D), D = B(0,R), i.e.
Llpa(f) = sup |f<21) — f(22)| < 00
21,290€D |Z1 - ZZ‘OC
Then Tf(¢) € CY(D), with deriatives:
0
8_ZTf(O = f(¢) (4.4)
5, 1 fGE) =)
o 1.0 o0, 0 1,0 0
Proof. Recall: ac 5(% - za—y), 5_6 = 5(% +za—y)
0 1,0 0

=Tf= 5(%Tf+i8_ny)

;;0 (Tf(C RS (R Tf(C))
= sz(lj) <z—é—h+z—§2—z’h - ;tlg) dzdz
i), - GIC —?ffh(;gz —c—im

i 1) - 1) i
R e ey vy

8

230



Now estimate

)~ 10 i

/D C0G-C e
£(2) — £(0)

< C/D 2 Clle—C —hlle—C ] Y

. 1
< CLlpa(f)/D |Z_C|1—alz_g_h||z—g—ih|

Let D1 = B((, %), Dy = B((+ h, %), D3 = B(¢ +ih, %)

1
—dxd
Ahk—dlﬂz—C—MV—C—ml Y
h

C 2

a—1
<72 i rl_ardr:C-h

1
—dad
Z¥V—CPﬂZ—C—MV—C—m| Y

h

C 2 1 a—1
§h2_a/0 ;rdr:C’~h

1
—dxdy
uLJz—d“ﬂZ—C—MV—C—Hﬂ

Let Dy = B(¢, %) — (D1 U D, U Dy), Ds = D — B((, %)

1
—daxdy
A;V—CPﬂV—C—MV—C—ml

2 . a—1
<SCW- s =Crh
/ L dxd
ps |2 = ("2 = ¢ = h[|z — ( —ih]|
R 1
<(C rdr < C dr=C-h*!
3h r3—oz 3h 7“2_0‘

2 2

Therefore we have

) - 10 i
/D OG- h)—¢ i)

9

dxdy

< CLip,(f) - h*™"
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Similar argument holds for =

10 )
SeTF = 3T =i )
B f(2) 1 ) 1—i _
=i o ( —(—h z—g—ih_z—g)dZdz
— Jim () (== 5 2dz
Y e e e L
[ UG RO -y
—,£:0/< OG—C—hE—C—i)
1) 119 S - FQ)
- g [t T z—c—zmdd
. 2(7(2) ~ £(0) 0@,
}lHoD(z—C) 2(z=(C— h)(z— —zhdd / (z—¢ dd
The proof is completed. O

Lemma 4.4 (Mean Value Theorem). Let w be a convex domain, f(z) € C'(w)

Lip, (f) < sup f' + sup | == (4.7)
f(z1) = f(20) = g—f (71— 2) + g_]; (Z1 — Zo) (4.8)
Proof. Let 2y = 2 + t(21 — 20), 9(t) = f(2) = f(20 + t(21 — 20))
zO|—|/ dt|</ g (Dldt
90 = Lz (- 20 + ) (5 - )
This proves (4.7). For (4.8), use Mean Value Theorem in R? twice:
f(z1) = f(20) = %(2/) (@1 — w0) + g_]y”(z,,) (1 — o)
0_f 8f)21—20+51—50+(13_f_16_f)21—20—51+70
0z 0z 2 0z 0z 21
Zg—]; (21— 20) + g{ (Z1 — Zo)
Be careful what this formula means. O

10
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Theorem 4.5. We have the following estimates:

ITf| <C-R-suplf] (4.9)
2ry| < o
0
eTe| < 0 R Tiny( (a.11)
Lip,(Tf) < sup|f|+ C - R* - Lip,(f) (4.12)
0
Lip, (a—sz) — Lip,(f) (4.13)
Lip, < CTf> < C - Lip,(f) (4.14)
Proof. By (4.4), it’s trivial to get (4.10),(4.13)
| f(2)] 1
C dzdy < C — dazdy = CR
Tl < /DIZ—CI zdy < Csup|f| I sup | f|
d 1f(2) = f(Q)] Lip,,(f) .
= C | —————— 2 dad C dxdy = CR”
'3CTf ’S /D |z = (? v = /B(o,zR) |2[2 Y BLipa(f)
Lip,(Tf) < sup %Tﬂc)] \ SETHO| < s ]+ CReLin, (1)
‘V’Cl,@ S D, let Dl = B(C2,2|C1 - 2|> N D, D2 =D — D1
0 0 f(z) = f(&) f(2) = f(G)
BTG TG = g | FE e o | S e
1 1 1 _ 1 f(G1) = f(G)
‘1‘% DZ(f(Z) - f(¢1)) <(z “aP (- gz)z) dzdz — i b (2= G)? dzdz
f(2) = f(&) Lip,,(f) .
dzdz| < C ZPal) qady < C Gl
[ = aza < / o Ty < OLip, (DG
f(2) = f(&) , Lip,,(f) .
dzdz| < C dzdy < CL — Gl
Dy (2= ¢2)? = /B(C2,2|C1—C2) |z — Gof* = tpel /)l = G

11
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7,
27 Jp,

e UCEE

21
1

211

<C

L /D (F(2) — £(Q)

1 1

) (i

— o) — o €2)2) dzdz
(G —)22 -G — &)

(z

Llpa(f)|g1 - g2|

B E e d"’dz'

dxdy

C-Be2a-c) 12— @P

— (o

r3—a

> Lip, (/)¢
—C
/2|C1—C2

dzdz _L/ i( -1
(2= ) 2mi Jp, 06 \ 2z — G

(4.14) is proved by these together.

dr = CLip,(f)IG — G|

_ 0 —1 1 _
) dzdz = 8_@ (% /D2 o @dzdz)

5 Higher Dimension Case

e

We now deduce corresponding conclusions in higher dimension.
We work in C", let 0 < r < i,() <a<1fixed, D=B(0,r) cC

Consider functions defined on 2 = {(¢ Lo,

Define the integral operators:

1

ij(cla"' 7Cn)__/ f<<17 7Cj7177—7<.j+17”' 7Cn)
D

2w

0

Let 0; denote either 55 O =

ac’

Let 0; denote a difference quotient operator of the form:

5jf: |5Cj|_a(f(cla"' a<j+5cja"' 7Cn)_f(cla 7Cj7"'

Theorem 5.1. Under suitable differentiability conditions, we have:

o0 .
1) —T7f =
(1) G =1

o
¢

T G ) — f(C - ¢

5’ 1 1 _ 1 1 B B a .
‘a_@(%/w_@dzdz‘z—m [ ) = gr0-@) =0

") ¢ < V1< j<n}

0
TdT_d;. (5.1)
,¢") (5.2)

¢") drd7

L1 FC - ¢

12

(r-0p
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(2) Yk # j, TV =T70, 0517 = T70y, 61,0; = 0;0
(3) We have the following estimates:

T’ f| < Crsup|f] (5.3)
Z1f| < sl |
g |0, TV f| < sup |f] + Cr®sup |3, f| (5.4)
a—C]ij < Cr®sup |9; f|
|5jTJf‘ < Cr*™*sup | f| + Crsup 10, f] (5.5)
5j%ij < sup |0;f| |
(g 10,0, T7 f| < C'sup|; f]| (5.6)
5]0_0ij < C'sup|d; f|
Proof. (1) follows from Thm 4.3, (2) is obvious, (3) follows from Thm 4.5 O

Corollary 5.2 (potential theoretic lemma).

sup [T f| + r®sup |6, T7 f| + rsup |9;T7 f| + r' T sup 6;0,T7 f]|
< Crsup|f| + Cr'™sup |9; f| (5.7)

Theorem 5.3. Consider the following equations under suitable differentiability conditions

ow
i fi (5.8)
Write F'= (f1,-- , fa), define the combined integral operator:
< (=1)* 0 9
TF =Y Yoo T — TR T, (5.9)
s=0 <S + 1)' 1,0 ,Js,k distinct aC] aC]S

Then TF € C', with derivatives

—TF £ Z Tt il N E is " (8{5 — 81‘2) (5.10)
C oy dsyk,g distinct aC ag ac 8C
In particular, if F' satisfies the compatibz’lz’ty relations
0
— fg = —fx (5.11)
¢ oc’
then TF is a solution to (5.8)
13
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n—1 s
iTF:Zﬂ > A
=0

¢ (s+1) e ok distines 0 OC" ac”
n—1 s

= (—1)1 ' ( 3 T il .,_Tjs%Tk%fk
s=0 ( * ) 1, s k,j distinct aC aC 6(

+ Z T ?jd R NE ?js fj
J1,++»Js,j distinct ag 8C
1y diee sk distinet a¢ ¢ 8{’ 6{’

n—2 _1)\s _1)\s+1
5=0 \j1,--,js,k,j distinct 8C aC aC (8 + ) (S + )
0 0 9, (—1)5!
+ Z T — - s — k_kfj' +fj
1, ,Js,k,j distinct agj acj 8( (8 + 2)'
—2
I D VI e el P e VA B
s=0 8 J1,,Js,k,g distinct ag a( aC ag
O

6 Normed Function Spaces
We introduce some norms on the space of functions on Q = {(¢*, -+, (") : |¢7| < r,Vj}
Recall that: 8
0; denotes either — or —

a¢7

d; denotes a difference quotlent operator of the form:

= ‘6Cj|7a(f(cl7'” 7<j +5CJ’ ’gn) - f((lv 7Cj>"' 7<n)) (61)

Let 0™ denote an operator of the form 9;, - --9;,, with ji,-- -, j,, distinct.

Let 0™ denote an operator of the form 9}, - -+ 9;,, with 7,1, , jm distinct.

Let 0™ denote an operator of the form 9, - --9,,, with jy,--- , 7, distinct.

