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The Arithmetic Class Number Formula

Absrtact: In this reading report, we first introduce the functional equation for

Dedekind-Zeta function following Hecke’s approach, then we combine the function equa-

tion for Dedekind-Zeta function and Dirichlet L-function to derive the discriminant-

conductor formula, at the end of this report we give the arithmetic class number formula.

1 Inrtoduction(Analytic Class Number Formula)

For a number field K, the Dedekind-Zeta function for K is defined by:

ζK(s) =
∑
I

1
N(I)s

where I run through all integral ideals of OK and N(I) denotes the ideal norm of I.

It can be easily seen that ζK(s) defines a holomorphic function on Re(s) > 1, and

ζK(s) admits the following Euler factorization:

ζK(s) =
∏

p∈Spec(OK)

1
1−N(p)−s

Let NK(t) denote the number for integral ideals in OK with norm ≤ t, then:

ζK(s) =
∞∑
n=1

NK(n)−NK(n−1)
ns

However, it is not easy to calculate NK(t). Let C be an ideal class, consider

ζK(s, C) =
∑
I∈C

1
N(I)s

where I run through all integral ideals in C, and let NK(t, C) denote the number of

integral ideals in C with norm ≤ t.

Let C−1 be the inverse class of C, and let J ∈ C−1 be an integral class, then we have

the following bijection:

{integral ideal in C with norm ≤ t} ←→

{principal ideal divide by J with norm ≤ tN(J)}

I 7→ IJ

For an integral ideal I, let NK(t, I) be the number of principal ideal divide by I with

norm ≤ t. Clearly, NK(t, I) is closely realated to the number of elements in I. More

precisely, NK(t, I) equals the number orbits of elements in I with norm ≤ t under the

multiplication of O×K .

By the geometry of numbers, we have the maps
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K
j→ Rr1 × Cr2 ln→ Rr1+r2

x 7→ (σ1(x), ..., σr1(x), τ1(x), ..., τr2(x)) 7→

(ln |σ1(x)|, ..., ln |σr1(x)|, 2 ln |τ1(x)|, ..., 2 ln |τr2(x)|)

where σ1, ..., σr1 are all real embeddings of K and τ1, τ̄1, ..., τr2 , τ̄r2 are all complex embed-

dings of K. It is easily seen that r1 + 2r2 = n = [K : Q].

It is well known that j(OK) is a complete lattice in Rr1 ×Cr2 = Rn, and j̃(OK)(j̃ =

ln ◦j) is a lattice of dimension r1 + r2 − 1 in Rr1+r2 , hence we have:

Dirichlet’s unit theorem: As an abelian group, O×K ∼= µ(K)× Zr1+r2−1

where µ(K) denotes the finite group of roots of units in K.

Let ε1, ..., εr1+r2−1 be generators of the torsion-free part of O×K , we called them the

fundamental units of K, and let λk(εi) denotes the k-th component of j̃(εi). It can be

easily verify that all the (r1+r2-1)-th minors of the (r1+r2)×(r1+r2-1) matrix (λi(εj))

equals, and we denote it by RK , the regulator of K.

Let M = [0, 1) j̃(ε1)⊕ ...⊕ [0, 1) j̃(εr1+r2−1)⊕R(1, ...., 1), it follows that the number of

orbits of elements in I with norm ≤ t under the multiplication of the fundamental units

equals the number of elements in I with norm ≤ t such that its image under j lies in

ln−1(M).

Let S(t) =

{
(x1, ..., xr1 , z1, ..., zr2) ∈ Rr1 × Cr2 :

r1∏
i=1

|xi|
r2∏
j=1

|zj|2 ≤ t

}
, then NK(t, I) =

|S(t)∩ln−1(M)∩j(OK)|
|µ(K)| . After some calculations (c.f. Appendix A), NK(t, I) = 2r1 (2π)r2RK

|µ(K)|
√
|dK |N(I)

t+

O(t1−
1
n ), where dK denote the discriminant of K.

It follows that NK(t, C) = 2r1 (2π)r2RK

|µ(K)|
√
|dK |

t + O(t1−
1
n ), hence ζK(s, C) can be analytic

continuation to Re(s) > 1− 1
n

to a meromorphic function with simple pole at s = 1 and

Ress=1ζK(s, C) = 2r1 (2π)r2RK

|µ(K)|
√
|dK |

. Hence we have:

Analytic Class Number Formula:ζK(s) can be analytic continuation to a

meromorphic function on Re > 1− 1
n

with simple pole at s = 1 and

Ress=1ζK(s) = 2r1 (2π)r2RKhK

|µ(K)|
√
|dK |

, where hK denote the class number of OK .

2 Functional equation for Dedekind-Zeta Function

In this section, we prove that for ZK(s) = AsΓ( s
2
)r1Γ(s)r2ζK(s)(A = 2−r2

√
|dK |
πn

),

ZK(s) can be analytic continuation to an meromorphic function on C with only two

2
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simple poles 0 and 1, and satisfies the functional equation ZK(s) = ZK(1− s).

The crucial lemma we will use is that:

Lemma: For f, g : R+ → R, suppose:

1. lim
x→+∞

f(x) = a0, lim
x→+∞

g(x) = b0

2.f(x)− a0, g(x)− b0 decrease rapidly at infty

3.there exists C, k ∈ R, k > 0, such that f(
1

t
) = Ctkg(t)

Then M(f − a0),M(g − b0) admits holomorphic continuation to C− {0, k},with:

1.M(f − a0),M(g − b0) have simple poles at 0,k

2.Ress=0M(f − a0)(s) = −a0,Ress=kM(f − a0)(s) = Cb0

3.M(f − a0)(s) = CM(g − b0)(k − s)

where M(f) denotes the Mellin transformation, i.e. M(f)(s) =
∫ +∞
0

f(t)ts dt
t

Let j(I)/O×K denote the set of orbits of elements of j(I) under the multiplication of

O×K , and we defines:

ζK(s, I) =
∑

a∈j(I)/O×K

1
N(a)s

Hence for an ideal class C, fixs an J ∈ C−1, we have ζK(s, C) = N(J)sζK(s, J).

Observe that |N(a)| =
r1∏
i=1

|σi(a)|
r2∏
j=1

|τj(a)|2, let r=r1+r2, we have:

( 1

2r2π
n
2

)sΓ( s
2
)r1Γ(s)r2ζK(s, I) =∑

a∈jI/O×K

∫
Rr+

exp(−π(
r1∑
i=1

|σi(a)|2ti + 2
r2∑
j=1

|τj(a)|2tr1+j))
r1∏
i=1

|ti|
s
2

r2∏
j=1

|tr1+j|s
r∏

k=1

dtk
tk

Consider the change of variables Rr
+ → Rr, (t1, ..., tr) 7→ (ln t1, ..., ln tr1 , 2 ln tr1+1, ...., 2 ln tr1+r2),

the integration becomes:

=
∑

a∈jI/O×K

2−r2
∫
Rr exp(−π(

r1∑
i=1

|σi(a)|2eti + 2
r2∑
j=1

|τj(a)|2e
tr1+j

2 )) exp(

r∑
k=1

tk

2
s)

r∏
k=1

dtk.

Since ε1, ..., εr1+r2−1,
(1,...,1)

r
forms a basis of Rr with Jacobian RK , we change the basis

again and gets:

=
∑

a∈jI/O×K

2−r2RK

∫∞
0
t
s
2 (
∫
Rr−1 exp(−π(

r1∑
i=1

|σi(a)|2
r−1∏
k=1

|σi(εk)|λkt
1
r +

2
r2∑
j=1

|τj(a)|2
r−1∏
k=1

|τj(εk)|λkt
1
2r ))

r−1∏
k=1

dλk)
dt
t

3
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= 2−r2RK
|µ(K)|

∫∞
0
t
s
2 (

∑
a∈I−{0}

∫
[0,2]r−1 exp(−π(

r1∑
i=1

|σi(a)|2
r−1∏
k=1

|σi(εk)|λkt
1
r +

2
r2∑
j=1

|τj(a)|2
r−1∏
k=1

|τj(εk)|λkt
1
2r ))

r−1∏
k=1

dλk)
dt
t

Let f(a, λ, t) = exp(−π(
r1∑
i=1

|σi(a)|2
r−1∏
k=1

|σi(εk)|λkt
1
r + 2

r2∑
j=1

|τj(a)|2
r−1∏
k=1

|τj(εk)|λkt
1
2r )),

and θ(λ, t, I) =
∑
a∈I

f(a, λ, t). Then by Poisson summation formula for lattice, we have

θ(λ, t−1, I) = t−
1
2

N(I)
√
|dK |

θ(−λ, t, I∨) (c.f. Appendix B), where I∨ = {x ∈ K : Tr(xI) ⊂ Z}

is the dual ideal for I.We have I∨ = D−1K I−1, where DK is the differential ideal for K,

which satisfies N(DK) = |dK |.

Since the integration of θ(λ, t, I) on every fundamental meshs in Rr−1 equals, we have∫
[0,2]r−1 θ(λ, t, I)dλ =

∫
[0,2]r−1 θ(−λ, t, I)dλ. Let F (t, I) =

∫
[0,2]r−1 θ(λ, t, I)dλ, then we have

F (t−1, I) = t−
1
2

N(I)
√
|dK |

F (1
t
, I∨), with F (+∞, I) =

∫
[0,2]r−1 dλ = 2r−1.

Let ZK(s, I) = ( 1

2r2π
n
2

)Γ( s
2
)r1Γ(s)r2ζK(s, I), then ZK(s, I) =M(F (t, I)−F (∞, I))( s

2
),

by the lemma, ZK(s, I) admits analytic continuation to C−{0, 1}, with simple pole 0,1 and

Ress=1ZK(s, I) = 2r1RK

N(I)|µ(K)|
√
|dK |

. Moreover, we have ZK(s, I) = 1

N(I)
√
|dK |

ZK(1− s, I∨).

Since I∨ = D−1K I−1, for an ideal class C, let C∨ = D−1K C−1, clearly, ζK(s) =∑
C

ζK(s, C∨). Then N(I)sZK(s, I) = N(I)s−1√
|dK |

ZK(1 − s, I∨) = |dK |
1
2
−sN(I∨)1−sZK(1 −

s, I∨), hence |dK |
s
2N(I)sZK(s, I) = |dK |

1−s
2 N(I∨)1−sZK(1− s, I∨).

Let ZK(s) = AsΓ( s
2
)r1Γ(s)r2ζK(s), then ZK(s) =

∑
I

|dK |
s
2N(I)sZK(s, I), hence ZK(s) =

ZK(1− s).

3 Discriminant-Conductor Formula

Observe that we have:

Γ(s)Γ(s+ 1
2
) = 21−2sΓ(2s)

Then Z̃K(s) = |dK |
s
2 (π−

s
2 Γ( s

2
))r1+r2(π−

s
2 Γ(1+s

2
))r2ζK(s) satisfies the functional equa-

tion Z̃K(s) = Z̃K(1− s).

Let χ be an primitive Dirichlet character with conductor fχ, it is well known that

L(s, χ) =
∞∑
n=0

χ(n)
n2 satisfies the following functional equation, and hence adimts an analytic

continuation to C (c.f. Appdendix C):

Λ(s, χ) = W (χ)Λ(1− s, χ)

4
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where Λ(s, χ) = (fχ
π

)
s+δ
2 Γ( s+δ

2
)L(s, χ), W (χ) = τ(χ)

iδ
√
fχ

, τ(χ) the gauss sum of χ, and

δ = 1−χ(−1)
2

Suppose K/Q abelian, then by Kronecker-Weber theorem (c.f. Appendix D), K ⊂

Q(ξn) for some integer n > 0, where ξn = exp(2πi
n

). Hence for abelian K, we have:

ζK(s) =
∏
χ

L(s, χ)

where χ run through every characters of Gal(K/Q) (c.f. Appendix E).

It follows that
∏
χ

Λ(s, χ) =
∏
χ

W (χ)
∏
χ

Λ(1 − s, χ), which gives another functional

equation for ζK . Observe that χ(−1) = 1 if and only if Fix(χ⊥) ⊂ R, and since K/Q is

abelian, either r1 = n and K ⊂ R or r2 = n
2

and K 6⊂ R. Comparing the two functional

equation, we have (discrinminant-conductor formula):

∏
χ

fχ = |dK |

∏
χ

τ(χ) =
√
|dK | if K ⊂ R

∏
χ

τ(χ) = i
n
2

√
|dK | if K 6⊂ R

4 Arithmetic Class Number Formula

In this section, we will gives explict formula of L(1, χ) for a primitive Dirichlet char-

acter χ, and refined the analytic classs formula for an abelian extension K/Q, which is

known as the arithmetic class number formula.

For Re(s) > 1, we have L(s, χ) =
fχ∑
a=1

χ(a)
∞∑
k=0

1
(a+kfχ)s

. Obverse that

fχ∑
b=1

ξ
(a−n)b
fχ

=

fχ if n ≡ a mod fχ

0 else

Hence 1
(a+kfχ)s

= 1
fχ

(k+1)fχ∑
n=kfχ+1

1
ns

fχ∑
b=1

ξ
(a−n)b
fχ

, then L(s, χ) =
fχ∑
a=1

fχ∑
b=1

χ(a)ξabfχ
fχ

∞∑
n=1

ξ−nbfχ

ns
. Since

for a nontrivial character, both sides converges for Re(s) > 0, it follows that L(1, χ) =

−
fχ∑
a=1

fχ∑
b=1

χ(a)ξabfχ
fχ

ln(1− ξ−bfχ ).

It is easy to verify that
fχ∑
a=1

χ(a)ξabfχ = χ(b)τ(χ), hence we have:

L(1, χ) = − τ(χ)
fχ

fχ∑
b=1

χ(b) ln(1− ξ−bfχ )

5
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Obverse that:

1− ξ−bfχ = 1− exp(−2πib
fχ

) = exp(−πib
fχ

)(exp(πib
fχ

)− exp(−πib
fχ

)) = 2i sin(πb
fχ

) exp(−πib
fχ

) =

sin(πb
fχ

) exp(πi(1
2
− b

fχ
))

Since |1
2
− b

fχ
| < 1, we have ln(1− ξ−bfχ ) = ln | sin(πb

fχ
)|+ iπ(1

2
− b

fχ
), hence we have:

L(1, χ) = − τ(χ)
fχ

fχ∑
b=1

χ(b)(ln | sin(πb
fχ

)| − iπ
fχ
b)

obverse that



fχ∑
b=1

χ(b) ln | sin(
πb

fχ
)| = 0 if χ(−1) = −1

fχ∑
b=1

χ(b)b = 0 if χ(−1) = 1

hence we have for every non-

trivial χ:

L(1, χ) =


− τ(χ)

fχ

fχ∑
b=1

χ(b) ln | sin(
πb

fχ
)| if χ(−1) = 1

τ(χ)πi

f 2
χ

fχ∑
b=1

χ(b)b if χ(−1) = −1

For trivial character χ0, it is obviously that L(s, χ0) = ζ(s), since Ress=1ζ(s) = 1,

we have Ress=1ζK(s) =
∏
χ 6=χ0

L(1, χ)

Let G denote the group of characters of Gal(K/Q), and G0 the subgroup of even

characters, then [G : G0] =

1 if K ⊂ R

2 if K 6⊂ R
.

It follows that:

2nhKRK

|µ(K)|
√
|dK |

= (−1)n−1
∏
χ 6=χ0

τ(χ)

fχ

∏
χ 6=χ0

fχ∑
b=1

χ(b) ln | sin(
πb

fχ
)| if K ⊂ R

(2π)
n
2 hKRK

|µ(K)|
√
|dK |

= (−1)
n
2
−1(πi)

n
2

∏
χ 6=χ0

τ(χ)

fχ

∏
χ6=χ0
χ∈G0

fχ∑
b=1

χ(b) ln | sin(
πb

fχ
)|
∏
χ/∈G0

fχ∑
b=1

χ(b)b

fχ
if K 6⊂ R

By discriminant-conductor formula, we have:

∏
χ 6=χ0

τ(χ)

fχ
=


1√
|dK |

if K ⊂ R

i
n
2√
|dK |

if K 6⊂ R

6
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Combined those results, we get:

hKRK =



∏
χ 6=χ0

fχ∑
b=1

−χ(b)

2
ln | sin(

πb

fχ
)| if K ⊂ R

µ(K)

2

∏
χ6=χ0
χ∈G0

fχ∑
b=1

−χ(b)

2
ln | sin(

πb

fχ
)|
∏
χ/∈G0

fχ∑
b=1

−χ(b)b

2fχ
if K 6⊂ R

5 Appendix A: Asymptotic Analysis for NK(t, I)

In this section, we will prove that NK(t, I) = 2r1 (2π)r2RK

|µ(K)|
√
|dK |N(I)

t+O(t1−
1
n ).

The following lemma is crucial in our proof:

Lemma: Let D be a subset of Rn, and L a complete lattice in Rn. Suppose the

boundary of D is (n-1)-Lipschitz parametrizable, then the number of fundamental meshs

of L which intersects with ∂(tD) is O(tn−1).

Let n−(t) be the number of element in j(I) whose fundamental mesh was contained

in ln−1(M)∩ S(t) = t
1
n (ln−1(M)∩ S(1)), and n+(t) the number of element in j(I) whoes

fundamental mesh intersects t
1
n (ln−1(M) ∩ S(1)) nonempty, then n+(t) − n−(t) is the

number of elements whose fundamental mesh intersects with the boundary of t
1
n (ln−1(M)∩

S(1)). By the lemma, we have n+ − n− = O(t1−
1
n ).

Clearly, we have n− ≤ |µ(K)|NK(t, I) ≤ n+, and vol(j(I))n− ≤ vol(ln−1(M) ∩

S(1))t ≤ vol(j(I))n+, hence we have NK(t, I) = vol(ln−1(M∩S(1)))
|µ(K)|

√
|dK |N(I)

t+O(t1−
1
n )

Let M0 = [0, 1) j̃(ε1)⊕...⊕[0, 1) j̃(εr1+r2−1)⊕(−∞, 0] (1, ...., 1), then ln−1(M∩S(1)) =

ln−1(M0). And it is not hard to conclude that vol(ln−1(M0)) = 2r1(2π)r2RK , hence we

have proved that:

NK(t, I) = 2r1 (2π)r2RK

|µ(K)|
√
|dK |N(I)

t+O(t1−
1
n )

6 Appendix B: Functional Equation for θ(λ, t, I)

In this section, we will prove that θ(λ, t−1, I) = t−
1
2

N(I)
√
|dK |

θ(−λ, t, I∨).

The crucial result we will use is

Poisson summation formula:Let f ∈ S(Rn), and L a complete lattice in Rn, then∑
x∈L

f(x) = 1
vol(L)

∑
x∈L∨
Ff(x), where Ff denote the Fourier transform of f , vol(L) denote

7
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the volume of fundamental meshes of L, and L∨ denote the dual lattive of L (the lattice

generated by the dual basis for the basis of L, in particular, j(I)∨ = j(I∨)).

Consider the gauss function, g(x) = exp(−π(x, x)) = exp(−π
n∑
k=1

x2k), it is easy to

verify that Fg(x) = g(x).

For an positive definite matrix A, let gA(x) = exp(−π(x,Ax)). It is well known that

there exist an invertible matrix C s.t. A = CCT , hence gA(x) = exp(−π(Cx,Cx)), and

it is easy to vearify that FgA(x) = 1√
|detA|

g(A−1)T (x).

Hence for f(x, λ, t) = exp(−π(
r1∑
i=1

|xi|2
r−1∏
k=1

|σi(εk)|λkt
1
r+2

r2∑
j=1

|xr1+j|2
r−1∏
k=1

|τj(εk)|λk)t
1
2r ),

we have Ff(x, λ, t) = t−
1
2f(x,−λ, 1

t
).

It follows that

θ(λ, t, I) =
∑

a∈j(I)
f(a, λ, t) = t−

1
2

N(I)
√
|dK |

∑
a∈j(I∨)

f(a,−λ, 1
t
) = θ(−λ, 1

t
, I∨).

7 Appendix C: Functional Equation for L(s, χ)

In this section, we will prove that Λ(s, χ) = W (χ)Λ(1 − s, χ), where Λ(s, χ) =

(fχ
π

)
s+δ
2 Γ( s+δ

2
)L(s, χ), W (χ) = τ(χ)

iδ
√
fχ

, δ = 1−χ(−1)
2

. Without loss of generality, we will

assume χ is nontrivial.

Let θ(t, χ) =
∑
n∈Z

χ(n) exp(−π( n
fχ

)2t), then by poisson summation formula, we have:

θ(t, χ) =
fχ∑
a=1

χ(a)
∑
n∈Z

exp(−π(n+ a
fχ

)2t) =
fχ∑
a=1

χ(a)
∑
n∈Z

t−
1
2 exp(−π n2

t
) exp(2πina

fχ
) =

t−
1
2

∑
n∈Z

exp(−π n2

t
)
fχ∑
a=1

χ(a)ξanfχ = τ(χ)t−
1
2 θ(

f2χ
t
, χ)

We can modify θ(t, χ) slightly by let θ(t, χ) =
∑
n∈Z

χ(n) exp(−πn
2t

fχ
), then we have

θ(t, χ) = τ(χ)t−
1
2 θ(1

t
, χ).

Suppose χ(−1) = 1, it is easy to see that θ(t,χ)
2

=
∞∑
n=1

χ(n) exp(−πn
2t

fχ
), and hence

Γ( s
2
)L(s, χ) = ( π

fχ
)
s
2M( θ(t,χ)

2
)( s

2
), and we get the functional equation by the lemma in

section 3.

The difficulty occurs when χ(−1) = −1, since for these χ, we have θ(t, χ) ≡ 0. This

is because χ(n) exp(−πn2t
fχ

) is odd function for n.

Notice that θ(t, χ) =
∑
n∈Z

nχ(n) exp(−πn2t
fχ

) is odd, and Γ( s+1
2

)L(s, χ) = ( π
fχ

)
s+1
2 M( θ(t,χ)

2
)( s+1

2
),

it remains to find the functional equation for this θ(t, χ).

By poisson summation formula, we have:

8
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∑
n∈Z

χ(n) exp(−π(n+x)2t
fχ

) = τ(χ)√
fχ
t−

1
2

∑
n∈Z

χ(n) exp(−πn2

fχt
) exp(2πinx

fχ
)

Differential by x on both sides and let x = 0, we get:∑
n∈Z

nχ(n) exp(−πn2t
fχ

) = τ(χ)

i
√
fχ
t−

3
2

∑
n∈Z

nχ(n) exp(−πn
2

fχt
)

Hence we get the functional equation of L(s, χ) for χ(−1) = −1.

8 Appendix D: Kronecker-Weber Theorem

In this section, we will prove the Kronecker-Weber theorem using some basic facts

about higher-ramification group.

Suppose K/Q is an abelian extension, for prime p|p, we define the j-th ramification

group to be:

V j
p = {σ ∈ Gal(K/Q) : σ(x) ≡ x mod pj+1, ∀x ∈ OK}

Since K/Q is abelian, it is easy to see that V j
p coincidence for all p|p, hence we will

write V j
p instead of V j

p

The followings are the facts we will use in the proof of Kronecker-Weber theorem:

1.
V 0
p

V 1
p

can be embeded into F×p .

2.
V jp

V j+1
p

can be embeded into the additive group of Fp for j ≥ 1.

We call a field cyclotomic if it can be embeded into some Q(ξn). It is obviously that

the composite field of two cyclotomic fields is also cyclotic, hence by the structure of finite

abelian group, we only needs to prove that every cyclic extension of prime power order is

cyclotomic.

First, we will prove that for a cyclic extension K/Q, s.t. [K : Q] = pm, suppose p

is the only prime that ramifies in [K : Q], then K is the unique subfield of order pm of

Q(ξpm+1).

Let L be the unique subfiled of order pm of Qξpm+1 , we only needs to prove that

[KL : Q] = pm.

Since there exists an canonical embedding Gal(KL/Q)→ Gal(K/Q)×Gal(L/Q),σ 7→

(σ|K , σ|L), hence KL/Q is abelian. Noticed that Tq,KL/Q ⊂ Tq,K/Q × Tq,L/Q, where Tq de-

notes the ramification group for q, it follows that p is the only prime that ramifies in

KL/Q. Notice that the order of element in Gal(KL/Q) is less than pm, if KL/Q is

9
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cyclic, then we must have [KL : Q] ≤ pm, hence we only needs to prove that KL/Q is

cyclic (this result only holds for p 6= 2).

Lemma: Suppose K/Q is abelian of order pn (p 6= 2), and p is the only prime that

ramifies in K/Q, then K/Q is cyclic.

Proof : Noticed that the fixed field of Tp is an unramified extension of Q , hence

Fix(Tp) = Q, that is, Gal(K/Q) = Tp = V 0
p (hence p must ramifies totally) . Since[

Tp : V 1
p

]
|p− 1, we must have Tp = V 1

p .

By the structure of finite abelian group, Gal(K/Q) is abelian if and only if it contains

a unique subgroup of order pm−1. Since ∩∞j=1V
j
p = {Id}, and

[
V j
p : V j+1

p

]
= 1 or p for

j ≥ 1, there exist a subgroup of order pm−1 of Gal(K/Q) (we will show that V 2
p is that

group).

Let H be a subgroup of order pm−1 of Gal(K/Q), we will proves that V 2
p ⊂ H (hence

H = V 2
p ). Let L = Fix(H), then under the canonical map Gal(L/Q) = Gal(K/Q)

H
, we have

V 2
p,K/QH

H
⊂ V 2

p,L/Q, hence we only needs to prove that V 2
p,L/Q = {Id}.

Since p ramifies totally in L/Q, we can reduces to deal with the p-adic case. Namely,

for L/Qp abelian,totally ramifies,[L : Qp] = p, we have V 2
p = {Id}. Since L/Qp totally

ramifies, we have L = Qp(πL). Let f(X) = a0 + a1X + ... + apX
p be the minimal

polynomial of πl, then f (1)(πL) =
∏
σ

(πL − σ(πL)). Suppose Gal(L/Qp) =
V jp

V j+1
p

, then

v(f (1)(πL)) = v(πL)(j+1)(p−1). Also we have f (1)(πL) = a1 + 2a2πL + ... + pπp−1L , hence

v(f (1)(πL)) ≤ v(πL)2p−1. Therefore, we must have j = 1, i.e. V 2
p = {Id}.