Let 6™ denote an operator of the form §;, - -+ d;, with j, j1,- -, j,, distinct.
14
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Definition 6.1 (Norms). For functions z, f : Q — C, define

n T.ka
ol = Y0 o sup 9]

k=0

nok
r
2l = Y 7 sup 102
k=0
n

,r,k:
|Z|n+a = ESUPH [8k ]
k=0

n—1 p
|f|izfl+a - kz E sup Ha[akdf]
=0

where the supremum runs over all suitable operators.

Lemma 6.2. H,[z], |2|n, |2nta; |fI 110 are indeed norms.
And the normed spaces they induced are Banach algebras.

Proof. 1t’s obvious that they are indeed norms.
The completeness follows from that

8sz:Zajz, 5j22225j2

which follows from the dominated convergence theorem.
The rest to prove that they are multiplicative.
By Leibniz rule,

9;(fg9) = 0;f - g+ f-9;9, 0;(fg) =5jf'9+f'5jg
O(fg) ~=0f 0lg d(fg) ~0f &g

ko no(k=0V k& (k=)

1=0
It follows that

00 m (Sk 5mfk
Halfs) < 32 v o gt o (50 < MUl

m= k
e\ 0" f] 0™y
[fgln <D r™ ) " sup —=—sup = |/lalgln

m=0 k=0 k! (m )
0 m k gm k
ol < 3> |5 [t [ 2] = sl
m=0 k=0
j N oI f gmkif
‘fg’n—l—f—a S Zr Zsup Ha |: k! :| SupH |:<m ) :| |f‘ 1+o¢’g’n 14+
m=0 k=0

Therefore the normed space they induced are Banach algebras.

15

(6.2)

(6.3)

(6.4)
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Definition 6.3. For Z = (z',--- ,2"), F = (f1, -+, fn), define

’Z|n+a = Sup |Z |n+a7 |F’n 1+a = SUP ‘f]‘n 14+«
<j<n 1<j<n

They are indeed norms and induced Banach spaces.

Lemma 6.4.

k+ma

|Z|n+a = Z k'm sup |6m8kz|

THmO‘](Sm@kz\ < C|2lnta

k+ma

e HQ_Z o sup |67 9 f|

k-i—ma sup |5mak]f’ < C‘fln 14«

Proof. By definition,
k+ma

k'm

-k
|2|nta = —SupH [0F2] < Z sup\5m8kz]

k!
7«k+m“|5’”8kz| < CrfH,[0%z) < C|Z|n+a

The other two can be proved similarly

Example 6.5. A
| nga < (24 27%)r
Proof.
J DI
0;¢7 =1 = @I < (2n)'”

k+ma

. r .
e < sup [6mok ¢
|<|+_%;k!m! p |0 C’|

—sup|§3\+rsup‘gg ‘—l—r sup |d; |

= (2+2)r

16

(6.6)

(6.10)

(6.11)
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Lemma 6.6. V. [,

T () 1ia < CrlfE1ialglhiia (6.12)
|TJ( g>|n+a < Cr‘f|£z—1+a|g|n+a (6'13)
Proof.
k+ma

T (f9) 110 < Z o sup|m 0 T (fg))
Let ® be a term of the following form
o = phtmagmighil(fg)
We shall estimate terms of the following types:
T'®, r6;T'®, ro;T’®, r'*t*6,0,T7®
which are bounded in absolute value by

Crsup |®| + Cr'tsup |§; 9|

,r,|q)| _ Tk+1+moc|5m;jak;j,l(fg)| < Tk—i—l-l—moz Z C|5s;jat;j,lf| . |5m—s;jak—t;j,lg|

s,t
=1 Critse|g gt | ot gnms gt =ty < Orlff_1ral9lio1ia
s,t
T1+a’5jq)| _ ,rk+1+(m+1)aMjém;jak;j,l(fg)| < rk+1+(m+1)a Z C|538t;jf| . |5m+1fsak7t;lg‘

_ Tzcrs+ta|5sat;jf| . |T,k—t+(m+1—8)a5m+1—sak—t;lg| < CT|f|f{_1+a!9!L_1+a
s,t

The other one is proved similarly. ]

Corollary 6.7. Vj,1

|T]f|n 14+« < Cr|f|n 1+a (614>
|T f|n+a S Cr|f|n—l+a (615>
Lemma 6.8.
|8 f|n 1+cx —= |f|n+a (6-16>
17
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Proof.
k+ma

|ajf\;_1+ask2 o sup 079590, | < | flura

O
Corollary 6.9. '
’Tjajf’nJra S C‘f‘nJra (617)
Theorem 6.10.
ITF e < Cr|Fln-1+a (6.18)
Proof. Recall
n—1
(1) N R
TF =Y > T — T T,
s=0 <S - 1)' 1,0 ,Js,k distinct aC] aC]
|Tj18j1 o 'Tjsajskak‘|n+o¢ < C|kak|n+a < Crlfk; fz—l—f—a < CT|F|n—1+o¢
[
Lemma 6.11.
H,[z] < Oz, (6.19)
Proof. By Mean Value Theorem
6,2] < Cr'~“sup |0;2|
T’ka . T’k .
Hol2] = k <7 sup|d%2] < C;Hsupla z| = Clzln
O
We now consider a function a(Z) = a(z!,--- ,2"), and its norm as a function of (¢7).
K

Let 0%a denote an operator of the form: (p1,- -+ , e may not be disjoint)

4 Ozb1 o Oz’
Note that |Z],1a = sup |27 |nia = sup |2*]nia

Lemma 6.12. Assume that a € C", |20 < 1, |05a| < K, V0 < k < n, then

CK

CK|Z|nsa, if a(0) =0 (6.20)

Ha[a] < C|a|n < {

18
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Proof.
rd i
la|, = Z i sup | a|
J
V4 > 0, by Bruno’s Formula, &’a is linear combination of the following terms:

o = (6;05)(6]'12#1) e (ajkzllk>’ where &t - .. 9% = §J

PI1@] < K], 2], < K| Z]ora

For j =0, |a|] < K. If a(0) = 0, by Mean Value Theorem,

oa
0(2)] = 14(2) = a(0) = | 5 - (= 0| < CK|Z]
O
Theorem 6.13. Assume |Z|,10 <1, a € C*", |0%a| < K, V0 < k < 2n, then
CK
Z)lnta < , 6.21
o) {CWW a6 (621
Proof. ’
rd ,
a(Z)|nta = Z ﬁHa[&ja]
—~ !
Vi > 0, &a is linear combination of
® = (05a) (07 2" - - - (0 2", where Ot - - - O = O
7 Ho [®] < Hy[05a]r Hy [0 2] - - - 9% Ho [0 2] < K| Z|pya
For 7 =0,
CK
H,la] < Clal, < :
CK|Z|yta, ifa(0) =0
O

The same method shows that
Theorem 6.14. Assume |Z|,10 <1, a € C*71 |05a| < K, V0 <k <2n —1, then Ym
CK
Z)|m < 6.22
‘a( ) n—l4+a — {CK‘Z|ZL1+ON Zf CI,(O) — 0 ( )

19
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Theorem 6.15. Let Zy = (2]), Zy = (), | Zilnsas | Z2lnsa < 1,
a€ O |10ka)l < K,V0<k<2n—1, then:

a(Z1) — a(Z2)[3 110 < CK|Z) — Zs|nta
Proof. By Mean Value Theorem

Oa

a(Z1) — a(Zy) = £

(2 =)+ o7 (= — %)

a(Z1) — a(Zo) |77 11 < ClOgall 110 Z1 — Za|nsa < CK|Zy —

7 Proof of Main Theorem

We now solve (3.5)
oo
¢’ "ol

under integrability condition and suitable differentiability conditions.

Let f¥(Z) = —af, 3_m then (3.5) is a_k = fF(Z2)
ac’ ¢’

Let F* = (fF,--- | f¥), let 28(Z) be the value of TF*(Z) at (! =
Consider the integral equation Z = ©(Z):

H =+ TFNZ) - %(Z) = 6%(2)

(6.23)

Z2‘n+a
O
(7.1)

Lemma 7.1. A solution of (7.1) satisfies (3.5), for sufficiently small r

k =m
Proof. Assume that (7.1) holds. Let gF = 02 — +ak, e 2 . To prove: gF =0
¢’ ac’
Apply i to (7.1), ai = iTF’“(Z)
a¢’ o¢’ o

8Zk oz™m 0
g9 == +an— = TF(Z) - f}(2)
3C o¢  o¢

N > T ?. - T ?. T! <8J_tl.
s=0 8 + 2 1y 5Js,l,g distinct aCh 8C]S 8C]

20

k o ff
B a?)