When p=2, we will use induction on m. It is well known that every quadratic fields is

cyclotomic. For m > 1, let L = Q(ξ2m+2 + ξ−12m+2), then L/Q is cyclic of order 2m. Noticed

that K and L has Q(
√

2) as subfield in common (consider the maximal real subfield of

K). Hence [KL : Q] ≤ 22m−1. Choose a generator σ of Gal(K/Q) and a generator τ

of Gal(L/Q) such that σ|K∩L = τ |K∩L (this can be done by pigenhole principal). Then

(σ, τ) geneartes a subgroup H of Gal(KL/Q) of order 2m. Let F = Fix(H), then [F : Q] ≤

2m−1, hence F is cyclotomic by induction. Since HGal(KL/L) = Gal(KL/Q), we have

FL = KL, hence FL is cyclotomic and hence K is cyclotomic.

Then we will prove that for K/Q cyclic of order pm, K is cyclotomic. Let q1, ..., qr be

all the primes q 6= p that ramifies in K/Q, and make induction on r. When r=0, we have

already prove that K is cyclotomic. For r ≤ 1, let q = qr, noticed that
[
V j
q : V j+1

q

]
= 1

or q, hence V 1
q = {Id}. It follows that |Tq| = pk|q − 1 and Tq is cyclic. Let L be

10
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the unique subfild of Q(ξq) of order pk, we will prove that LK is cyclotomic and hence

conclude that K is cyclotomic. Noticed that Tq,LK ⊂ Tq,L × Tq,K . Since [LK : Q] is a

power of p, Tq,LK is also a cyclic group, hence we must have |Tq,LK | ≤ pk. Also we have

|Tq,LK | = e(qLK |q) ≥ e(qK |q) = |Tq,K | = pk, hence |Tq,LK | = pk. Let K0 be the fixed field

of Tq,LK , then q is unramified in K0/Q, hence K0 is cyclotomic by induction. Noticed that

L∩K0 is unramified, we have L∩K0 = Q, hence [LK0 : Q] = [L : Q] [K0 : Q] = pk [K0 : Q].

Since [LK : Q] = [LK : K0] [K0 : Q] = |Tq,LK | [K0 : Q] = pk [K0 : Q], we have LK = LK0,

and hence LK is cyclotomic, which completes the proof of Kronecker-Weber theorem.

9 Appendix E: Sketch of Proof for ζK(s) =
∏
χ
L(s, χ)

For an abelian number field K, by Kronecker-Weber theorem, there exist some n ∈

Z≥1, such that K ⊂ Q(ξn). Noticed that Gal(Q(ξn)/Q) = ( Z
nZ)×, let G denotes the group

of dirichlet characters module n, then there exists a one-one correspondence between the

subgroups of G and the subfields of Q(ξn), given by X ↔ Fix(X⊥)

Let X be the associates group of dirichlet characters for K, if we regard χ ∈ X

not a dirichlet character module n, but a primitive character, then we get the following

filteration for X.

K ⊃ KD ⊃ KT ⊃ Q

l l l l

{Id} ⊂ Dp ⊂ Tp ⊂ Gal(K/Q)

l l l l

X ⊃ XD ⊃ XT ⊃ {χ0}

where Dp and Tp are the inertia group and ramification group for a prime p, XD =

{χ ∈ X : χ(p) 6= 0}, XT = {χ ∈ X : χ(p) = 1}.

It follows that for every prime p, we have
∏
p|p

1
1−(Np)−s

= ( 1
1−p−f(p|p)s )

g(p|p) =
∏
χ∈X

1

1−(χ(p)
p

)s
.

Hence we have ζK(s) =
∏
χ∈X

L(s, χ).

10 Appendix F: The Relative Class Number Formula

Using the arithmetic class number formula, we can compute hKRK for every abelian

number field K easily. However, if we want to compute the class number hK , we must
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compute RK in advanced. Unfortunately, it is generally not easy to compute RK , e.g.

for real quadratic field Q(
√
n), computing RK is equivalent solving the Pell equation

X2 − nY 2 = 1, which is proved to be a NP-problem (c.f. Manders and Adleman,NP-

complete decision problems for binary quadratics,J Comput System Sci 16(1978)168-184).

However, for totally imaginary abelian number field K, there exist a method to

compute a factor of hK directly. In the followings, we let K a totally imaginary abelian

number field K, K+ = K ∩ R, h the class number of K, h+ the class number of K+, R

the regulator of K and R+ the regulator of K+.

Let H and H+ be the Hilbert class fields for K and K+. Noticed that K/K+ is totally

ramified at archimedean primes, hence K ∩ H+ = k+. Therefore, h+ = [H+ : K+] =

[KH+ : K] | [H : K] = h, i.e. h+|h. We write h− = h
h+

, and calls it the relative class

number.

By arithmetic class number formula, we have:

hR =
|µ(K)|

2

∏
χ6=χ0
χ∈G0

fχ∑
b=1

−χ(b)

2
ln | sin(

πb

fχ
)|
∏
χ/∈G0

fχ∑
b=1

−χ(b)b

2fχ

h+R+ =
∏
χ6=χ0
χ∈G0

fχ∑
b=1

−χ(b)

2
ln | sin(

πb

fχ
)|

Hence we have:

h− = h
h+

= R+

R
|µ(K)|

2

∏
χ/∈G0

fχ∑
b=1

−χ(b)b
2fχ

Let U , U+ be the unit groups of K and K+, let Q = [U : µ(K)U+]. In the followings,

we will prove that Q = 1 or 2 and R
R+ = 2r

Q
with r = 1

2
[K : Q] − 1, and conclude that

h− = Q|µ(K)|
∏
χ/∈G0

fχ∑
b=1

−χ(b)b
4fχ

.( The relative class number is also important, e.g. it can be

proof that p|h(Q(ξp)) if and only if p|h−(Q(ξp)), hence p is a regular prime if and only if

p|h−(Q(ξp)) c.f. Washington, Introduction to Cyclotomic Fields)

Now we prove that Q = 1 or 2. Clearly, ε/ε̄ ∈ µ(K) for ε ∈ U . Consider the map φ :

E → µ(K)
µ(K)2

, ε 7→ ε/ε̄+µ(K)2. Noticed that ε ∈ Ker(φ) if and only if ε = −ε̄ξ2 for some ξ ∈

µ(K), if and only if εξ = −ε̄ξ̄ for some ξ ∈ µ(K)(i.e. εξ ∈ U+) if and only if ε ∈ µ(K)U+.

Hence Ker(φ) = µ(K)U+, and we conclude that Q = [U : µ(K)U+] | [µ(K) : µ(K)2] = 2,

i.e. Q = 1 or 2.

Then, we prove that R
R+ = 2r

Q
. For an independent subset ε1, ..., εr of U , letRK(ε1, ..., εr)

denotes the regulator with respect to ε1, ..., εr. Now let ε1, ..., εr be the fundamental unit
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for K+, then it forms a independent subset of U . It is clearly that RK(ε1, ..., εr) =

2rRK+(ε1, ..., εr) = 2rR+, hence we only needs to prove that R
RK(ε1,...,εr)

= Q.

Let η1, ..., ηr be the fundamental unit for K, then εj = (
r∏
i=1

η
ai,j
i )ξj with ξj ∈ µ(K).

Then log |σk(εj)| =
n∑
i=1

ai,j log |σk(ηi)|, hence R
RK(ε1,...,εr)

= | det(ai,j)|. By the structure of

abelian group, we have Q = [U : µ(K)U+] = | det(ai,j)|, hence R
RK(ε1,...,εr)

= Q.
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An Introduction To An Algorithm Factoring Numbers With Elliptic

Curves

Song Dianyi; Yu Penghao

June 2022

1 Abstract

In this article we are going to introduce a new algorithm factoring integers proposed by
H.W.Lenstra. It is a method depending on the use of elliptic curves, and it is faster than ex-
isting methods when the number has smaller prime divisors.

2 Introduction

This article is divided into three major parts. The first part is devoted to show the basic
properties of elliptic curves, and the second part will introduce the structure of the algorithm,
then the third part will give an analysis of the method, including its success probability as well as
its efficiency.

3 Basics of Elliptic Curves

In this article, we denote by Fp a finite field with cardinality of p, and by A∗ the group of units
of a ring A with 1.

(3.1) An elliptic curve over field K is a pair of elements a, b ∈ K with 4a3 + 27b2 ̸= 0. These
elements are thought of as the coefficients in the Weierstrass equation

y2 = x3 + ax+ b
We denote such elliptic curve (a, b) by Ea,b, or simply by E. The set of points E(K) of such an
elliptic curve over K is defined by

E(K) = {(x : y : z) ∈ P 2(K) : y2z = x3 + axz2 + bz3}
Here P 2(K) denotes the projective plane over K, and (x : y : z) denotes the equivalence class
containing (x, y, z).

Let E be an elliptic curve over K, then the zero point of the curve is the point (0 : 1 : 0),
denoted by O. The other points, (x : y : 1), where x, y ∈ K satisfy the Weierstrass equation
y2 = x3 + ax+ b.

The set E(K) has the structure of an abelian group with additive group law, which is defined
as follows. First, O is the zero element satisfying O + P = P + O = P for all P ∈ E(K). For
two non-zero points P = (x1 : y1 : 1) and Q = (x2 : y2 : 1), P + Q = O if and only if x1 = x2
and y1 = −y2. Otherwise, let λ ∈ K be determined by λ = (y1−y2)

x1−x2
if P ̸= Q and λ = (3x1

2+a)
2y1

if

P = Q, and then let ν = y1 − λx1. Then P +Q = R = (x3 : y3 : 1), where x3 = λ2 − x1 − x2 and
y3 = −λx3 − ν. Such operation can be easily proven by Vieta’s Theorem to be well defined.

1
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(3.2) For two elliptic curves E = Ea,b and E
′ = Ea′,b′ defined over K, an isomorphism E → E ′

is defined to be an element u ∈ K∗ satisfying both a′ = u4a and b′ = u6b. Any isomorphism
u : E → E ′ induces an isomorphism E(K) → E ′(K) of the abelian groups that sends (x : y : z) to
(u2x : u3y : z), denoted by u as well.

An automorphism of an elliptic curve E over K is an isomorphism E → E. The set of auto-
morphisms of E is a subgroup of K∗, denoted by AutE or AutKE. And it can be easily calculated
that #AutE must be 2 or 4 or 6.

(3.3) The number of elliptic curves over Fp, namely the number of pairs (a, b) ∈ Fp × Fp with
4a3 + 27b2 ̸= 0, can be easily calculated to be p2 − p.

(3.4) For any elliptic curve E over Fp we have by a theorem of Hasse
#E(Fp) = p+ 1− t with − 2

√
p ≤ t ≤ 2

√
p

Conversely, if p is a prime greater than 3 and t an integer satisfying |t| < 2
√
p. Then the

weighted number of elliptic curves E over Fp with #E(Fp) = p+1− t up to isomorphism is given
by a formula

#′{E : E elliptic curve overFp, E(Fp) = p+ 1− t}/ ∼=Fp= H(t2 − 4p)

(3.5) Then we use (3.3) to count the set
{E : E elliptic curve over Fp}/∼=Fp

of isomorphism classes of elliptic curves over Fp. Since the number of elliptic curves isomorphic to
a given elliptic curve E is #Fp

∗/#AutE = (p − 1)/#AutE, summing over the representatives of
the isomorphism classes and dividing by (p− 1) we get∑

E

1
#AutE = p

We express this by writing
#′{E : E elliptic curve over Fp}/∼=Fp = p.

In similar expressions, the notation #′ denotes the weighted cardinality, the isomorphism class of
E being weighted (#AutE)−1.

(3.6) In this part some properties of binary quadratic forms will be introduced.
Let ∆ be a negative integer satisfying ∆ ≡ 0 or 1(mod4). A positive definite integral binary

quadratic form of discriminant ∆, or briefly a form, is a polynomial F = aX2 + bXY + cY 2 with
a, b, c ∈ Z, a > 0, b2 − 4ac = ∆.
An isomorphism from a form F = aX2 + bXY + cY 2 to a form F ′ = a′X ′2 + b′X ′Y ′ + c′Y ′2

can be expressed by a matrix

(
α β
γ δ

)
with α, β, γ, δ ∈ Z, αγ − βδ = 1. In fact, for a better

understanding ,we may take X ′ = αX + βY and Y ′ = γX + δY .
Using some knowledge of linear algebra, the set of automorphisms of a form F is a subgroup of

the group SL2(Z) with integral entries and determinant 1; such subgroup is denoted by Aut F. It
can be easily shown that AutF is a cyclic group of order 2 or 4 or 6.

For fixed ∆, the set of equivalence classes of forms of discriminant ∆ is finite, and the Kronecker
class number H(∆) of ∆ is defined to be the weighted cardinality of the set defined as follows:

H(∆) = #′{F : F is a form of discriminant ∆}/ ∼
with ∼ denoting equivalence and the meaning of #′ being making sums with weight, where the
equivalence class containing F being counted with weight (#AutF )−1, similiar to the definition in
(3.5). It is not hard to show that H(∆) > 0.