242



off off a( kag)_i( ka_m)_ﬁafn oz dak, oz

— — am — — m — — — —
o oc o ac | ac ac’ ac  oc o aC
_ Oay, 920 9z" N day, 02° 0Z™  Oay, 02" 9™ aak oz° oz
020 ¢ o¢ 0= ol o7 0" of o 9% o ol
dak 82"” pazm az azm 8(1 paa,";1 0z° oz™ [ dak, p&z?’j1
= 9 - - I g T
0zP ac ag 8( gc 0zP 343 oC 0z 0zP
dak oz™ oz™ 0z° 0z™ 0z 9z™ dak ,0Z™ ,0Z™
:(’)7; 9 _j—gﬁ-’ - | = _jLI:rL,s_T]__l ]:n,szﬁr; 9——9j 7
z oC oC o¢ OC ¢ oC z 8C oC

Here used the integrability condition L = L¥ = and commutes the index s, m.
We get a system of linear integral equations of g;?

n—=2 . 4\ ) ] k Zm
6 =2 (< +1)2)l > ~ i‘l T ist @a’fﬁ ( P —gga— )) (7.2)
s—0 \3 " g1, dssl,g distinct ¢ ¢ o aC 8C

It suffices to prove that (7.2) admits only the null solution for r sufficiently small.
Now estimate the norm:

Z‘QJnHa—ZC Z

J
T79;, -+ T, T (gam (970;z" — g;?'a,zm)>

7k,s  j1,0.7s,l,7 distinct n—1+a
l aaﬁm p 7
<oy Yl (azp (g007" — ghoE™ )> )
gk 1#£] n—14+a
8am zm J aam !
SCTZZ<|gln 1+a apa apa |g]n 1+a>
5k 1#j5 n—1+ n—14+a
dak J v
SCrZsup Fr y sup |9;2™ [ HaZymn 1+a<CK7’Z’91 L e
5.k n—l+a p,l
Now for r sufficiently small, CKr < 1, Zj,k |gj |f171+a =0, gj =0 O

Lemma 7.2. Let Zy = (), Zy = (2)). If | Zi|nsas | Zalnsa < 4r < 1, then

|f ( )n 1+a S CKT (73)
11 Z0) = [ Za) 1 yo < CK|Z1 = Zalnsa

Proof.

|f |n 14+ = |a a_mfz 1+a < |afn|ZL*1+a‘a _mfz 1+a

CK
< CK|Z|pta - 7|7m|n+a < T|Z|121+a < CKr

21
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\FH(20) = fE(Zo) 1 s = lab(20)0,27 — ak (Z2)05Z5 )11

<lap,(Z1) = a4y (Z2) [ 140l 0571 T 10+ lam (Z2) 1110l (F = 251

C C
SCK|ZI - ZQ|n+a?|len+o< + OK|ZQ|n+o<?|Z1 - Z2|n+a S CK|ZI - ZQ|n+a

Theorem 7.3. Equation (7.1) has a solution for r sufficiently small.
Proof. Y| Z|pia < 4r

|®k<Z)|n+a = |<k + TFk(Z) - Zg(Z”n-&-a < |Ck|n+a + 2|TFk(Z)|n+a

(2427 + Cr|F*(Z) o140 = (24 27)r + Crsup | fH(2) 140

<
<@2+2"r + CKr? < 4r

For r sufficiently small.
V!Zﬂnm, |Z2|n+a <d4r

O8(Z1) = ©(Zs)|nsa = |TFM(Z1) = TFM(Zs) + 26(Z1) = 2(Z2)|nta
<2ATFNZy) = TFMZs)|nva = 2[T(F*(21) = F*(Z2))|nta
< Cr|F¥(Zy) — F¥(Z2)|n-14a = Crsup | f£(Z1) = [F(Co)l 140

1
< CKr|Zy — Zs|pga < 5‘21 — Zslnta

Now apply Banach Fixed-Point Theorem.

]

Remark 7.4. The proof above only shows that there is a solution (¢7) which has mixed
derivatives. We need some standard results about elliptic equations to ensure that (7 has

better smoothness. We omit it here.

8 Modern Formulation

Let (M, J) be an almost complex manifold.
Recall: TM¢c =TM ®g C.
The almost complex structure induced a decomposition

TMe =TMY @ TM, T*Me = T*MY @ T* M

where TM'Y is the bundle of i-eigenspaces, TM%! is that of (—i)-eigenspaces.
This leads to a decomposition of the bundle of exterior algebras

N'T*M = @ AT*M, NT*Mc = @ A"T*M = P AT M

pt+q=n n P,q

22

(8.1)

(8.2)
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where APIT*M = (APT*M™O) A (NIT* M)
Let QPN = T'(M, AP2T* M) be the collection of (p, ¢)-forms. Then

"M =T(M,N"T*M) = @ Q"M

ptg=n

Recall the exterior differential operator

d: Q"M = EB OPINM — Q"M = EB P M

pt+q=n p'+g'=n+1

QPIM is sent to @, oy T M
Let’s first look at the case when J is induced by a complex structure.
Let (27) be a complex analytic coordinate system.

Then dz’ forms a local base of T*M'Y dz’ forms that of 7% M%!

Now a form w € QP4 has the following local representation

w= Z wy ydz’ A dz!
LJ:{I=p,|J|=q
we used the multi-index notation: dz! = dz A ---dz" when I = {iy,-- iz}
dwo= Y dwynde’ AdZ

L,J:|I|=p,|J|=q

8 | 0 '
=S T4 ndef A dE Y (1P A dE A dE
/ 82] g 32’]
I,J,j I:‘LJ
Thus dw € QPTLINT @ QPN

This leads to the modern formulation of integrability condition.

Theorem 8.1. Let (M, J) be an almost complex manifold. TFAE:
(1) J is induced by a complex manifold.
(2) For u! = dz! + aldz*

the exterior differential of u! is a sum of exterior products of 1-forms with u*.

(3) the exterior differential d sends QPIM to QPTHIM @ QPITLN

Proof. We have showed that (2) <= (1) = (3).
Now assume that d : Q'OM — QM ¢ QMM = QLYOM A QM
Claim: Q"M = span{u'}
Firstly, we prove that u' € Q'OM:
Jul = Jdz' 4 ak Jdz" = J;dzj + J]l-+nd§j + aLJJ]«””dzj + akJrrdz

Jtmn
iu' = idz' +iadz" = i0;d27 4 iay 0y dz

23

(8.5)

(8.6)

(8.7)
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By comparing coefficients, it suffices to prove that:

ar(i0; — Jif) = —(=Jj 1)

j+n

(=) = —(i8} — J)

Note that (8.8) is the definition formula of al,

(8.9) is obtained from (8.8) by a linear transformation.

Now u! € Q'"OM, and obviously u' are linearly independent,

note that dim Q'°M = n, therefore Q'OM = span{u’}

Thus d : span{u'} — Q' M A span{u'}, which is exactly what we need. O
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the Unique Conformal Mating between
the Ideal Triangle Group and the
Anti-polynomial

Qiandu He
June 2022

1 Introduction

In this final project, we will going to introduce how to produce a conformal
mating between a map (denoted by p) constructed from the ideal triangle group
and the anti-polynomials (a shorthand of anti-holomorphic polynomials) z* by
using Schwarz reflection map (denoted by o) of the deltoid. The most of fol-
lowing results and proofs are taken from [1]. In particular, it can be expressed
as the following theorem (theorem 1.1 in [1]):

Theorem 1.1. (Dynamics of deltoid reflection).1) The dynamical plane of Sch-
warz reflection o of the deltoid can be partitioned as

C'=T>*UT U A(c0),

where T is the tiling set, A(c0) is the basin of infinity, and T' is their common
boundary. Moreover, I' is a conformally removable Jordan curve.

2) o is the unique conformal mating of the reflection map p : D\ intIl — D
and the anti-polynomial fy : ® \D— C \D, z — Z2.

It’s hard to understand the mating in above theorem at first glance. There-
fore we will describe the basic dynamical objects associated with iteration of
Schwarz reflection maps and the meaning of mating. Given a disjoint collection
of quadrature domains, we call the complement of their union a droplet. Re-
moving the finitely many singular points from the boundary of a droplet yields
the fundamental tile. One can then look at a partially defined anti-holomorphic
dynamical system o that acts on the closure of each quadrature domain as its
Schwarz reflection map. Consider the reflection dynamics o defined on the clo-
sure of each quadrature domain, C admits a dynamically invariant partition.
The first one is an open set called the escaping/tiling set, it is the set of all
points that eventually escape to the fundamental tile (for zy here, the dynamics
of o can’t be iterated forever). The second invariant set is the non-escaping set,
namely, the set of all points on which o can be iterated forever. The last one
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is their common boundary, where the most chaotic and complex phenomenon
happens. On mating, note that the non-escaping set is analogous to the filled
Julia set in polynomial dynamics; i.e., the set of points with bounded forward
orbits under a polynomial when the tiling set contains no critical points of o.
While the o—action on the tiling set exhibits features of reflection groups. As
for their common boundary, which is simultaneously analogous to the Julia set
of an anti-polynomial (i.e., the boundary of the filled Julia set) and to the limit
set of a group.

At the end of these section, let us now detail the organization of this paper.
In Section 2, we give a description of the ideal triangle group II, the associated
tessellation of the unit disk, and the reflection map p. Here we also define
the topological conjugacy & between p and the anti-doubling 6 — —26 on the
circle T. In Section 3, we briefly review some general notions and properties of
quadrature domains and Schwarz reflection maps. Also, in this section, there
are some useful tools used in the proof below . Section 4 is devoted to the study
of the dynamics of Schwarz reflection with respect to the deltoid. The principal
goal of this section is to present the processing of the proof in [1], but for some
difficult parts, we will omit the concrete processing and give some introduction.

2 Ideal Triangle Group

Consider the open unit disk D in C. Let C~'1, C~'2, 53 be the hyperbolic geodesics in
D connecting 1 and w, w and w?, 1 and w? respectively. (w = e%). The closed
ideal triangle bound by these geodesics is called II below. For each i € {1,2, 3},
we know that C~’Z is an arc of a circle, the reflection of the circle restricted in D is
called p;, thus these three maps generated a subgroup G < Aut(ID), which we call
the ideal triangle group. As for the rest of the disc, we will denote the connected
component of D \ II containing intp;(IT) by D;, i.e., D UD, UD3 =D\ II.

We can define p : D\ intIl — D : z — pi(2) if z € D; UGy, for i = 1,2, 3.
Moreover, we can induct a symbolic dynamics through the map p as follow: Let
W :={1,2,3}, an element (i1,is,...) € W is called M-admissible if M;, ;,,, =
1, for all k € N, and we will denote the set of all M-admissible words in WN
by M (M is the 3 x 3 matrix whose diagonal elements are all zero and other
elements are all one). Similarly, we can define the M-admissibility of finite
words. Since p(D;) C D1 UD;40, p(D;) ND; = @, for i = 1,2,3 (all subscripts
is defined in module 3), the dynamics of p is similar to the symbolic dynamics
of M.

2.1 Tessellation of the Disc

Note that II is a fundamental domain of G. We can give the tessellation of D
arising from G to describe the dynamics of p.