A primitive form F = aX2 + bXY + cY 2 is a form with gcd(a, b, c) = 1. h(∆) denotes the
weighted cardinality of the set of equivalence classes of primitive forms of discriminant ∆. By
sorting forms with gcd(a, b, c), it is easy to see that

2
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H(∆) =
∑
d

h(∆/d2)

for all d satisfying d|∆ and ∆/d2 ≡ 0 or 1(mod 4). The largest of such d is called the conductor
f of ∆,and ∆0 = ∆/f 2 is the fundamental discriminant associated to ∆; it can be shown that the
d′s in the above summation are exactly the positive divisors of f .

4 The Structure of The Factoring Algorithm

To unitize the notation in this section, We call a divisor d of a positive integer n non-trivial if
1 < d < n. And in this section we will describe the structure of the factoring algorithm attempting
to find a non-trivial divisor of a positive integer n, or affirm it to be a prime number.

(4.1) To describe the algorithm one needs the definition of Elliptic curve modulo n, and in this
case n is a positive integer (that is not necessarily a prime number).

Consider the set of all triples (x, y, z) ∈ (Z/nZ)3 for which x, y, z generates the unit ideal of
Z/nZ, with the group of unit (Z/nZ)∗ acting on this set by u(x, y, z) = (ux, uy, uz). The orbit of
(x, y, z) is denoted by (x : y : z), and the set of all such orbits by P 2(Z/nZ).

For a, b ∈ Z/nZ, the cubic curve E = Ea,b, defined similarly to the one in (3.1), is defined over
Z/nZ by the equation

y2 = x3 + ax+ b
The set of points E(Z/nZ) of such curve over Z/nZ is defined by

E(Z/nZ) = {(x : y : z) ∈ P 2(Z/nZ) : y2z = x3 + axz2 + bz3}
If 6(4a3 + 27b2) ∈ (Z/nZ)∗ then E is called an elliptic curve over Z/nZ.

For general n, there is a partially defined ”pseudo-addition” operation on a subset of E(Z/nZ)
defined in the following part. For notations, we denote the point (0 : 1 : 0) of P 2(Z/nZ) by O,
and we denote by Vn the subset of P 2(Z/nZ) defined as follows:

Vn = {(x : y : 1) : x, y ∈ (Z/nZ)} ∪ {O}
For P ∈ Vn and a prime p dividing n we denote by Pp the point of P

2(Fp) obtained by reducing
the coordinates x, y of P modulo p. And it is easily observed that Op = Pp if and only if P = O.

(4.2) In this part the algorithm performing ”pseudo-addition” will be presented, and this part
of the algorithm will be frequently used in the whole algorithm.

Given n ∈ Z>1, a ∈ Z and P,Q ∈ Vn, the algorithm will either calculate a non-trivial divisor d
of n, or determines a point R ∈ Vn with the following property: if p is any prime dividing n and
satisfies that there exists b ∈ Fp such that

6(4ā3 + 27b2) ̸= 0 for ā = (a mod p),
Pp ∈ Eā,b(FP ), Qp ∈ Eā,b(FP ),

Then Rp = Pp +Qp in the group Eā,b(FP ), with the addition defined in (3.1).
Note that the application of the algorithm does not require n to be a composite number, nor

do we need to know the prime divisor of n beforehand.
When calculating, if P = O put R = Q and stop, or if P ̸= O and Q = O put R = P and stop,

these are the trivial cases. Then in the remaining case P ̸= O, Q ̸= O, let P = (x1 : y1 : 1) and
Q = (x2 : y2 : 1). Then use the Euclidean algorithm to calculate the value of gcd(x1 − x2, n). If
this gcd is not 1 or n, denote it by d and stop. If gcd(x1−x2, n) = 1 then the Euclidean algorithm
also gives the value of (x1 − x2)

−1; in this case put
λ = (y1 − y2)(x1 − x2)

−1,
x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

R = (x3 : y3 : 1)

3

16 



and stop. Finally in the case that gcd(x1 − x2, n) = n, so that x1 = x2 in Z/nZ. Calculate
gcd(y1+ y2, n). If it is not 1 or n, denote it by d and stop. If it is n (so that y1 = −y2), put R = O
and stop. If gcd(y1 + y2, n) = 1, put

λ = (3x1
2 + a)(y1 + y2)

−1,
x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

R = (x3 : y3 : 1)
and stop. This finishes the description of this part of the algorithm. And its correctness can be
checked by the formulae stated in (3.1), as they go through similar process.

(4.3) In this part the algorithm performing multiplication (a number in Z+ multiplying a point
on the curve) will be introduced.

By repeating the algorithm of addition presented in (4.2), an algorithm of multiplication can
accomplish the following. Given k ∈ Z+, n ∈ Z>1, a ∈ Z/nZ and P ∈ Vn, it either calculates a
non-trivial divisor d of n, or it determines a point R ∈ Vn with the following property: if p is any
prime dividing n and satisfies that there exists b ∈ Fp such that

6(4ā3 + 27b2) ̸= 0 for ā = (a mod p),
Pp ∈ Eā,b(FP ),

then Rp = k · Pp in the group Eā,b(FP ). If this algorithm determines a point R with the stated
property, then it is denoted by kP .

If k is given as k = k1k2, then one can calculate kP by kP = k1(k2P ). Suppose that k is given
as a product

k =
∏
re(r),

where r ranges over a certain set of positive integers with e(r) being positive integers. It can be
easily seen that to multiply a point P by k times it suffices to perform e(r) multiplications by r
for each r. To make the proof in the appendix stand, we assume that the multiplications by r are
performed in increasing order of r.

Remark: To calculate r ·P , a good way is by using the binary representation of r, which takes
the time of O(log(r)M(n)), with M(n) being the time of performing one round of addition.

(4.4) In this part we will introduce the algorithm factoring with elliptic curves with operations
stated in (4.2) and (4.3).

(4.4.1) When factoring with one curve, let n, v, w ∈ Z>1 and a, x, y ∈ Z/nZ be given. An
algorithm attempting to find a non-trivial divisor d of n is described below.

For each integer r ≥ 2, denote by e(r) the largest integer m with rm ≤ v + 2
√
v + 1, and put

k =
w∏

r=2

re(r).

Let P = (x : y : 1) ∈ Vn, calculate kP with the algorithm in (4.3), If this attempt fails then a
non-trivial divisor d of n is found, and the algorithm halts. If kP is calculated successfully then
the algorithm halts as well, with the message that it fails to find a non-trivial divisor of n.

(4.4.2) The whole structure of the algorithm is based on (4.4.1), which is mainly applying (4.4.1)
repeatedly on different curves. Let n, v, w, h ∈ Z>1 be given, a probabilistic algorithm attempting
to find a non-trivial divisor d of n will be described in this part.

First we suppose that the random number generator used in this algorithm can draw the triple
(a, x, y) ∈ (Z/nZ)3 with equal probability given to each triple, and that successive calls to the
random number generator are independent.

Then for one round, draw three elements a, x, y ∈ Z/nZ at random, and apply the algorithm
(4.4.1) to n, v, w, a, x, y (the notations are the same as in (4.4.1)). If the result is a non-trivial
divisor d of n, halt the whole calculation with the result found. Otherwise, repeat the operation in
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the next round from drawing three elements a, x, y ∈ Z/nZ again. The algorithm will halt once a
non-trivial divisor of n is found, otherwise it will halt when it has already been applied h rounds.

(4.5) For a better understanding of the algorithm, the number v should be thought of as an
upper bound of the divisor d one is trying to find, the parameter w is corresponds to the time one
is willing to spend on a single curve, and h is the number of curves that one tries.

It should be noted that the success probability of the algorithm is not 1. It is a function of
w and h, which increases as either of w or h increases, with the optimal choice discussed in the
proofs in the Appendix.

The time efficiency, which corresponds to the success probability, can be stated as follows:
(4.5.1)There is a function K : R>0 → R>0 with

K(x) = e
√

(2+o(1))logxloglogx for x→ ∞
such that the following is true. Let n ∈ Z>1 be an integer that is not a prime power nor divisible
by 2 or 3, and let g be any positive integer. Then algorithm (4.4.2), when applied with suitable
values for v, w, h, can be used to find, with the success probability at least 1 − e−g, a non-trivial
divisor of n within time

gK(p)M(n)
where p denotes the least prime divisor of n and M(n) = O((logn)2) being the time needed to
perform a single operation of addition on a curve.

It can be easily noted that the excluded cases in the statement are easy to be checked within
a far smaller amount of time as n → ∞, so the algorithm can actually be applied to any positive
integer n. The proof of such statement, as well as the suitable choice of the parameters, will be
left to the appendix.

5 Appendix1: The Preparation of Mathematical Knowledge

(5.1) Recall the formula H(∆) = Σdh(∆/d
2) and the notations defined in (3.6).

The quadratic character χ : Z → {0, 1,−1} associated to ∆ is defined by

χ(l) ≡ ∆(l−1)/2(mod l), χ(l) ∈ {0, 1,−1} if l is an odd prime

χ(2) = 0, 1,−1 for ∆ ≡ 0(mod 4) 1(mod 8) 5(mod 8)

χ(mn) = χ(m)χ(n)

With the analytic class number formula for h(∆), we have

h(∆) =

√
−∆

2π
L(1, χ), whereL(s, χ) =

∞∑
n=1

χ(n)

ns
for s ∈ C,Re(s) > 0

Recall that ∆0 = ∆/f 2, then by induction we can obtain a formula

L(1, χ) = L(1, χ0)
∏
l|f

(1− χ0(l)

l
)

with l ranging over the primes dividing f and χ0 being the character associated to ∆0. Combining
the formulae with H(∆) = Σdh(∆/d

2), we could have

H(∆) =

√
−∆

2π
L(1, χ0)ψ(f)

with ψ : Z∗ → R defined by

5
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1. ψ(lk) = l−l−k

l−1
, l, l+1−2l−k

l−1
, if l is prime, k ≥ 1 and χ0(l) = 0, 1,−1

2. ψ(mn) = ψ(m)ψ(n), if gcd(m,n) = 1

Let ϕ(f) be Euler’s function, it can be shown that 1 ≤ ψ(f) ≤ (f/ϕ(f))2 = O(log(logf))2

Furthermore, it can be shown that L(1, χ0) = O(log ∥∆0∥). The proofs of both of the inequalities
above are beyond our reach. And applying the theorem given in the book of K.Prachar, we can
find that there exists a positive effectively computable constant c1 such that for all z ∈ Z>1,there
exists ∆∗ < −4 with the property that

L(1, χ0) ≥
c1
log z

if |∆0| ≤ z,∆0 ̸= ∆∗

(5.2) Proposition: Directly following from the inequalities above, we have the inequality that
there exists positive constants c2, c3 such that for each z ∈ Z>1,there exists ∆

∗ = ∆∗(z) < −4 such
that

c2

√
−∆

log z
≤ H(∆) ≤ c3

√
−∆ · log |∆| · (log log |∆|)2,

which holds for all ∆ ∈ Z with −z ≤ ∆ < 0,∆ ≡ 0 or 1(mod 4), with notice that the left inequality
may be invalid if ∆0 = ∆∗. ■

(5.3) Proposition: There exist effectively computable positive constants c4, c5 such that for
each prime number p > 3, the following two statements are valid:

(a) If S is a set of integers s with |s− p− 1| ≤ 2
√
p, then

#′{E : E elliptic curve over Fp,#E(Fp) ∈ S}/ ∼=Fp≤ c4 ·#S · √p · log(p) · (log(log(p)))2

(b)If S is a set of integers s with |s− p− 1| ≤ √
p, then

#′{E : E elliptic curve over Fp,#E(Fp) ∈ S}/ ∼=Fp≥ c5(#S − 2) · √p/ log(p)

Proof We know from the conclusion of (3.4) that #′{E : E elliptic curve over Fp,#E(Fp) ∈
S}/ ∼=Fp=

∑
s∈S H((p+ 1− s)2 − 4p)

Proof of (a) take z = 4p and (5.2), we have #′{E : E elliptic curve over Fp,#E(Fp) ∈
S}/ ∼=Fp=

∑
s∈S H((p + 1 − s)2 − 4p) ≤

∑
s∈S ·c3 ·

√
4p− (p+ 1− s)2 · log(4p − (p + 1 − s)2) ·

(log log(4p− (p+ 1− s)2))2 ≤ c4 ·#S · √p · log(p) · (log(log(p)))2.
Proof of (b) Also,we take z = 4p. It suffices to show that there are at most two integers t,

|t| ≤ √
p, for which the fundamental discriminant associated to t2 − 4p equals ∆∗. In summation,

at most 2 ”s” is not suitable. Then we have #′{E : E elliptic curve over Fp,#E(Fp) ∈ S}/ ∼=Fp=∑
s∈S H((p+ 1− s)2 − 4p) ≥

∑
suitable s∈SH((p+ 1− s)2 − 4p) ≥

∑
c2

√
4p−(p+1−s)2

log(4p)
≥ c5(#S − 2) ·

√
p/ log(p). ■
(5.4) Modular curves. (This part is beyond reach of our knowledge as well, so we keep faithful

to the statements given by Lenstra and assume them to be valid in order to continue the proof) We
wish to estimate the weighted number of elliptic curves E over Fp for which #E(Fp) is divisible
by a given prime number l. For this purpose some results about the modular curves χ(l) and χ1(l)
will be shown.