Definition 2.1. (Tiles). The images of the fundamental domain I under the
elements of G are called tiles. More precisely, for any M —admissible word
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(i1, ..., 1x), we define the tile
Tihm’ik = Piy ©-.- O P4y (H)

We can write T% i by p in another way. In fact, we have p;, o ... o
piy (T?+) =TI because G is a reflection group. Thus T%% consists of all
those z € D such that p°»~1(z) € D;, ,V1 < n < k (to make sure the correctly
definition of iteration of p) and p°*(z) € II. In other words,

k
Titsesin — ﬂ p*(nfl)(ﬂ)in) ﬂp*k(H).

n=1

For a M —admissible word (41,2, ...), let us consider the sequence {0, p;, (0),
i, © i, (0), ...}, Since dp(0, p1(0)) = dp(0, p2(0)) = dp(0, p3(0)) and the element
in G keep the hyperbolic distance, thus any two consecutive points in this points
in this sequence is constant. Connecting consecutive points of this sequence by
hyperbolic geodesics of D, we obtain a curve corresponding to (i1, 43, ...). And
all these curves form a dual tree to the G—tessellation of D.

2.2 p—action on the circle T

First, we extend p as an orientation-reversing C'' double covering. As the di-
vision of Dy, Dy, D3, we have T = (D1 NT) U (0D N'T) U (0D3 N'T) with the
transform matrix M defined above. Also, one can see p|t is an expansive map,
therefore, for any element of M, the corresponding infinite sequence of tiles
shrinks to a single point of T (i.e., the curve corresponding to (iy,1s,...) lands
at Q(i1, 12, ...)), which allows us to define a continuous surjection

Q: M> =T, (ir,iz,.) > [ p” 70D, NT)
neN

which semi-conjugates the (left-)shift map on M (denoted as L) to the map
ponT.

Definition 2.2. (Semi-conjugation). Let M, N be topological spaces and f,g be
self-homeomorphisms of M, N respectively. f is called semi-conjugated to g, if
there is a continuous surjection h : M — N such that ho f = goh.

M 9 T

b L
00 Q
M>* —— T

We would add some explanation for the semi-conjugation and some property
of @ here because there are some similar conclusion of the mapping constructed
below with some similar proofs.

Actually, one can see the continuity of ) from the image of the landing of
curve constructed above. And for any point z € T, we can select (iy,is,...)
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properly such that p°=V(z) € dD;, ,¥n € N (if there is one more 4,, such that
p°"~ 1 (z) landed on OD;, , then we select the smallest one.)
To prove the semiconjugation, it suffices to prove

p(() P~V (0D;, NT)) = () p~ "D (0Ds,,, NT)).
neN neN

Note that p°=Y(z) € 9D;, N'T = p°"=2)(p(x)) € D;, N'T,¥n > 2, thus the

conclusion is corrected.

2.3 The conjugacy &£

We would induct the other expanding double covering of the circle, which is
22| (the action of Z% on angles of external dynamical rays) as follow:

m_o:R/Z — R/Z, 6 — —20

As the analysis above, The map m_o admits the same parition R/Z = |0, %] U
[1,2] U [2,1] with the same transform matrix M. Similarly, we can define a
continuous surjection

P:M>® = R/Z, (iy,is,...) ﬂm -
neN

’L n

which semi-conjugates the (left-)shift map on M to the map m_s on R/Z by
the similar proof. Thus we get the commutative diagram below:

R/Z « L — M~ —9 T
T
R/Z « L2 M> —2 T

and we can obtain the conjugation between pr and m_, by £ := Po @~ !. In
fact, to ensure the mapping is well-defined, we need to pay attention to, for
x € T, the time when the preimage of () is branched. By the definition of Q,
one more selection of i, implies p°™~Y(z) € {1,w,w?}. Because 1,w,w? are
all fixed points of p, the sequence {p°(™~1(z) : m > n} will be the same point.
One can see that the same property happens in the iteration of m_s, so we can
well-define the mapping £ on the such point € T. For the same reason, the
mapping £ := Qo P~ is well-defined and is the inverse of &, therefore, we find

the conjugacy between p and Z2 on the circle T.

3 Quadrature Domain, Schwarz Reflection and
Some Useful Tools

3.1 Quadrature Domain and Schwarz Reflection

First, we denote the complex conjugation map by ¢. We will give the definition
of the quadrature domain below. All these notions, properties and proofs is

250



cited from the Section 1 of [2].

For bounded case, a bounded connected open set 2 C C is a bounded quadra-
ture domain if it carries a finite node quadrature identity, which means there
exists a finite collection of triples (ay, myg, ¢k ), where ay, is points (not necessarily
distinct) in Q, my is non-negative integers, and ¢ is some complex numbers,
such that

VfeCQ)NH(Q), /Q FAA =" cp fO) (ar). (1)
k

Here, H () denotes the space of analytic functions in 2, C(€2) denotes the space
of continuous functions in Q. dA is the area measure. Therefore we will always
assume ) = intQ. Look back to (1), we can rewrite it by using the contour
integral in the right hand side of the quadrature identity,

1

VfeCQ)NH(Q), /Q fdA = f(z)r(z)dz, (2)

where,
o o 1 mk!
r(z) =ralz) = — chm
k

We will call rq the quadrature function and deg(rq) the order of the quadrature
domain €2. What’s more, we see that quadrature function is uniquely determined
by the quadrature domain as long as we require that all poles of r be inside 2
and r(co0) = 0.

For unbounded case, we will modify slightly the statement above. Let 2 C ¢
such that oo € Q and int Q = Q (also, we don’t want to discuss the case of
Q= @) The unbounded open set 2 is an unbounded quadrature domain if
there exists a rational function r = rqo with no poles outside 2 such that

_ 1
J e C@)NHQ), floo) = 0= / fid=2 4t @)
) 21 Jaq
The integrals over unbounded domains are always understood in the sense of
principal value,

/Ev.p./ = lim .
Q o B2 Janpo,R)

and the notions are all same as the bounded case.

To sum up, we have the definition for quadrature function below. In the rest
of this subsection, let Q C C (not Riemann sphere itself) be a domain such that
oo ¢ 9N and int Q =

Definition 3.1. (Quadrature functions). If there is a rational map rq whose
all poles are inside Q (with rq(co) =0 if Q is bounded) such that the identity

/fdAz l fR)ra(z)dz
Q 21 Jaq
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holds for every functions f € H(Q)NC(Q) (if Q is unbounded, we further require
f(o0) =0), then we call Q a quadrature domain and rq the quadrature function
of Q.

Also, we can define the quadrature domain by Schwarz funtions.

Definition 3.2. (Schwarz functions and quadrature domains). For a domain
Q A Schwarz funtion of Q is a meromorphic extension of t|aq to all of Q. More
precisely, a continuous function S : Q — C of Q is called a Schwarz function of
Q if it satisfies the following two properties:

(1) S is meromorphic on €,

(2) S =1 on 00.

The domain Q is called a quadrature domain if it admits a Schwarz function.

To be further, the map o ;=105 : Q — C is the unique anti-meromorphic
extension of the Schwarz reflection map with respect to 9Q2. We will call o the
Schwarz reflection map of Q.

The following theorem implies these two definition is equivalent. The proof
here is cited from the Lemma 3.1. of [2].

Theorem 3.1. (Characterization of quadrature domains). The following are
equivalent.

(1) Q admits a Schwarz funtion,

(2) Q admits a quadrature function rq.

Proof. Assume () has a Schwarz function S. Since S has finitely many poles in
), is continuous up to boundary, and of course finite on 9€2. We can construct
a rational function r which has exactly the same poles and the same principal
parts at the poles as S by add the principal part at all poles up (if S has a pole
at 0o, then we add the p(L) where p(z) is the principal part of f(1) at 0.), thus
when Q is bounded, we select r(c0) such that r(co) = 0; when co € Q, we select
r(00) such that lim,_,.(S(z) —r(z)) = 0.

Here we will induct the Cauchy transform as a tool in this proof. Actually,
for a Borel set E C C with a compact boundary, we denote by C¥ the Cauchy
transform of the area measure of E,

1

z—w’

B _l w w w) =
CF(e) =+ [ helw)dA(w). k(w)

We will calculate CC as an example, which is useful in the following proof as
well.

Indeed, if R > |z|, let € > 0 be small sufficiently such that the disc lw—=z| < e
is contained in the disc |w| < R. We will divide the integral into two parts:
Jwi<r = Jwi<rjw-zze T Jjw—s<e

Note that dw A dw = (dz +idy) A (dz — idy) = —2idz A dy = —2idA, for the
first part, we have

1 dwdw 1 w
o = 7( - ) dw,
211 |w|<R,jw—z|>e & — W 211 lw|=R lw—z|=e 2 — W

252



While

w z Z—w
dw :% ( - )dw
fjw—z—e Z—w |w—z|=€ Z-w Z—w

- ﬁw—z|_e(_ (Z - w)2 * Z = w)dw

= —2miz

Therefore, the first integral is equal to Z.
Note that dA = daxdy = rdrdf, for the second part, we have

2m 2m
l/ dacdy _ _7/ / TdcmH _ _f/ =049 — 0.
T Jiw—z|<e # re’ ™ Jo

To sum up, we get C'@(z) =Z.
We will discuss the unbounded case first. For each z € Q we have

O (2) = %/C dA(w)

Z—Ww

1 dwdw

" omi Qe W—2

1 _
=— e (follow from the Green's formula)
21 Jpq w — 2

:Lj{ Mdl”ij{ ") g,
21 Jaq w—z 2mi Joq w— 2

Note that we used the fact that the boundary of € is rectifiable and the as-
sumption that S(w) — r(w)|w=0c = 0 to make sure the first integral above is
well-defined. By residue formula, the first integral is equal to S(z) —r(z). Since
all the poles of r(w) are inside Q and z € Q, by applying Cauchy’s theorem
in each component of the interior of Q¢. Thus we have S = r + C* Vz € Q.
Moreover, these three maps are continuous in 92, so we can expand this identity
to the close of .

We can now examine r is the quadrature function of Q. For all f € H(Q) N
C(Q) satisfying f(oo) = 0, we have

/ fdA = l f(z)dz(the same reason as above)

21
1
=5 - S(2)f(2)dz
:2% rEf g p O (2)f(2)d=
7
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Since f and C is holomorphic in € and all achieve zero at oo, by using
Cauchy’s theorem in €2, the first integral is zero. It follows that ) admits 7 as
its quadrature function.

Suppose 2 admits quadrature funtion r satisfying the property introduced
in the Definition 3.1., especially for the case of f = ﬁ with z € intQ2°. Then

= [ = gy

T Jow—2 27 Joq z—w

Thus for z € 99, we have r(z) + C?°(2) = C%(z) = z which means that
S := 17+ C® is the Schwarz funtion of Q.

The bounded case have the same result by similar proof. Note that for
bounded case, we can omit the examination of the property of C*(z) = r(z) for
z = 00. Since co ¢ I, the property of S(z) in 9 is still right. O

Moreover, quadrature domains have some other interesting properties, the
real analyticity of their boundary, a sufficient and necessary condition for simply
connected quadrature domain for instance. (i.e. Theorem 3.4. and Theorem
3.5. in [1]) Here, we won’t add more proof of these theorem, because they won'’t
be used in the following proof.

3.2 John Domain

In Section 4.3. of [1], this tool is used to prove conformal removability of the
limit set implying uniqueness in the mating theory for theorem 3.2.

Definition 3.3. (Conformal Removability). A compact set E C C is confor-
mally removable if for all homeomorphisms f : C — C, if f is conformal on
C\ E, then f is conformal on C, i.e. is a Mo6bius transformation.

Definition 3.4. (John domain). A domain D C C is called a John domain if
there exists ¢ > 0 and reference points wy such that for any zy € D, there exists
an arc v € D joining zg to wg satisfying

§(z) > clz — 2],z €7, (4)
where §(z) stands for the Euclidean distance between z and 9D.
Theorem 3.2. Suppose D is a John domain, then 0D is conformally removable.

Here, we can change (5) to another property because of the simple connect-
edness of T°° and the theorem below.

Theorem 3.3. For z € D, we denote by v* the part of the hyperbolic geodesic
of D passing through z and a fixed base-point wy that runs from z and lands on
0D. A simply connected domain D is John domain if and only if there exists
M > 0 such that for all z € D,

w €Y, dp(z,w) > M = d(w) <

3(2), (5)

where dp is the hyperbolic distance in D.
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The main work in 4.3. is the proof that T°° satisfies (5) for some fixed
base-point wyg.

3.3 Riemann-Hurwitz Formula

We will use this formula when these two complex manifold are all Riemann
surface C to prove the simply-connectedness of A and give a proof of the formula
in this section. The following proof is cited from [3].

Theorem 3.4. (Riemann-Hurwitz formula). Let V and W be domains on C
of finite connectivity m and n, respectively, and let f : V — W be a k-sheeted
(ramified) analytic proper map having r critical points (counted by multiplicity).
Then

m—2=k(n—2)+r. (6)

Here the proper map means that preimages of compact subsets of W are com-
pact. Then f assumes every value exactly k-times for the k-sheets of f.

Proof. The proof of (6) is based on the following lemma.

Lemma 3.5. Let V be a domain of connectivity m, which is divided by k cross-
cuts ¢1, ..., ¢, (disjoint in V) into I domains Vi, ..., Vi, of connectivity my, ..., my,
respectively. Then

!
Z(mij):mefk.
j=1

Here, a cross-cut is a Jordan curve lying in V except for its end points, (the
points) which belong to OV. We can divide the domain into two domains with
lower connectivity.

Proof of lemma 3.5.: We proceed by induction. In the case of k = 1, we have
either V'\ ¢ is a domain of connectivity m — 1 or consists of two domains V* and
V** of connectivity m* and m™**, respectively, such that m* + m** = m + 1.

For k > 1, we first assume that V' \ ¢; is not a domain, which consists of
domains V* and V** of connectivity m* and m™**, respectively. There are k* and
k*™* cross-cuts in these two domains, such that £* + k** =k — 1. Vx is divided
into V1, ...,V by these cross-cuts. Thus inductive assumption, we have

I
Z(mij):m*—ka*,

j=1

similarly
!

3 (my—2) =m -2k

j=l"+1

Adding up gives the desired result.
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Otherwise, however, V'\ ¢1 is a domain with multiplicity m—1, and is divided
by co, ..., ¢ into domains Vi, ..., V,,, thus

(mj—2)=(m—-1)—2—-(k—1)=m—-2—k.

l
=1

J

Now we come to the proof of the formula itself. First, by applying the
Riemann-mapping theorem, we may assume that V and W are all bounded by
analytic Jordan curves and singletons.

We will first discuss the case where f is unramified (so that » = 0). Then
any local branch of f~! may be continued along any curve in W. If W is simply
connected, then, by monodromy theorem, f~! is single-valued in W and thus
is a conformal mapping. This means that n=1 implies implies m = k = 1, thus
(6) holds. We proceed by induction. In case m > 1, we take a cross-cut ¢ in W,
which diminishes the connectivity number: W* = W \ ¢ is (m — 1)—connected.
Suppose f~1(c) is k cross-cuts ¢y, ..., ¢, of V, and f~1(W) consists of I domains
Vi,..., Vi of connectivity my, ..., my, respectively, and f is a k;—sheeted proper
map V; — W*, where ki + ... + k; = k. By inductive assumption and lemma
3.5., we get the desired result.

If f is ramified, it has finitely many critical values wy,...,ws € W. Then
W* = W\ {wi, ..., ws} has connectivity n + s. Since any w; has p; preimages
with multiplicities ¢} such that S q; =k, and Z;:l Zfiﬂq} —1) =r, thus
> io1 = sk—r, V* = f~1(W*) has connectivity m+sk—r. Since f : V* — W*
is k-sheeted and unramified, we have

m+ks—r=kim+s—2)
and (6) holds true also in this case. O

Remark 3.1. We would introduce Monodromy theorem as follows. Let f be
a function which is analytic in the domain D and let G be a simply-connected
region which contains D. For any path v in G with initial point in D there is
an analytic continuation of f on D along v. Then there is an analytic function
F: G — C such that F(z) = f(2) for all z in D.

4 Dynamics of the Deltoid Reflection: Proof for
Main Result

4.1 introduction

1

Suppose ¢(z) = z + 515 and i(z) = L, where 7 is reflection in the unit circle,

one can see that this map is univalent in C \ D. We define

Q:=p(C\D), T:=Q°% 0:=¢oio (‘P|C\D)71 Q- C.

10
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Note that o(2) = z, Vz € 99, thus o is the associated Schwarz reflection map
of Q. Note that p(wz) = we(z), it follows that T is symmetric rotation by 2%.
Moreover, as ¢ has simple critical points at 1, w,w?, T has three 3 —cusp points

2
(one can see this by Taylor expansions of x = cosf + %29, y = sinf — @)

We denote that 79 is T — {3, 32, %}

C -,

e

4.1.1 Schwarz reflection o

In this section, we will give some properties of ¢ as a function or a covering
mapping.

Proposition 4.1. The Schwarz reflection map o of Q has a double pole at oo,
but no other critical points in 2.

Proof. Since the only critical point of ¢ in D is at the origin, it follows that o
has a pole at co. After analysis of the dominant term of the formula at w = oo,
one can see the order of the pole is two.

By definition, one can see o(p(w)) = ¢(2), thus 22 (p(w)) - 8g(ﬁw) = 8%(@%).
Substitute p(w) = w + 55 in it, we have d(¢(w)) = W (we denote % by Of).

Since the univalence of ¢(w) in C\ D and (ap|C§D) ! and 1 are all well-defined

in the corresponding domain, there is no other critical points of ¢ in €. O

Proposition 4.2. o : 071(Q) — Q is a proper branched 2— cover branched only
at 0co. On the other hand, o : o= 1(T%) — T is a 3— cover.

Proof. Suppose that X; = ¢~ }(T°) N D and X3 = ¢~ !(Q) N D, by definition,
oY T°) = (poi)(X1), 07 H(Q) = (poi)(X2). In fact, one can see that there are
three connected components of X7 and the connectedness of X5 by considering
the preimage of 0T. What’s more, because ¢ is continuous and the degree of ¢
is three, ¢ : X; — T is a proper covering of degree three and ¢ : Xy — Q is
proper branched covering of degree 2 branched only at 0.

We can construct the univalent components of X; and Xy by ¢ which implies
that o : (¢ 0 7)(X;) — T° is a proper covering of degree three and o : (¢ o
1)(X3) — Q is proper branched covering of degree 2 branched only at co. O

Note that ¢=1(€) = (¢oi)(X3) C ¢(C\D) = Q, we can induce the conclusion
below.

Corollary 4.3. The maps c°™ : o~ "(Q2) — Q are proper branched covers of
degree 2™ branched only at oo.

11
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In the dynamical system of p in II, we have D = (J,, o p~(»=1(II). Similarly,
we denote that T°° = J, oy o~ (=D(T9) and call it tiling set. Moreover we will
call the components of o~"T° tiles of rank n. Also, the image of these two
dynamical systems is similar. In fact, there are 3 - 27! tiles of rank n and the
union of tiles of rank< n is a "polygon” with 3 - 2" iterated preimage of cusps
of T as its vertices. Let /A, be a tile of rank n > 1. It’s a ”triangle”; one of its
sides is a side of a tile of rank n — 1; we will call it (the side) the base of A,,.

4.1.2 The tiling set T

First, we will induct a lemma to prove the geometric properties of 7.

Lemma 4.4. Let K be lim,_,, K,,, where K,, C K,,1+1, Vn € N, if K,, are all
connected domain, then K is connected. Further, if K, are all simply connected,
then K s simply connected.