Let p be a prime number, p > 3 and l a prime number different from p.We can consider pairs
(E,P ) to analogy the isomorphism of E, which consists of an elliptic curve E over Fp and a point
P∈ E(FP ) of order l. Two such pairs (E,P ) and (E ′, P ′) are said to be equivalent over Fp if there
exists an isomorphism u : E → E ′ over Fp that maps P to P ′. We denote the set of equivalence
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classes by Z1(l)(Fp). But if u is allowed to be in the algebraic closure F̄p of Fp rather than in Fp, a
map E(F̄p) → E ′(F̄p) is also defined. So we obtain the definition of equivalence over F̄p. The set
of classes of this equivalence relation is denoted by Y1(l)(Fp). There is an obvious surjective map
Z1(l)(Fp) → Y1(l)(Fp)

If C is a complete non-singular irreducible curve of genus g over Fp then by Weil’s inequality
the cardinality of the set C(Fp) of points of C over Fp satisfies

|#C(Fp)− p− 1| ≤ 2g
√
p

Applying this to C=χ1(l), using the properties of modular curves, it can be obtained that

#Y1(l)(Fp) = p+O(l2p1/2) (1)

Applying Weil’s inequality to C = χ(l), we can find by using properties of modular curve that

#Y (l)(Fp) = p+O(lp1/3) (2)

Remark: The proof of both of the above statements are beyond reach of our knowledge, so we
put them here without giving a proof.

(5.5)Proposition: Let p, l be primes, p > 3, l ̸= p.
(a) Let E be an elliptic curve over Fp and P ∈ E(Fp) a point of order l. The subgroup of all

u ∈ AutFpE that send P to P is denoted by AE,P . Then the number of elements of Z1(l)(Fp) that
map to the class of (E,P ) in Y1(l)(Fp) equals #AE,P

(b) If p ≡ 1(mod l), with a primitive lth root of unity ξ ∈ Fp being chosen. Let E be an elliptic
curve over Fp ,and Q,P ∈ E(FP ) are points of order l satisfying el(P,Q) = ξ, where el denotes
the Weil Pairing. Denote by AE,P,Q the subgroup AE,P ∩ AE,Q of AutFp(E).Then the number of
elements of Z(l)(Fp) that map to the class of (E,P,Q) in Y (l)(Fp) equals #AE,P,Q.

Proof of (a) Let E be given by a, b, and let P = (x : y : 1). If E ′, P ′ is another such pair,
given by a′, b′, x′, y′, then (E,P ) and (E ′, P ′) correspond to the same element of Y1(l)(Fp) ⇐⇒
(a′, b′, x′, y′) = (u4a, u6b, u2x, u3y) for some u ∈ F̄p

∗
, and to the same element of Z1(l)(Fp) ⇐⇒ u

can be take in F ∗
P . It follows that the number of elements of Z1(l)(Fp) mapping to the class of

(E,P ) equals index [BE,P : CE,P ], where the subgroups BE,P , CE,P of F̄ ∗
p are defined by:

BE,P = {u ∈ F̄ ∗
p : {u4a, u6b, u2x, u3y} ⊂ Fp}

CE,P = {u ∈ F̄ ∗
p : (u4a, u6b, u2x, u3y) = (v4a, v6b, v2x, v3y) for some v ∈ F∗

p}

For BE,P , note that for u ∈ F̄ ∗
p , u

4a ∈ Fp ⇐⇒ (u4a)p = u4a, and similarly with u6b, u2x, u3y;

hence the map that sends u to up−1 maps BE,P onto the group ĀE,P of all u ∈ AutF̄p
(E) sending

P to P . It is obvious that the kernel is F ∗
p , so that #EE,p = #ĀE,P ·#F ∗

p .

It can be shown that CE,P is generated by F ∗
p and ĀE,P , so that #CE,P = #F ∗

p ·# ¯AE,P/#(ĀE,P∩
F ∗
p ), and note that ĀE,P ∩ F ∗

p is just AE,P .
This proves (a). Although the operations with Weil pairing are beyond reach of our knowledge,

we will be faithful to the author’s understanding of the correctness of (b). ■

Remark: With the results obtained in the propositions above, we can obtain the following
results successively, and the final results stated in (5.8) will be directly used in analyzing the al-
gorithm.
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(5.6) Proposition: Let p, l be primes, p > 3, l ̸= p. Then the number

#′{E : E elliptic curve overFp,#E(Fp) ≡ 0(mod l)}/ ∼=Fp

equals
p

l2 − 1
+O(lp1/2), if p ≡ 1(mod l)

,
p

l − 1
+O(lp1/2), otherwise

Note: This property gives a ”probability” in random selection of elliptic curve. Recall that
#′{E : E elliptic curve over Fp}/∼=Fp = p. Dividing the corresponding terms on both sides of the
equation, then #E(Fp) ≡ 0 (mod l) tends to l/(l − 1) and l/(l2 − 1) in these condition as above.

Proof: Let Y1, Z1 denote Y1(l)(Fp), Z1(l)(Fp) defined in (5.4). Similarly we can use Y, Z to
denote Y (l)(Fp), Z(l)(Fp). A theorem in reference[2] says that the group E(Fp)[l] = {P ∈ E(Fp) :
lP = O} has order l or l2. Then we can suppose W to be the set of isomorphism classes of elliptic
curves E over Fp with #E(Fp) ≡ 0 (mod l). W can be written asW = W1∪W2,withWi consisting
of the classes of those E with #E(Fp)[l] = li, so W2 = ∅ unless p ≡ 1(mod l).

The map Z1 → W mapping the class of (E,P ) to the class of E is clearly surjective. (E,P )
and (E ′, P ′) map to the same element ⇐⇒ P and P ′ belong to the same orbit of AutFpE; also,
the size of the orbit is exactly the index [AutFpE : AE,P ] = #AutFpE/#AE,P , with AE,P defined
in (5.5). For a fixed E, we use the orbit summation, we have∑

P

#AutFpE

#AE,P

= li − 1

Then dividing #AutFpE and summing over E in Z1 we have∑ 1

#AE,P

= (l − 1) ·#′W1 + (l2 − 1)#′W2

By(5.5), Z is a ”fiber” of Y , and the left-hand sum add 1
#AE,P

for #AE,P times, then the left-hand

sum equals #Y1, using formula (2) in (5.5) it can be shown that

(l − 1) ·#′W1 + (l2 − 1) ·#′W2 = p+O(l2
√
p) (3)

If p ̸≡ 1(mod l),then this means that

(l − 1)#′W = p+O(l2
√
p),

For the second equation, similarly use (5.5)(b) with (P,Q) being a Weil pair, we will know∑
(P,Q)

#AutFpE

#AE.P,Q

= l(l2 − 1)

In the same way we can get
∑

Z
1

#AE.P,Q
= l(l2 − 1) ·#′W2, similarly by using equation (2), we

get l(l2 − 1)#′W2 = p+O(l3
√
p). Hence, solving a linear equation in two variables, we have

#′W = #′W1 +#′W2 =
1

l − 1
((l − 1)#′W1 + (l2 − 1)#′W2)−

1

l2 − 1
(l(l2 − 1) ·#′W2)

8
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= (
1

l − 1
− 1

l2 − 1
) +O(l

√
p)

■
(5.7) Proposition: Now we give some bound to be used in the analysis of the algorithm. There

exists c6 such that for all pairs of prime p, l with p > 3 we have

#′{E : E elliptic curve overFp,#E(Fp) ̸≡ 0(mod l)}/ ∼=Fp≥ c6p

.
Proof: We only need to minus the inappropriate situation to show that they do not exceed the

bound. The left hand side is ((l− 2)/(l− 1))p+O(l
√
p) if p̸≡ 0, 1 (mod l), and ((l2 − l− 1)/(l2 −

1))p+O(l
√
p) if p ≡ 1(mod l). Let c7 be an appropriate coefficient, satisfying that when l ≤ c7p,

the proposition is correct.
Using (5.3)(a) on the set S = {s ∈ Z : |s − p − 1| ≤ 2

√
p, s ≡ 0mod l}, which has cardinality

O(1+
√
p/l), Then we only have the cases of p satisfying p ≤ c8 or l ≥ c9(log p)(log logP )

2 > c7
√
p

remaining to be discussed. But in either of these cases, p is bounded, thus showing the suitable
constant c6 exists. ■

(5.8) Proposition: There is a positive effectively computable constant c10 such that for every
prime number p > 3 the following two statements are valid.

(a) If S is a set of integers s with |s− p− 1| ≤ √
p, then the number of triples (a, x, y) ∈ F 3

p for
which

4a3 + 27b2 ̸= 0,#Ea,b(Fp) ∈ S,

where b = y2 − x3 − ax, is at least c10(#S−2)p
5
2

log(p)

(b) If l is any prime number,then the number of triples (a, x, y) ∈ F 3
p for which 4a3 + 27b2 ̸=

0, #Ea,b (Fp)̸= 0 (mod l), where b = y2 - x3 − ax, is at least c10 p
3 .

This proposition is simple application of the proposition above. Consider (a, b, x, y) with (a, b)
denoting elliptic curves and (x, y) denoting a point (x : y : 1) on the elliptic curve. There are at
most (p− 1)/#AutE pairs of (a, b), and each Ea,b corresponds to #Ea,b(Fp)− 1 points (x : y : 1),
by taking summation we obtain ∑ (p− 1)(#E(Fp)− 1)

#AutE
,

By using Hasse’s theorem and (5.3) we find this is at least

c5(p− 1)(p− 2
√
p)(#S − 2)

√
p/ log p

In the same way, by directly using (5.7) and Hasse’s theorem we can get the second equation
as well. ■

6 Appendix2: The Estimate Of the Algorithm

In this section, we will estimate the success probability as well as the time efficiency of the
algorithm.

(6.1) Proposition: Let n, v, w ∈ Z>1 and a, x, y ∈ Z/nZ be as in (4.4.1), put b = y2−x3−ax ∈
Z/nZ and P = (x : y : 1) ∈ Vn. Suppose that n has prime divisor p and q satisfying the following
conditions.
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(i) p ≤ v;
(ii) 6(4ā3 + 27b̄3) ̸= 0 for ā = (a mod p), b̄ = (b mod p);
(iii) each prime number r dividing #Eā,b̄(Fp) satisfies r ≤ w;

(iv) 6(4â3 + 27b̂3) ̸= 0 for â = (a mod q), b̂ = (b mod q);
(v) #Eâ,b̂(Fq) is not divisible by the largest prime number dividing the order of Pp.

Then algorithm (4.4.1) can find a non-trivial divisor of n successfully.

Remark: To apply this proposition to the whole proof of the statement in (4.5), one only need
the n′s not being a prime power nor divisible by 2 or 3, so the proof will also be limited to these
n′s. Also, to complete the proof we do not need to know the actual value of p and q, we only
assume the existence of them.

Proof : It follows from Hasse’s Inequality that #Eā,b̄(FP ) ≤ v + 2
√
v + 1. So with e(r) defined

as in (4.4.1), denote by α the order of Pp in the group Eā,b̄(Fp), and let t be the largest prime
number dividing α, and s satisfies that ts||α. And of course s satisfies 1 ≤ s ≤ e(t). Let

k0 = (
t−1∏
r=2

re(r)) · ts−1 ;

then it is obvious that k0Pp ̸= Op and k0tPp = Op in the group Eā,b̄(Fp) (this is because the limi-
tation of the exponent of each r by e(r) due to the inequality above).

If k0tP ∈ Vn exists, then we have k0tP = O in Vn. But with k0t · Pq = Oq and (v) we have
k0Pq = Oq, meaning that k0P = O in Vn, thus causing a contradiction. So k0tP cannot exist, thus
meaning the existence of a non-trivial divisor of n. ■

The next proposition attempts to show the probability that a random triple (a, x, y) can be
successful, which is represented in the way of N

n3 as it is stated in the proposition.
(6.2) Proposition: There exists a positive and effectively computable constant c with the fol-

lowing property. Let n,w, v ∈ Z>1, with n having at least two distinct prime divisors greater than
3, and v satisfies that p ≤ v, where p is the smallest prime divisor of n. Let

j = #{s ∈ Z : |s− p− 1| < √
p, every prime divisor of s is no greater than w}

Then let N be the number of triples (a, x, y) ∈ (Z/nZ)3 that lead to algorithm (4.4.1) finding a
non-trivial divisor of n successfully, then N satisfies

N
n3 >

c
logp

· j−2
2[
√
p]+1

.

Remark: We are actually looking for the triples (a, x, y) satisfying (6.1), whose number is less
than N and also satisfies the inequality.