Proof. Consider z,y € K, without loss of generality, suppose z,y € K, for
some integer numbers n. Because of the connectedness of K,, we have x,y
are connected in K. Thus K is connected domain. Consider a Jordan curve
v € K, for any point z € =, it will belong to K,, eventually for some integer
numbers n. Because of openness of K, there is a neighborhood of z (denoted
by B.)is contained in K,,. The compactness of curve v induces that there are
finite points 2z : k = 1,2, ...,m and their corresponding neighborhood B, such
that v C U}~ B.,, therefore it is contained in K,, for some integer numbers n,
and can be shrunk into a single point in K, because K, is simple-connected.
To sum up, K is simply-connected. O

Proposition 4.5. T is a simply connected domain.

Proof. For z € T, if z belongs to the interior of some tiles, then it belongs
to intT*°. If z belongs to the boundary of some tiles, assume the order is n,
then 0™(z) € 9T and not the three cusps, therefore, o™ (z) € intIl, since the
continuity of o, we have z € T°°. Hence, T°° is open.

Note that T°° is a increasing union of the connected, simply connected do-
mains {int({J;_, 0 *T%)},en, by lemma, we have T°° itself is connected and
simply connected. O

Corollary 4.6. ¢ \ T is a closed, completely invariant set.

Now we pay attention to the inverse branches of the iterates of o on T°.
For a subset X, we denote by N (X) the e—neighborhood of X. Let us fix some
small € > 0 and K > 1 such that the set T"%? := N.(T>) \ Nr) has three
simply connected components.

Proposition 4.7. All inverse branches of c°™,n > 1 are well-defined locally on
TP, Moreover, o is hyperbolic on TP,

12
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Proof. Note that Thv» C Q, and o : 0~1(Q) — Q is a branched covering and T
is bounded, therefore T"¥? doesn’t intersect oo, the critical point of iteraction
of o.

For the second part of the proposition, recall that |do(p(w))| = |w| >
1,vw € C\'D. Since Thw» C Q is compact, it follows that do have a fixed
low bound Ag > 1. O

Remark 4.1. We omit the proof that T is bounded. This conclusion will be
clearly as a corollary of Proposition 4.9.

Since points in 7°° \ T° escape to T° under some iteration of o, we say that
T is the escaping set of o and C\ T is the non-escaping set of o.

4.1.3 the basin of

By the double pole at co of o, oo is a super-attracting fixed point of 0. We
denote the basin of attraction of co by A = {z € C| c°"(2) — 00 as n — oo}.
Naturally, A C C\ T°°.

Proposition 4.8. A is a simply connected, completely invariant domain.

Proof. By definition, for any point x € A, we have o(x) € A and o~ 1(x) C A,
therefore, A is a completely invariant set.

By the property of oo, Ve > 0, 3M > 0, such that |00 (2)| < €, V|z| > M.
Thus for |z|,|y| > 2M, |o(z) — o(y)| = |f750(w)d@| < | [, eldw]| < efz —y].
The above fact induces that there is a neighborhood of co (denoted by U) is
contained in A and A is the increasing union of the domain {o~*~Y(U)}en.
It follows that A is open. What’s more, Vk € N, every connected component
of 0=*=1(U) has a preimage of co. While 0~ '(c0) = {00}, o~ (U) is
connected, by lemma 4.4., A is connected.

o UL, o "DW) = U o =D(U) is a proper branched 2—cover
branched only at oo (the order is 2). Because of simply-connectedness of U,
by Riemann-Hurwitz formula, we have |JI, ¢~ (=Y (U) is simply-connected by
induction on n. Thus A is simply-connected domains by lemma 4.4. O

4.1.4 Singular points

We define S := |, ¢y o~ (=D(T\ T). Tt’s clear that S C dT>°. Also we have
Proposition 4.9. S C 0A.

Proof. Since A is completely invariant, so is JA. For a real z > 1, we have

1 1 2? 1
) Tt et g
thus the forward o—orbit of any real = > % must converge to co. Otherwise,
assume the orbit would converges to a fixed positive number s > %7 while this
is contradiction to the inequality above, thus (%, +00) C A, which induced that
3 € 0A. By definition, we have S C 9A. O

13
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4.2 Proof for Theorem 4.12. in [1]

As a summary to above analysis, we give the following results about the dy-
namical plane of o.

Theorem 4.10. We have 0T> = 0A = S. Moreover, this set, which we denote
by I, is a Jordan curve. Moreover, C =T LT U A.

Proof. Let ¢ : II — T be the homeomorphic extension of a conformal iso-
3

morphism such that ™ (0) = 0,%™(1) = 5. Since o has no critical point in
T, the tiles of all rank of o map diffeomorphically onto 70 under iterates of
o. Similarly, the tiles of the tessellation of D arising from the ideal triangle
group G map diffeomorphically onto II under iterates of p. Furthermore, o
and p act as identity maps on 9T° and OII respectively. This allows us to lift
Y™ to a conformal isomorphism D — T°. Note that the trivial actions of o
and p on OT° and OII ensure that this map match on the boundaries of tiles.
Thus, by construction, the conformal map ¥ conjugates p : D\ intll — D
to o : T\ intT — T by the uniqueness of the Schwarz reflection map. By
the local connectedness of ' (cf.Lemma 4.11.) and Carathéodory’s theorem,
we can extend ¥ to T continuously. Since the preimage of cusps by G are
dense in T, we have S = 9™ (T). In fact, for any point x € 9T, there is a
sequence of distinct points {x1,z2,...} C T converging to it, thus z = ™ (y)
for some points y € D. If y € D, then 2 = 1 (y) € T°°, which is contradiction to
the selection of z and openess of T°°. Therefore 9T C " (T). Similarly, by
Open-mapping theorem, we have 1" (T) C T>, i.e. S = OT>.

By proposition 4.9.,5 C dA, therefore, 9T = S C JA. It remains to prove
the opposite inclusion. Let a € A\ OT>. Then a ¢ T, and there is a open
set U such that a € U C C\ T*. Note that all iterates of o can be defined in U
properly, because they avoid 7. Note that o(¢(z)) = (1), and 2+ 515 = %4—%
implies that 2|z — 2| = [22 — 4| = |2 — 2||z + 1|, thus 2 € T, i.e., p(z) € IT.
For any point = in U, the iteraction series doesn’t converge to oo (we assume
the cluster point is #, thus Z is a fixed point of o). By the analysis above, we
have Z € 9T, thus 7 is a cusp point of T. Therefore {o,0°?,...,0°", ...} is a
normal family and converge uniformly to a analytic function g or co by Montel
theorem, which is contradiction to the fact that & is a cusp point. It follow that
a € A, a contradiction.

It is the last part of theorem that I' (called the limit set of o) is a Jordan
curve. In this article, authors think this fact is based on the locally connected-
ness of 7°°. I don’t know why. O

The rest of this section is the proof of lemma 4.13. in [1].

Lemma 4.11. T is locally connected.
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4.2.1 Local dynamics near cusp points

We consider the dynamics image near %, the case of other two cusps of T are
similar. For € > 0 small enough, let us denote

B:B(g,e), B~ = BN {z| Re(z) < g}, B*—B\ B

On domain B N {2, we have the following series expansion of o( % + 32) = % +
82 4+ k83 + O(64), thus

3 - 3
o(5+0)=5+5+ k62 + 0(5?),
where k > 0 and the chosen branch of square root is located in Re(z) > 0.
Moreover, we can obtain an asymptotic expansion of the form ¢ — (+ 1 +O(%)
ki

Vw3’
negative number to make sure the constant % in asymptotic expansion.

Comparing with the proof of proposition 4.9., (%, %—Fe) is a repelling direction
of o at % And after the coordinate exchange, it was sent to the real axis near
oo. k(B NQ) is contained in an angle 7 at oo. For any a € (0, %), points
with sufficiently large absolute value and lying between the boundary curves
k(BN Q) and the infinite rays x(2 4 [0, e)e™™™) eventually escape to k(B \ Q).
In the original coordinates, this means that points sufficiently close to % which
not located in the real axis will escape to Ty after iterates of o. We will record
these observations as following.

on k(B N Q) by coordinate exchange k : w where k; is a proper

Proposition 4.12. If € is sufficiently small, B~ C T*, and 0~ "BT — {3}.
Here o= is the branch in BT which fizes %

Proof. We would add the proof of some above analysis. First, we need to give
precise choice of the branch of square root, for z € CT, we define \/z as the
point that located in the upper plane; for 2 € C~, we define /2 as the point
that located in the lower plane. What’s more, it send the positive real number
to the positive one. Secondly, we draw the image of k(B N ), one can see the
point will move along positive real axis after iteractions. Thus for the point
with the sufficiently large absolute value, it will escape to x(B\ ). O

What’s more, note that locally near the cusps, 97° is contained in the
"repelling petals” of the cusp points. By definition, Je > 0 such that if an orbit
in 9T stays e—close to a cusp of T, then the orbit lands on this cusp.

Let us denote the Green function of A with pole at oo, which can be explicitly
written as in A log|o™™ (2)

L oglo°™(z
In A¢, we define G = 0. By definition, for any p > 0, o maps the level curve
{G = p} to level curve {G = 2p}.

15
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Recalling the notions given in section 4.1.1., we have the vertices of the base
are iterated preimages of the cusps of 7. Note that % is connected to co through
a external ray, the vertices of the base of A\, are landing points of two external
rays in A. We denote by P(A,,) the closed region bounded by the base of A,
the two rays, and the level curve {G = £} (so A, C P(A,)), and call it a
puzzle piece of rank n.

Proposition 4.13. For each n > 1, the sets 0T N P(A,,) are connected.

Note that these sets are all o—invariant, thus it suffices to prove that the
case of n = 1. By definition, '\ %7 37“’, %} can be divided into three parts as
the form I' N P(A1). Because T is a bound simply-connected domain, T is a
connected set, I' N P(A;) is connected as well by the symmetry of I'. Combin-
ing the G—ray, we have the following proposition naturally by considering the

dynamical plane D of p.

Proposition 4.14. The puzzle pieces separate the impressions of the internal
rays of T (images of G— rays under ¥*") landing at points of S from each
other.

4.2.2 Local connectivity at ”radial” points

Proposition 4.15. If x € 9T\ S, then 0T is locally connected at x.

Proof. Note that 9T is completely o —invariant, then the set {x € 9T | 9T
is locally connected at x} is completely o—invariant.

Consider the orbit x,, = 0°"(x) of some z € 9T\ S. If d(z,,T) — 0, as
n — oo, then d(x,, T\ T°) — 0, as n — oo, or it will landing into 7 eventually
by the fact about "repelling petals ”. This would imply that x € S, which
contradicts our choice of x.

Thus there is a subsequence of {x,} at a positive distance from T with a
cluster point {. By the compactness of 97T, ( is in 9T and not a cusp of T.
By replacing ¢ by one of its iterated preimages, we can assume that ¢ doesn’t
lie in the impression of the rays at angles 0, %, %

The above assumption on (, we can assume ¢ € intP C P C intP;, where
P, P, are puzzle pieces with rank m and 1, respectively. Thus we have z, €
int P for infinitely many terms. To prove that 9T is locally connected at z, it
suffices to show that suitably chosen iterated preimages of int P produce a basis
of open, connected neighborhoods of x in 97°.

In fact, by proposition 4.7., for each n with x, €intP, we can define the
inverse branches ¢~" : intP;, — C, xz, +— z. These inverse branches form a
normal family on intP;.

We claim that there is a subsequence such that (c7")" — 0 locally uniformly
on int Py, so on the compact set PN IT*°. Indeed, we have o~ — g on int P,
and we need to prove that ¢ = 0 on some open set V' C P;. Consider that
V is a small disc inside the rank one tile contained in P, so the preimages
Vi := o~™V are disjoint open sets. By Koebe distortion theorem, we have

area(Vy) = O[diam(V4)]?,
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so diam(Vj) — 0, which implies the claim.

Thus, diam[o™"(intP N 0T>)] — 0, as k — oo. These sets are open
connected neighborhoods of x in 9T which implies 97 is local connected at
x. 0

4.2.3 Local connectivity at S

To finish the proof of the local connectivity of 97°°, it suffices to check local
connectivity at the point 3. Let A be the two tiles of rank n which have 3 as
a common vertex. Let

P, := int[P(A) U P(A)]

,and for any n > 2,0 : P, — P,_1 is a bijection.

The sets (6T°°ﬁ]5n)u{%} are open and connected. Moreover, their diameters
go to zero. Hence, they form a basis of open connected neighborhoods of % in
the relative topology in 97°.

4.3 Proof for Theorem 4.25. in [1]

In this section, we will study the dynamics near cusp points, the following wedges
will be useful. In the dynamical plane of o, for 6 € [0, 5 ), we define

Wy := Up UwUy U’LU2U9 C T,

where )
0’ ™

10 — I
<7< 1002

Similarly, in the dynamical plane of p, for 6 € [0, ), we define

3 ; 3
UQIZ{§+T‘6Z 0<9’<§+9}.

Wy := Uy UwUy Uw?Uy C D,

where
-0’ 1 3 ’ 5
Uy : {1 ’1"619 0<r<q15g,7 <O <= 9}

First, for two paths I';(7) and T'a(7) in D, where 0 > 7 < oo, and let C' > 0,
we denote that the paths shadow each other with a constant C' if

V1 >0, dp(T1(7),T2(7)) > C;

and we denote it by:I'; = I's.

Secondly, let us fix a positive fixed number n > 0 and state a ”shadowing”
lemma for p. For a fixed 6y € [0, F) and zg € D\ Wy, with d(zo, T) < n, and
I'”0 be the segment [zg,(p), where (o = ‘:—8‘ We parametrize ['”0 such that
dp(zo,T%0(7)) = 7. If p°(2z¢) can be defined, we denote it by z,, {, := p°™ (o),
and z), = |z,|¢,. Let N be a positive integer such that d(zx,T) < n and
zr, ¢ W:= Wy for k=0,1,...,N.

17

263



Lemma 4.16. For a fized 6y € [0, %), we have that p°™ (I') ~ D%~ | where the
shadowing constant C = C(0) is independent of zg and N.

Proof. First, since p fixed T as a set, we can extend p to the open set V :=
C \ ITU(IT) by Schwarz reflection principle and denote the three connected
components of V by V;,i € {1,2,3}.

Forany k = 0,1, ..., N, since zx, ¢ W and d(zg, T) < 7 for 5 small enough, we
have z;, € V; for some i. Note that V is the union of three discs which is vertical
to D, p~N(V;) is a disjoint union of finitely many discs that are invariant under
, we have zg and (p lies in the same disk Ty of above ones. By construction,
zy and (n are in the same component V;. It follows that there is a mapping
p NV = To: 2z, — 20,(y — Co. The fact that zy ¢ W and d(zn,T) < 7
imply that

A=V \ (poN (I%0) U i(pe N (T'=0)))

satisfying that mod(A) has a positive low bounded that denpends only on 6
and is independent of zy and N. Note that p~» on V; is an isometry with
two corresponding hyperbolic metrics in these two domain. Hence, p=(A) is
a annulus of definite modulus surrounding I'Zo U i(T'%) in p=N (V).

The lower bound of mod[p~" (A)] implies that I'?0 Ui(T'%0) is uniformly
bounded away from the boundary of p~¥(V;), thus the hyperbolic metric of
D and that of p~™V(V;) are both uniformly comparable (here, comparability
means equivalence) to the reciprocal of the distance to T. Thus they are com-
parable to each other on I'?°, by isometry p°V : p~N(V;) — V; with hyperbolic
metrics, we have uniformly comparability between hyperbolic metrics of D and
of V; on p°N (T'%0).

Therefore, we have

dD(x’ y) X dp*N(Vi) ('Tv y)a

dp(p°™ (), p°N (y)) o< dv, (p°" (2), p°N (),
and

dp*N(Vi) (LL‘, y) = dVi (pON(x)> pON(y))7

which implies thatp®™ : I'?0 — p°N(I'?0) is a quasi-isometry with constants
independent of zg and .

(why?) Therefore, p°¥ (I'?) is shadowed by a hyperbolic geodistic of D with
one end-point at (. Since p is expanding away from the third roots of unity, we
conclude that the other end-point of this shadowing geodesic is bounded away
from Cy. It follows that p°N (I'%0) is shadowed by the geodesic arc T~ with a
shadowing constant independent of zg and .

O

Remark 4.2. We add a definition of quasi-isometry between metric spaces
(X,dx) and (Y,dy), we say a mapping [ : X — Y is isometry with constants
A>0andk >0 if for all x and ©’ in X, the following inequality holds:

A ldx(z,2") =k < dy(f(2), f(y)) < Mx(z,2) + k.

Especially here we have k = 0.
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Next, we would state two uniform estimates for the model map p. Here,
under 1", 0 € T corresponds to 0 € D and curves v* in T are now geodesic
rays through the origin. We set W := Wy, for fixed 6y € [0, 7).

Since I' is a Jordan curve, we can prove the following lemma by contradiction.

Lemma 4.17. Ve > 0,3M > 0 such that if §(z') > n,w’ € v*, and dp~(w’, ')
> M, then §(w') < ed(2).

Lemma 4.18. Ve > 0,3M > 0 such that if 0(2") € Npyp(W, C), where Npy,(W,
C):i={z € T™ : dp(2,W) < C}, C is the shadowing constant from lemma
4.16., w' € 4%, and dr~(w',2") > M, then 6(w') < ed(2').

By the following estimation, we will obtain the theorem 4.25. in [1].

4.4 Proof for the Subsection 4.4.3. in [1]

We now show that the Schwarz reflection of the deltoid arises as the unique
conformal mating of the anti-polynomial Z? and the reflection map p.

First, since A is simply connected in (C, we have a Riemann uniformization
pout C \ D — A such that co +— and 1 % For o—action on non-escaping
set A, we can conjugate it to fo : C i D—C i D, fo(z) = 22 by ¥°ut.

It is based on the fact that o has only critical at co as a pole with order 2.
Thus in the coordinate under 1°“!, the corresponding function fy with the only
critical at oo satisfies that fo : C\ID — C\D. Consider # we can write it as

;)’

a degree two anti-Blaschke product. Thus we have 7 (11) =72 ie., fo(z) =72
o(z

Secondly, we will now show the deltoid group Ga C Aut(T°) is confor-

mally equivalent to the ideal triangle group G. Precisely, we have the following

proposition.

Proposition 4.19. Let le (j=1,2,3) be the three tiles of rank 1, so we have
oMY =T UTy UTY.

Then each map o : le — T extends to a conformal automorphism o; : T> —
T°°. The deltoid group Ga = (01, 02,03) C Aut(T) is conformally conjugate
to the ideal triangle group G.

Proof. Recall that in proof of theorem 4.10., we have proved that ¢ : D — T
conjugates p to o, and hence in particular, conjugates pj|pj(n) to o|p1. Also,
J

the desired between G and Ga is given by ¥™. O

The final part is related to introduce o—action on the limit set. For this
common boundary, on the one hand, ¢ : I' — T is topologically equivalent to
fo:J — J, where J = T is Julia set of fy. On the other hand, ¢ : I' — T is
topologically equivalent to the Markov map p: A — A where A = T is the limit
set of the ideal triangle group G.

Recall in section two we have given a homeomorphism £ : T — T,1 — 1.
Here we will use it to glue two dynamical systems together.
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Proposition 4.20. There is a unique orientation-preserving homeomorphism
E:T — T that conjugates p and fy on T.