Proof : Let q be the a prime divisor different from p, For each positive number s, denote by Ts
the following set:

Ts = {(α, x1, y1) : 4α3 + 27β2 ̸= 0,#Eα,β(Fp) = s, where β = y1
2 − x1

3 − αx1}.
Denote by t(α,x1,y1) the largest prime divisor of the order of the point (x1 : y1 : 1) in Eα,β(FP ) for
(α, x1, y1) ∈ Ts. Then denote by U(α,x1,y1) the following set:

U(α,x1,y1) = {(α2, x2, y2) : 4α2
3 + 27β2

2 ̸= 0,#Eα2,β2(Fq) not divisible by t(α,x1,y1),
where β2 = y2

2 − x2
3 − α2x2}.

To achieve the condition stated in (6.1), we define a set V(α, x1, y1, α2, x2, y2) in the following
way:

V(α, x1, y1, α2, x2, y2) = {(a, x, y) ∈ (Z/nZ)3 : (a(modp), x(modp), y(modp)) = (α, x1, y1)
(a(modq), x(modq), y(modq)) = (α2, x2, y2)}

Then by applying (6.1), with i summing over the set of positive integers whose greatest prime
divisor is no larger than w, we have:

10

23 



N ≥
∑
i

∑
(α,x1,y1)∈Ti

∑
(α2,x2,y2)∈U(α,x1,y1)

#V(α, x1, y1, α2, x2, y2)

With the obvious result that card(V(α, x1, y1, α2, x2, y2)) = n3

(pq)3
, applying the conclusion of

(5.8)(b) we have #U(α,x1,y1) ≥ c10q
3, reducing the inequality to

N
n3 ≥ c10

∑ #Ts

p3

Remembering the fact that |s − p − 1| ≤ √
p, applying the conclusion in (5.8)(a), thus finishing

the proof. ■
With Proposition (6.2) proven, we are then able to estimate the success probability of the al-

gorithm in (4.4.2). Based on (6.2), with the same parameters n, v, w, h as in (4.4.2), it is easy to
know that the failure probability is (1− N

n3 )
h, with N defined in (6.2). If we use f(w) = j

2[
√
p]+1

to

represent the probability of an integer in the interval (p + 1 −√
p, p + 1 +

√
p) with all its prime

divisor no greater than w (j has the same definition as in (6.2)), then it follows from (6.2) that
N
n3 >

c·f(w)
3logv

,

Then (1− N
n3 )

h ≤ e
−hc·f(w)

3logv , thus showing that the success probability is at least 1− e
−hc·f(w)

3logv .

Then it comes to the last part of estimating the time efficiency, which is an important property,
of the algorithm (4.4.2). Applying the already known knowledge of the Euclidean algorithm, it is
easy to know that the time needed performing a single operation of addition is O((logn)2), denoted
by M(n).

Remark: In the original article by Lenstra, it is stated that the time it takes in finishing one
round of algorithm (4.4.2) is about O(hw(logv)M(n)), in the article the author said the reason to
be logk = O(wlogv), where k is the same as in (4.4.1). But due to the existence of the difference
between addition chain, in order that (6.1) stands, it is needed that

(
t−1∏
r=2

re(r))ts · P

be calculated (regardless of it being successful or not) in the process for 3 ≤ t ≤ w and 0 ≤ s ≤ e(t).
Then this shows that it is not entirely correct to prove in the original way the author gives. This
relation requires that the time efficiency should be estimated in a more precise way considering
the aspect above. Still, after such calculation, the result of the estimate remains unchanged.

Then with the success probability fixed, h is of the same magnitude as logv
f(w)

defined in (6.2), so

the problem comes to minimizing w
f(w)

.

With an unproved conjecture, which is extended beyond the theorem of Canfield, Erdös, and
Pomerance, assumed true. We have the probability of a random positive integer s ∈ (x + 1 −√
x, x+ 1 +

√
x) (the original theorem applies for x ≤ s) has all its prime divisor no greater than

L(x)α is L(x)
−1
2α

+o(1). The function L(x) is defined over the interval (e,∞) by the equation

L(x) = e
√
logxloglogx

Putting x to p, we obtain that
f(L(p)α) = L(p)

−1
2α

+o(1),
with f defined in (6.2). With w = L(p)α, it implies that

w
f(w)

= L(p)
1
2α

+α+o(1),

which is suggesting that the optimal choice of w is w = L(p)
√
2

2
+o(1) as p→ ∞.

With p unknown beforehand, in the practical sense p can be substituted by v as it is given
that p ≤ v, and the actual running of the algorithm (4.4.2) can be performed by choosing v in an
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increasing sequence to avoid the situation that the least prime divisor of n being too large.
Hence the statement in (4.5) is proven.

7 Appendix3: Some Remarks

(7.1) With the Riemann Hypothesis assumed, one can obtain a stronger inequality in (6.2),
which is N

n3 >
c

loglogp
· u
2[
√
p]+1

. But with the further analysis following the calculation after (6.2), it

reaches no stronger result than the original one.
(7.2) The author stated that the algorithm can also be applied for the purpose of recognizing

numbers built up from primes below a certain bound, and in this case the unproved conjecture in
the estimation can be substituted by analytic results within reach of present techniques, yet it is
beyond reach of this article.

(7.3) In comparison with other previous methods, its expected total factoring time in worst
cases (the second largest prime divisor of n is not much less than

√
n) is L(n)1+o(1) as n → ∞,

which is also reachable by other methods. The main advantage of this elliptic curve method lies
in factoring integer n with smaller prime divisors.
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The Weil Bound

Yongle Hu

Abstract

This article introduces some properties of function fields, and proves the Weil bound for some

character sums.

1 Function Fields

Let k be a field, and K is an extension of k which includes an element t such that t is

transcendental over k, then the field K is called a function field over k, while k is called

a constant filed of K.

Let k[x] denote the ring of polynomials in one variable over k, then the quotient

field of k[x] is called rational function field, which is denoted by k(x). Clearly k(x)

is a function field over k, which is the situation we are most concerned about in this

passage.

In fact, k(x) and Q have many structures in common. One aspect of them is valua-

tion. We need to do some preparation first.

Let G be an abelian group. Then G is called an ordered group, if it can be equipped

with an operation ’<’ satifying, for all a, b, c ∈ G:

(1) Exactly one of these three cases holds true: a < b, b < a, a = b.

(2) If a < b and b < c, then a < c.

(3) If a < b, then a+ c < b+ c.

Asssume G is an ordered group. Let ∞ be an symbol not in G satisfying a <

∞, a +∞ = ∞ + a = ∞ +∞ = ∞ for any a ∈ G. For all a, b ∈ G, we define a > b

if and only if b < a, a ≤ b if and only if a < b or a = b, a ≥ b if and only if a > b

or a = b. Note that G must be torsion free since if a ∈ G and a ̸= 0, say a > 0, then

na = a+ · · ·+ a > 0 + · · ·+ 0 = 0.

Let K be a function field over k. A map v : K → G ∪ {∞} is called a valuation of

K/k, if it satisfies the following conditions:

(1) v(ab) = v(a) + v(b), ∀a, b ∈ K, i.e., v is a group homomorphism;
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(2) v(a+ b) ≥ min{v(a), v(b)}, ∀a, b ∈ K;

(3) v(a) = ∞ if and only if a = 0;

(4) v is non-trivial, i.e., ∃a ̸= 0 such that v(a) ̸= 0;

(5) v(c) = 0, ∀c ∈ k∗.

The second condition is usually called strong triangle inequality. Form this condition,

it can be known that if a, b ∈ K, v(a) < v(b), then v(a + b) ≥ v(a), v(−b) = v(b) +

v(−1) = v(b), and v(a) = v(a+ b− b) ≥ min{v(a+ b), v(−b)} = min{v(a+ b), v(b)}.
But v(a) < v(b), so v(a) ≥ min{v(a + b), v(b)} = v(a + b) is the only possible case.

As a result, v(a + b) = v(a). By induction, it can be easily got that if a1, . . . , an ∈
K, v(a1) < v(ai), i = 2, . . . , n, then

v(
n∑

k=1

ak) = v(a1) (1)

Let Ov = {a ∈ K| v(a) ≥ 0}, Pv = {a ∈ K| v(a) > 0}. Then Ov is a subring of

K, Pv is an ideal of Ov. For any a ∈ Ov \ Pv, v(a) = 0, so v(a−1) = −v(a) = 0, thus

a−1 ∈ Ov, a is a unit of Ov. As a result, Ov is a local ring and Pv is the maximal ideal.

Ov is usually called valuation ring associated to v, and Ov/Pv is called residue field of

K with respect to Pv.

A valuation v : K → R∪{∞} of K/k is called discrete, if v(K∗) have no limit in R.
Moreover, if v(K∗) = Z, then v is called normalized.

Similar to the valuation the p-adic valuations in Q, there are two kinds of normalized

valuations of k(x)/k. One of them is vp, where p ∈ k[x] is a monic irreducible poly-

nomial. For any a ∈ k(x), write a = p(x)n
f(x)

g(x)
, n ∈ Z, p(x) ∤ f(x)g(x), then define

vp(a) = n. The other is v∞. For
f(x)

g(x)
∈ k(x), define v∞(

f(x)

g(x)
) = deg(g(x))−deg(f(x)).

It can be easily checked that v∞ and vp are normalized valuations of k(x)/k.

Theorem 1. Let v : k(x) → G∪{∞} is a valuation of k(x)/k, then there exsists c ∈ G

and c > 0 such that v = v∞c or v = vpc for some monic irreducible polynomial p(x).

Proof. (i)If v(x) ≥ 0, then for f(x) =
n∑

k=0

cix
i, v(f(x)) ≥ min

1≤i≤n
{v(cixi)}. But v(cixi) =

v(ci) + i · v(x) ≥ 0, so v(f(x)) ≥ 0, f(x) ∈ Ov. As a result, k[x] ⊆ Ov. Set p =

Pv ∩ k[x], then if a, b ∈ k[x], ab ∈ p, then ab ∈ Pv, so a ∈ Pv or b ∈ Pv. But

a ∈ k[x] and b ∈ k[x], so a ∈ p or b ∈ p, which means p is a prime ideal of k[x].

Write p = (p(x)), where p(x) is a monic irreducible polynomial. For f(x) ∈ k[x], if
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p(x) ∤ f(x), then f(x) /∈ (p(x)) = Pv ∩ k[x], so f(x) /∈ Pv, moreover v(f(x)) = 0.

As a result, for any a ∈ k(x), write a = p(x)n
f(x)

g(x)
, n ∈ Z, p(x) ∤ f(x)g(x), then

v(a) = v(p(x))n+ v(f(x))− v(g(x)) = v(p(x))vp(a). Since v is nontrivial, v(p(x)) ̸= 0,

then v(p(x)) > 0. The proof is completed by setting c = v(p(x)).

(ii) If v(x) < 0, then for f(x) =
n∑

i=0

cn−ix
i, c0 ̸= 0, then v(c0x

n) < v(cix
n−i),

i = 1, . . . , n. Using the equation (1), we have v(f(x)) = v(c0x
n) = v(x) deg(f(x)).

As a result, for any a ∈ k(x), write a =
f(x)

g(x)
, then v(a) = v(f(x)) − v(g(x)) =

v(x)(deg(g(x)) − deg(f(x))) = −v(x)v∞(a). Since −v(x) > 0, The proof is completed

by setting c = −v(x).

The Theorem 1 shows that v∞ and vp are all the types of valuations of k(x)/k. As

a corollary of Theorem 1, every valuation v : K → R ∪ {∞} of k(x)/k is discrete.

Let E is a field, and ∞ is a symbol not in E satisfying: a+∞ = ∞+a = ∞, ∀a ∈ E;

a · ∞ = ∞ · a = ∞, ∀a ∈ E∗; ∞ · ∞ = ∞. Note that ∞ + ∞, 0 · ∞ and ∞ · 0 are

invalid formulas.

A function φ : K → E ∪ {∞} is called a place of K/k, if it satisfies the following

conditions:

(1) φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), for all a, b ∈ K such that the right sides

of the equations are valid;

(2) φ is notrival, i.e., φ(1) = 1 and ∃a ∈ K such that φ(a) = ∞;

(3) v(a) ̸= 0 or ∞, for all a ∈ k∗.

Let Oφ = {a ∈ K| φ(a) ̸= ∞}, then Oφ is a subring of K. Thus φ : Oφ → E is a

ring homomorphism. Set Pφ = Ker(φ) = {a ∈ K| φ(a) = 0}, then Pφ is a prime ideal

of Oφ. For any a ∈ Oφ \ Pφ, φ(a)φ(a
−1) = φ(a · a−1) = φ(1) = 1, so φ(a−1) ̸= ∞,

a−1 ∈ Oφ, therefore a is a unit of Oφ. As a result, Oφ is a local ring and Pφ is the

maximal ideal.

Assume a ∈ K \ Oφ, then φ(a) = ∞. If φ(a−1) ̸= 0, then 1 = φ(1) = φ(a)φ(a−1) =

∞, which is a contradiction. Therefore φ(a−1) = 0, then a−1 ∈ Pφ.

Consider K∗ and O∗
φ, the multiplicative groups of K and Oφ. They are both abelian

groups, so the factor group K∗/O∗
φ is also an abelian group. For a ∈ K∗, let ā =

aO∗
φ ∈ K∗/O∗

φ. Then the operation ’<’ can be defined as follows: ā < b̄ if and only if

ba−1 ∈ Pφ. For all ā, b̄, c̄ ∈ K∗/O∗
φ, first, if ba

−1 ∈ Pφ, then ā < b̄; if ba−1 ∈ O∗
φ, then

ā = b̄; if ba−1 ∈ K∗ \ Oφ, then ab
−1 ∈ Pφ, so b̄ < ā. Second, if ā < b̄ and b̄ < c̄, then
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ca−1 = ba−1 · cb−1 ∈ Pφ, thus ā < c̄. Third, if ā < b̄, then (bc)(ac)−1 = ba−1 ∈ Pφ, so

ac < bc. As a result, K∗/O∗
φ is an ordered group.

Let v is the canonical map K∗ → K∗/O∗
φ, and define v(0) = ∞ additionally. Then

for all a, b ∈ K∗, v(ab) = ab = āb̄ = v(a) · v(b). Say v(a) ≤ v(b), then ba−1 ∈ Oφ,

(a+ b)a−1 = 1 + ba−1 ∈ Oφ, thus v(a+ b) ≥ v(a) = min{v(a), v(b)}. Since there exists

a ∈ K such that φ(a) = ∞, a /∈ Oφ, v(a) ̸= 0. At last, for a ∈ k∗, φ(a) ̸= 0 or ∞,

hence a ∈ Oφ \ Pφ = O∗
φ, so v(a) = 0. As a result, v is a valuation of K/k. Obviously

Oφ = Ov and Pφ = Pv.

Conversely, if v is a valuation of K/k, define φ : K → Ov/Pv ∪ {∞} as follows: if

a ∈ Ov, then φ(a) = a+Pv ; otherwise φ(a) = ∞. It is easy to verify that φ is a place

of K/k. We will often simply use Pv to denote this place.

Therefore, valuation and place are essentially the same concept. Let P be a place

of K/k and v be a valuation corresponding to P . The residue field associated to P is

k(P) = OP/P = Ov/Pv. Write fP = [k(P) : k], where fP is called the degree of the

place P .

From now on, we will discuss only the case K = k(x). Assume v is a normalized

valuation of k(x)/k and P is the place corresponding to v. If v = vp, in which p(x) ∈ k[x]

is a monic irreducible polynomial. Let Sp = {g ∈ k[x] | p ∤ g}. Then Ovp = S−1
p k[x],

Pvp = S−1
p (p). So k(P) = Ovp/Pvp = S−1

p k[x]/S−1
p (p) ∼= k[x]/(p) and fP = [k[x]/(p) :

k] = deg(p). In this case, we will write P = Pp.

Otherwise v = v∞. For R(x) =
bmx

m + ·+ b0
cnxn + ·+ c0

∈ k(x), v∞(R(x)) = n − m =

vx(x
n−m bm + ·+ b0x

m

cn + ·+ c0xn
) = vx(

bmx
−m + ·+ b0

cnx−n + ·+ c0
) = vx(R(

1

x
)). Let y =

1

x
, then v∞(R(x)) =

vx(R(y)). Since k(x) ∼= k(y), k(P) = Ov∞/Pv∞
∼= Ovx/Pvx

∼= k[x]/(x) ∼= k. As a result,

fP = [k : k] = 1. In this case, we will write P = P∞.

Let Pk denote the set of all the places of k(x)/k, Dk denote the free abelian group

generated by all the elements of Pk. An element of Dk is called a divisor. Equivalently,

a divisor is a formal sum of all the element of Pk with integral coeffcients such that only

a finite number of coefficients are non-zero. Two divisors a =
∑
aPP , b =

∑
bPP are

called coprime, if for any place P , either aP = 0 or bP = 0.

Assume that m is a divisor. Define the degree of m by

D(m) =
∑
P∈Pk

aPfP , where m =
∑
P∈Pk

aPP .
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A divisor is called finite, if the coefficient of P∞ is zero. A divisor is called positive,

if all the coefficients are non-negative. In fact, finite positive divisors are essentially

the same as monic polynomials in k[x]. For a finite positive divisor a =
∑
apPp, since

ap ≥ 0 and only a finite number of ap ̸= 0,
∏
p(x)ap is a monic polynomial of k[x].

Conversely, if f ∈ k[x] is a monic polynomial and its standard prime factorization

decomposition is f(x) =
∏
p(x)ap , then a =

∑
apPp is a finite positive divisor. In this

case, we will write f(x) = Ra(x). Then d(a) =
∑
apfPp =

∑
ap deg(p) = deg(Ra).

For a finite divisor m, there exists positive divisors a, b such that m = a− b. Then

we write Rm(x) =
Ra(x)

Rb(x)
. Conversely, every m ∈ k(x)∗ is corresponding to a divisor m,

which remains true when k(x) is replaced by other function fields.

Suppose that all distinct roots of Ra(x)Rb(x) in k̄ are ξ1, ξ2, . . . , ξd, then define

d0(m) = d. Write Rm(x) =
d∏

j=1

(x − ξj)
aj . Then for R(x) ∈ k(x), define R(m) =

d∏
j=1

R(ξj)
aj . Due to Vieta’s theorem, R(m) ∈ k.

2 The Weil bound for some character sums

From now on, we will assume that k is a finite field of q elements, whose characteristic

is p.

Let G be a group, then a homomorphism χ : G → C∗ is called a character of G. χ

is called non-trivial, if there exists g ∈ G such that χ(g) ̸= 1.

Lemma 2. Assume that G is a finite group and χ is a non-trivial character of G, then∑
a∈G

χ(a) = 0.

Proof. Since χ is non-trivial, there exists g ∈ G such that χ(g) ̸= 1. Then since G is

finite, a 7→ ga is a bijection from G to itself. Then∑
a∈G

χ(a) =
∑
a∈G

χ(ga) =
∑
a∈G

χ(g)χ(a) = χ(g)
∑
a∈G

χ(a).

Because χ(g) ̸= 1, we have ∑
a∈G

χ(a) = 0. (2)
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Set G0 = {1 + xf(x) | f ∈ k[[x]]}, then G0 is a subgroup of k[[x]]∗. Let ω be a non-

trivial character of G0. Assume that N is a positive integer such that ω(1 + xNf) = 1

for all f ∈ k[[x]]. For a ∈ k((x))∗, write a(x) = cxn(1 + xf(x)), where c ∈ k, n ∈
Z, f(x) ∈ k[[x]]. Then define ω(a) = ω(1 + xf). It can be easily verified that ω is a

character of the multiplicative group k((x))∗.

Let s be a positive integer such that ps ≥ N . For any a ∈ k((x))∗, write a(x) =

cxn(1 + a1x + . . . ). Since p is the characteristic of k, ω(a)p
s
= ω((1 + a1x + . . . )p

s
) =

ω(1 + ap
s

1 x
ps + . . . ) = 1. Thus the image of ω is a subset of the ps-roots of unity.

For f(x) = 1 + a1x + a2x
2 + · · · ∈ G0, set g(x) = 1 + a1x + · · · + aN−1x

N−1,

h(x) = aN + aN+1x+ aN+2x
2 + . . . , then f(x) = g(x)+ xNh(x). Let g−1 denote inverse

for g in G0, then ω(1 + xNg−1h) = 1. As a result,

ω(1 + a1x+ a2x
2 + . . . ) = ω(g + xNh) = ω(g)ω(1 + xNg−1h) = ω(g)

= ω(1 + a1x+ · · ·+ aN−1x
N−1). (3)

For any f(x) ∈ k[x], we can naturally consider f(x) as an element of k[[x]]. Further-

more, for any R(x) ∈ k(x)∗, write R(x) =
f(x)

g(x)
, where f(x), g(x) ∈ k[x]∗. Then R(x)

can be considered as an element of k((x))∗, so ω(R(x)) is well defined.

Now we can state the main theorem of this part.

Theorem 3. Let χ0 be a character of the multiplicative group k∗, and ω satisfies the

above properties. Set χ0(0) = 0, χ0(∞) and ω(0) = 0 in addition. Let λ(a) = ω(1−ax)
for all a ∈ k . Assume that b is a finite divisor and d = d0(b), then∣∣∣∣∣∑

a∈k

λ(a)χ0[Rb(a)]

∣∣∣∣∣ ≤ (N + d− 2)
√
q. (4)

Proof. For any finite divisor m coprime to b, define that

∆(m) = ω[Rm(1/x)]χ0[Rm(b)].

Note that if m and n are finite divisor coprime to b, Rm+n(x) = Rm(x)Rm(x), thus

∆(m+ n) = ∆(m)∆(n).

Since |ω(f)| = 1 and |χ0(a)| = 1 for all f ∈ k((x))∗, a ∈ k∗, |∆(m)| = 1 for all finite

divisor m coprime to b.
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For any divisor m, the norm of m is defined by |m| = qD(m). The set of all finite

positive divisors coprime to m is denoted by C(m).

Assume that s ∈ C and Re(s) > 1, then define the L−series

L(s,∆) =
∑

a∈C(b)

∆(a)

|a|s
.

We will show that the L−series has beautiful structures.

Lemma 4. The L−series is well defined when Re(s) > 1, which is a holomorphic

function of s. Moreover, it is a polynomial of q−s, and the degree of the polynomial is

no more than N + d− 2.

Proof of the lemma. Let ϵ > 0, and n be a positive integer. Since any finite positive

divisor of degree n corresponds to a monic polynomial of degree n, there are qn finite

positive divisors of degree n. Thus there are at most qn−ia positive divisor a of degree

n of the form a = iP∞ + a1 where a1 is a finite positive divisor of degree n − i. As a

result, the number of positive divisors of degree n is no more than
n∑

i=0

qn−i ≤ qn+1.

Therefore ∑
a∈C(b)

∣∣∣∣∆(a)

|a|s

∣∣∣∣ ≤ ∑
a is positive

1

|a|Re(s)
≤

∞∑
n=1

qn+1

qnRe(s)
=

q

1− q1−Re(s)
.

As a result, L(s,∆) is absolute uniform convergence when Re(s) > 1 + ϵ, so it defines

a holomorphic function of s when Re(s) > 1 + ϵ. Due to the arbitrariness of the choice

of ϵ, L(s,∆) is a holomorphic function of s when Re(s) > 1.

Note that above proof remains true when ∆ is replaced by any character χ of Dk

satisfying sup{|χ(a)|} <∞.

Write Rb(x) =
d∏

j=1

(x−ξj)bj , ξj ∈ k̄, bj ∈ Z\{0}, j = 1, . . . , d. Set b(x) =
d∏

j=1

(x−ξj).

Since k is a finite field, every irreducible polynomial in k[x] is separable, thus having

no multiple roots. As a result, b(x) is a product of some irreducible polynomials, so

b(x) ∈ k[x].

To prove that L(s,∆) is a polynomial of q−s whose degree is no more than N+d−2,
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we only need to show that for n ≥ N + d− 1, the coefficient of q−sn is zero, i.e.∑
a∈C(b)

D(a)=n

∆(a) =
∑

a∈C(b)

D(a)=n

ω

(
Ra

(
1

x

))
χ0[Ra(b)] = 0. (5)

Since every finite positive divisor a of degree n is associated to a monic polynomial

Ra(x) of the same degree, the equation (5) can be modified to∑
deg(f)=n

ω

(
f

(
1

x

))
f is monic, (f,b)=1

χ0[f(b)] = 0. (6)

Note that χ0[h(b)] = χ0

(
d∏

j=0

h(ξj)
bj

)
, so this value only depends on h(ξj). As a

result, if h ≡ g mod b, then h(ξj) = g(ξj), j = 1, . . . , d, so χ0[h(b)] = χ0[g(b)].

Write f(x) =
n∑

j=0

an−jx
j, a0 = 1, then use the equation (3), ω[f(1/x)] = ω[x−n(1 +

a1x + · · · + anx
n)] = ω(1 + a1x + · · · + aN−1x

N−1), which means the value ω[f(1/x)]

only depends on a1, . . . , aN−1.

For such a polynomial f , let f1(x) =
N−1∑
j=0

ajx
n−j, f2(x) =

n−N∑
j=0

an−jx
j, then there

exists g(x) ∈ k[x] such that deg(g) < d and g ≡ f2 mod b. So ω[f(1/x)]χ0[f(b)] =

ω[f1(1/x)]χ0[(f1+g)(b)]. Conversely, if g(x) ∈ k[x], deg(g) < d, then for any polynomial

h such that deg(h) ≤ n − N − d, deg(g + bh) ≤ n − N , so there exists exactly one f

satifying such that f2 = g + bh. Since the number of such h is qn−N−d+1, we have

LHS of (6) = qn−N−d+1
∑
f1

ω

(
f1

(
1

x

)) ∑
deg(g)<d

(f1+g,b)=1

χ0[(f1 + g)(b)], (7)

where the summation is performed for all f1 of the form f1(x) =
N−1∑
j=0

ajx
n−j.