Proof. Tt suffices to prove the uniqueness here. We can consider the orientation-
preserving automorphism of T commuting with fo : T — T and fixing 1. One
can see it must be identity map by consider the images of 7, 5, ...., and check
they are all fixed point one by one. O

We can summarize this discussion as follows.
(1) We have two conformal dynamical systems

p:D\intll - D, and f,: C\D — C\D.

We also have a mating tool, the homeomorphism £ : T — T which conjugates p
on the limit set and fy on the Julia set.

(2)(Topological mating). Define X = D Ve (C\ D), Y = X \ intIl, so X
is a topological sphere, and Y is a closed Jordan disc in X. The well-defined
topological map 1 := p Vg fo : Y — X is the topological mating between p and
Jo

(3)(Conformalmating). The two Riemann uniformization, 1 and ¢°%
glue together into a homeomorphism

H:(X,Y)— (C,0)

which is conformal outside H~!(T") and which conjugates 7 to o.
(4)(Uniqueness of conformal mating). There is only one conformal struc-
ture on X compatible with the standard structure on X \ H~1(T'). Indeed, one
can see this by the comformal removability of I'.
Now we come back to the proof of Theorem 1.1. The first part follows from
theorem 4.10. and section 4.3. The second statement is the content of section
44.
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Abstract

We introduce the classical GAGA theorems of Serre along with some applications
and generalizations of it.
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1 Introduction and Statement

GAGA is a general principle in geometry connecting the seemingly unrelated algebraic
geometry and analytic geometry. We usually use GAGA-type result to address results in-
volving a comparison between objects in analytic geometry and their analogs in algebraic
geometry. On one hand, this type of results allow us to introduce analytic methods into
algebraic geometry over C (or a general char = 0 field via Lefschetz principle), e.g. Kodaira’s
original proof of Kodaira vanishing; on the other hand, algebraicity of analytic objects can
sometimes be of great use to address problems of analytic nature.

To begin with, we need to give X (C) the structure of complex analytic variety for any
scheme X locally of finite type over C.
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Definition 1.1 (Analytification). The functor sending any complex analytic space to the
set of morphisms to X as ringed spaces over C is representable and represented by X", the
analytification of X, with universal morphism h : X** — X.

Remark 1.2. By evaluating the functors at C, the points of X" is identified with X (C).
Also note that analytification functor is fully faithful by Yoneda lemma.

Remark 1.3. After showing the flexibility of representability under taking closed sub-
schemes, open subsets and product space, one is reduced to analytify A{ as C, while both
sides assigns a complex analytic space to the globally defined holomorphic functions on it.

Remark 1.4. The morphism h is flat: we may simply observe that the stalks of Oy and
Oxan at the same point are local Noetherian with the same completion.

Then we have to analytify sheaves.
Definition 1.5. For any sheaf of Ox modules F, define its analytification to be
fan = h_lf ®h—1OX OXan

Remark 1.6. Recalling the famous theorem of Oka that Oxan is coherent, analytification
sends coherent sheaves to coherent sheaves.

Now we can state the main theorem.

Theorem 1.7 (GAGA). X is a proper scheme over C. Analytification functor gives an
equivalence between the categories of coherent sheaves over X and X®", inducing isomor-
phisms on cohomology groups.

2 The Proof

The theorem is reduced to projective case by Chow’s lemma and induction on dimension
of support.The projective case follows from the case X = P{ by simply considering ideal
sheaves.So we assume X is the projective space in the following paragraphs.The proof is
divided into three parts.

Theorem 2.1 (GAGA, part 1). For every coherent sheaf F on X, and every integer ¢ > 0,

the pullback along h
h*: HI(X,F) — HY(X™*, F*)

15 bijective.
Proof. Using Hilbert’s syzygy and the exact sequence
0= Ox(n—1)— Ox(n) = Oy(n) =0

for and hyperplane H in X to do induction on dimension and n, we are reduced to the case
F = Ox. In this case, H° consists of constant functions by Liouville’s theorem (on analytic
side) and properness (on algebraic side). All higher cohomologies vanishes by Hodge theory
(on analytic side) and standard computation (on algebraic side). O

2
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Theorem 2.2 (GAGA, part 2). If F and G are two coherent sheaves on X, then every
analytic homomorphism from F* to G* comes from a unique algebraic homomorphism
from F to G. In other words, the natural map

Home, (F,G) — Home,.. (F*, G*")
18 bijective.

Proof. 1t suffices to show Hom(F,G)* = Hom(F**,G*"). By taking stalks, this reduces to
a general fact for flat ring map. m

Theorem 2.3 (GAGA, part 3). For every coherent analytic sheaf F on X®", there exists
a coherent algebraic sheaf G on X such that G*" is isomorphic to F. Moreover, such G is
unique, up to unique isomorphism.

Proof. Induction on the dimension of X. It suffices to show F(n) is globally generated for
n large, as Ox(—n) is algebraic and F is exhibited as an algebraic kernel. Take arbitrary
hyperplane H and n large enough, forming corresponding exact sequence

0—Kn)—Fn—1)—H(n) =0

0— H(n) = F(n) - Fu(n) — 0.
By induction hypothesis, K and Fy are algebraic since they supports on H. Hence for n large
enough, H?(X K(n)) = H (X, Fy(n) = 0, so HY(X, F(n — 1)) - H (X H(n)) —»
H' (X F(n)). By a theorem of Cartan, coherent sheaves have finite dimensional coho-
mologies on compact complex manifolds, so the dimension of H'(X, F(n)) is eventu-
ally constant and all the surjective arrows become isomorphisms. In conclusion, we have
HY (X F(n)) - H°(X®, Fy(n)). Take n large enough such that Fy is globally generated
at a point z, then so is F at x by Nakayama lemma. Varying x € H and use compactness
now completes the proof. O

3 Applications and (Generalizations

3.1 Chow’s theorem

Theorem 3.1 (Chow’s theorem). Every closed analytic subset of projective space is algebraic.

Proof. This is a direct corollary of Theorem [I.7] Let X be a projective space, and Y be a
closed analytic subset of X. Recall that the sheaf Hy = Hx/Z(Y) is a coherent analytic sheaf

on X® thus there is a coherent algebraic sheaf F on X with Hy = F*" by Theorem [I.7]
Therefore
Y = Supp Hy = Supp F** = Supp F

is Zariski-closed. [
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Chow’s theorem leads to some fundamental comparison results:

Corollary 3.2. If X is an algebraic variety, every compact analytic subset X' of X is
algebraic.

Proof. Let Y be a projective variety, U a Zariski-open dense subset of Y, and f: U — X a
surjective regular map whose graph I' is Zariski-closed in X x Y. Now IV :=T'n (X’ x Y)
is compact, since X’ and Y are compact and I' is closed. Therefore the image Y’ of the
projection from I to Y is also compact. But Y’ = f~1(X’), thus Y” is an analytic subset of
U hence of Y, therefore Y’ is a Zariski-closed subset of Y by Chow’s theorem [3.1] From this
we see that X' = f(Y”) is Zariski-closed in X. O

Corollary 3.3. FEvery holomorphic map f from a compact algebraic variety X to an algebraic
variety Y is reqular.

Proof. Let T" be the graph of f, which is a compact analytic subset of X x Y since f is
holomorphic. Applying Corollary now completes the proof. O]

Remark 3.4. Combining Corollary with Riemann existence theorem, we see that the
category of compact Riemann surfaces is equivalent with the category of projective complex
algebraic curves.

3.2 Comparison of coverings

Theorem 3.5 (Grothendieck’s Riemann existence theorem). Let X be a C-scheme locally
of finite type. The functor

®: FEtx — FEtyen, (f: X' — X)) (f2: X' - X0
induces an equivalence between the categories of finite étale coverings of X and X?".

proof (sketch). The proper case follows (more or less) directly from the main theorem 1.7} via
the sheaf-theoretic description of (finite) coverings. And since morphisms are algebraizable,
the functor @ is fully faithful. It then suffices to prove @ is essentially surjective. For this,
through a long march of (step-wise) straight and easy reductions, we may reduce to the case
where X is regular affine.

We now assume that X = Spec A is connected, affine and regular. Note that by Chow’s
lemma, there exists a compactification 5 : X — P of X such that P is proper and j is a
dominant open immersion. Then resolve the singularities of P by taking blow ups of points
in P\ X to obtain a proper regular scheme R over P. By resolution of singularities over C,
we have a dominant open immersion k£ : X — R such that j =rok.

Now suppose the finite étale covering X’ — X?2" can be extended to a finite covering
R’ — R*. Then by proper case, there exists a finite covering R" — R such that R'*"* ~ R’.
Let X' = R'|x, then

X'an _ p! %? ~ R/an‘Xa“ ~ R/|Xa“ — X
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It thus remains to show that X’ can be extended to R*". This problem is local on R*\ X®".
For an z € R*™\ X?", since X*" and R* are regular, there exists an open neighbourhood
V C R*™ of x with a biholomorphic map

¢:V = C" o 0,6(VN(R™\ X™) =Z(xy,...,2,) CC"

where p = codimpan R\ X**. Let U = C" and Uy = C" — Z(21,...,2,) = (C\ {0})? x C"P.
Now recall that there is an equivalence between the category FEt; (resp. FEtUO) of finite
étale coverings of U (resp. Up) and the category FTopCovy; (resp. FTopCovy; ) of finite
topological covers of U (resp. Uy). A careful topological check then completes the proof. [

As a direct consequence, we have:

Corollary 3.6. Let K be a number field and X be a smooth proper scheme over K. Then
the profinite completion of the fundamental group of (X X C)* does not depend on the
choice of the embedding K — C.

Proof. From Grothendieck’s Riemann existence theorem |3.5 and Grothendieck’s Galois the-
ory formalism we see that, the profinite completion of the fundamental group of (X x x C)*"
is isomorphic to the étale fundamental group of X, thus does not depend on the choice of
the embedding K — 