Let Gb = (k[x]/(b))∗. For h ∈ k[x] such that (h, b) = 1, write h̄ = h+ (b) ∈ Gb. Fix

f1, then for any h̄ ∈ Gb, there exists exactly one g such that deg(g) < d and f1 + g = h̄.
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Note that in this case, χ0[(f1 + g)(b)] = χ0[h(b)], thus∑
deg(g)<d

(f1+g,b)=1

χ0[(f1 + g)(b)] =
∑
h̄∈Gb

χ0[h(b)].

Substituting it into equation (7), we have

LHS of (6) = qn−N−d+1
∑
f1

ω

(
f1

(
1

x

))∑
h̄∈Gb

χ0[h(b)]. (8)

Let G1 = {1 + a1x + · · · + aN−1x
N−1 | aj ∈ k, j = 1, . . . , N − 1}, then G1 can

be considered as a subgroup of (k[x]/(xN))∗, and ω can be considered as a non-trivial

character of G1. So by using lemma 2, we have∑
f1

ω

(
f1

(
1

x

))
=
∑
h∈G1

ω(h) = 0.

Substituting it into equation (8), we gain that the right hand side of equation (8) is

zero, therefore the equation (6) is proved.

From the lemma 4, we know that L(s,∆) = F (q−s), where F is a polynomial such

that deg(F ) ≤ N +d−2. Since F (q−s) can be well defined for all s ∈ C, we can extend

L(s,∆) to the whole complex plane.

Write d1 = deg(F ). Since a = 0 is the unique element in C(b) such that D(a) = 0

amd R0(x) = 1, the constant term of F is ∆(0) = 1. So we can write F (x) =
d1∏
j=1

(1 −

αjx). By comparing the coefficient of the term x of two sides of above equation, we

have

∑
a∈C(b)

D(a)=1

∆(a) = −
d1∑
j=1

αj (9)

Any finite positive divisor a ∈ C(b) of degree 1 is associated to a monic polynomial

Ra(x) = x − a where a ∈ k. Then ω[Ra(1/x)] = ω[x−1(1 − ax)] = ω(1 − ax) = λ(a),

Ra(b) =
d∏

j=1

(ξj−a)bj = (−1)D(b)Rb(a), therefore ∆(a) = (−1)D(b)λ(a)Rb(a). Conversely,

if x− a is associated to the divisor a which is not in C(b), then x− a|b(x), thus there
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exists j0 ∈ {1, . . . , d} such that a = ξj0 , so Rb(a) =
d∏

j=1

(a−ξj)bj = 0. Substituting them

into equation (9), we gain that

∑
a∈k

λ(a)χ0[Rb(a)] = (−1)D(b)+1

d1∑
j=1

αj. (10)

According to the original paper [3], it can be proved that this L−series divides

the zeta-function of an Abelian extension of k(x) by class-field theory. Then by the

Riemann hypothesis in function fields1, any the root s0 of the zeta-function satisfies

that Re(s0) = 1/2 , thus any the root s0 of L(s,∆) satisfies that Re(s0) = 1/2. Since

L(s,∆) =
d1∏
j=1

(1 − αjq
−s), sj =

logαj

log q
is a root of L(s,∆). Therefore Re(sj) = 1/2,

|αj| = |qsj | = qRe(sj) =
√
q. Substituting them into equation (10), we have∣∣∣∣∣∑

a∈k

λ(a)χ0[Rb(a)]

∣∣∣∣∣ ≤
d1∑
j=1

|αj| ≤ d1
√
q ≤ (N + d− 2)

√
q. (11)

As a result, the theorem 3 is proved.

In the end, we will dicuss an application of the theorem 3.

Corollary 5. Let F (x) ∈ k[x] such that deg(F ) = n and F (0) = 0. Assume that ψ

is a non-trivial character of the additive group of k, and there exists a0 ∈ k such that

ψ[F (a0)] ̸= 1. Then ∣∣∣∣∣∑
a∈k

ψ[F (a)]χ0[Rb(a)]

∣∣∣∣∣ ≤ (n+ d− 1)
√
q. (12)

Proof. Let N = n+ 1. Due to the theorem 3, we only need to construct a character ω

satifying the above conditions such that λ(a) = ω(1− ax) = ψ[F (a)].

Let m ≥ n be an integer, k[x1, . . . , xm] denote the ring of polynomials in m variables.

Consider the elementary symmetric polynomials of x1, . . . , xm

σt = (−1)t
∑

1≤j1<···<jt≤m

xj1 . . . xjt , t = 1, . . . ,m.

1The first proof of the Riemann hypothesis in function fields over a finite field owed to A. Weil [2] in 1941. Then a
new approach was invented by S. A. Stepanov [6] in 1969, which was simplified by E. Bombieri [7] in 1973.
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Write F (x) =
n∑

i=1

cix
i, St =

m∑
j=0

xtj, t = 1, . . . , n. Due to Newton’s identities, St =

t−1∑
i=1

σiSt−i + tσt. Thus by induction, there exists Gt(x1, . . . , xt) ∈ k[x1, . . . , xt], which

is independent of m and has no constant term, such that St = Gt(σ1, . . . , σt), t =

1, . . . , n. Then
m∑
j=1

F (xj) =
n∑

i=1

ciSi = G(σ1, . . . , σn), where G =
n∑

i=1

ciGi ∈ k[x1, . . . , xn]

independent of m.

For f(x) = 1+ b1x+ b2x
2+ · · · ∈ k[[x]], set h(x) = xn+ b1x

n−1+ · · ·+ bn ∈ k[x]. Let

a1, . . . , an be the roots of h in k̄, and σt be the elementary symmetric polynomials cor-

responding to a1, . . . , an. Then σj = bj, j = 1, . . . , n. Define ω(f) = ψ[G(b1, . . . , bn)].

We will show that ω meets all the conditions.

First, let b1 = −a ∈ k, b2 = b3 = · · · = bn = 0, then h(x) = xn + axn−1, a1 = a,

a2 = · · · = an = 0, so ω(f) = ψ[G(1, 0, . . . , 0)] = ψ[F (a)]. Thus ω(1− ax) = ψ[F (a)].

Second, setting b1 = 0 in addition, we gain that ω(1 + xn+1g) = ψ[F (0)] = 1 for all

g ∈ k[[x]].

Third, for another element f1(x) = 1 + b′1x + b′2x
2 + · · · ∈ k[[x]], set h1(x) = xn +

b′1x
n−1+ · · ·+ b′n ∈ k[x]. Let a′1, . . . , a

′
n be the roots of h1 in k̄, and σ

′
t be the elementary

symmetric polynomials corresponding to a′1, . . . , a
′
n. Then σ

′
j = b′j, j = 1, . . . , n. Let τt

be the elementary symmetric polynomials corresponding to a1, . . . , an, a
′
1, . . . , a

′
n, then

h(x)h1(x) = x2n + τ1x
2n−1 + · · · + τ2n. Therefore ω(f · f1) = ω(1 + τ1x + · · · + τnx

n +

. . . ) = G(τ1, . . . , τn) = ψ[
n∑

j=1

F (aj) +
n∑

j=1

F (a′j)] = ψ[
n∑

j=1

F (aj)]ψ[
n∑

j=1

F (a′j)] = ω(f)ω(f1).

As a result, ω is a character of G0. Moreover, since there exists a0 ∈ k such that

ω(1− a0x) = ψ[F (a0)] ̸= 1, ω is non-trivial.

Note that the condition ψ[F (a0)] ̸= 1 is only used to ensure ω is non-trivial, and it

can be replaced by other conditions. For instance, assume that p ∤ n .Since ψ is non-

trivial, there exists a ∈ k such that ψ(a) ̸= 1. Let σ1 = · · · = σn−1 = 0, σn = (ncn)
−1a,

then G(σ1, . . . , σn) = cnSn +
n−1∑
i=1

ciSi = ncnσn + H(σ1, . . . , σn) = a + H(0, . . . , 0) = a.

Therefore ω(1+σ1x+ · · ·+σnx
n) = ψ[G(σ1, . . . , σn)] = ψ(a) ̸= 1, thus ω is non-trivial.

Now assumme that p > 2, s ̸= 0, then d0(b) = 2 for Rb(x) = x2 − s. Furthermore,
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set F (x) = x, then from the corollary 5 we gain that∣∣∣∣∣∑
a∈k

ψ(a)χ0(a
2 − s)

∣∣∣∣∣ ≤ 2
√
q. (13)

Let χ0(a) = 1 if a is a square in k∗, otherwise χ0(a) = −1. For u, v ∈ k∗, we will show

that the sum in the left hand side of equation (13) is corresponding to the Kloosterman

sum
∑
x∈k∗

ψ(ux+ vx−1), which plays a crucial role in the representations of numbers in

the form ax2 + by2 + cz2 + dt2 [1].

Let N (a) denote the number of elements x such that ux+ vx−1 = a, or equivalently,

the number of solutions of the equation (2ux − a)2 = a2 − 4uv. Therefore N (a) =

χ0(a
2 − 4uv) + 1. As a result,∑

x∈k∗
ψ(ux+ vx−1) =

∑
a∈k

ψ(a)N (a) =
∑
a∈k

ψ(a)χ0(a
2 − 4uv) +

∑
a∈k

ψ(a)

=
∑
a∈k

ψ(a)χ0(a
2 − 4uv). (14)

The last equation is obtained from the lemma 2.

Setting s = 4uv in the inequality (13) and then substituting it into the equation

(14), we get a bound for the Kloosterman sum∣∣∣∣∣∑
x∈k∗

ψ(ux+ vx−1)

∣∣∣∣∣ ≤ 2
√
q. (15)

The coefficient 2 in the left hand side of (15) can be improved. Malyshev[4] proved

that it can be replaced by 1 in many cases. In fact, he showed that for general Kloost-

erman sum

K(u, v; c) =
∑

1≤x≤|c|,(c,x)=1

exp

(
2πi(ux+ vx−1)

c

)
,

it can be proved that

|K(u, v; c)| ≤ min

{√
(u, c)d̃

(
c

(u, c)

)
,
√

(v, c)d̃

(
c

(v, c)

)}√
|c|, (16)

where (m,n) denotes the great commom divisor of integers m and n, d̃(m) denotes the

number of positive divisors of integer m. His proof is also based on the Weil bound

which we have proved above.
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There are some generalizations for the Weil bound as well. For instance, Bombieri[5]

generalized the Weil bound by replacing F with a polynomial in n variables. He also

proved that the exponent 1/2 of q can not be improved and found some best coefficient

of
√
q for some spacial cases.

References

[1] Kloosterman, H. D., On the representation of numbers in the form ax2+by2+cz2+dt2. Acta mathematica,
1927, 49(3): 407-464.

[2] Weil, A., On the Riemann hypothesis in function-fields. Proc. Natl. Acad. Sci. U.S.A., 1941, 27(7): 345-347.

[3] Weil, A., On some exponential sums. Proc. Natl. Acad. Sci. U.S.A., 1948, 34(5): 204–207.

[4] Malyshev, A. V., On the representation of integers by positive quadratic forms. Trudy Matematicheskogo
Instituta imeni VA Steklova, 1962, 65: 3-212.

[5] Bombieri, E. On exponential sums in finite fields. American Journal of Mathematics, 1966, 88(1): 71-105.

[6] Stepanov, S. A., On the number of points of a hyperelliptic curve over a finite prime field. Mathematics
of the USSR-Izvestiya, 1969, 3(5): 1103.

[7] Bombieri, E., Counting points on curves over finite fields. Séminaire Bourbaki vol. 1972/73 Exposés
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读书报告

梅文九 吴宇阳

2022 年 6 月 14 日

1 问题引入

我们主要阅读的文章是 H. D. Kloosterman 的 On the representation of numbers in the form ax2 +

by2 + cz2 + dt2. 本文主要旨在介绍这篇论文的主要结果, 勾勒出其大致思路, 补充论文中未出现的一些细

节.

如果给定正整数 a, b, c, d, 那么哪些自然数 n 可以表示为 ax2 + by2 + cz2 + dt2 的形式呢? 我们可以自

然地将所有四元正整数组 (a, b, c, d) 分为两类: (1) 所有充分大的正整数都可表示成 ax2 + by2 + cz2 + dt2

的形式; (2) 存在无穷多个正整数 n, 它们都不能写成 ax2 + by2 + cz2 + dt2 的形式. 事实上, 这篇论文基本

回答了这个问题: 利用论文的结果, 对于绝大多数的 (a, b, c, d), 我们都可以判断它属于以上两种情形中的

哪一种.

为了证明这个结果, 我们引入记号 r(n), 表示 n 写成 ax2 + by2 + cz2 + dt2 的不同表示方法数, 这里仅

要求 x, y, z, t 是整数. 论文中证明的主要结果是:

定理: 对任意 ϵ > 0, 我们有

r(n) =
π2

√
abcd

nS(n) +O
(
n

17
18+ϵ

)
.

S(n) 将在后面小节中定义. 这样, 如果我们对某组 (a, b, c, d) 能说明, n 充分大时有 S(n) > Kn−ϵ, 那

么定理中给出的 r(n) 等于两项之和, 由前一项占主导, 于是在 n 充分大时, 一定会有 r(n) > 0. 这样, 所有

充分大的正整数都至少有一种表示成 ax2 + by2 + cz2 + dt2 的方法.

为了证明上述定理, 我们将给出五个引理, 它们将一并组成一个主引理. 利用这个主引理, 我们将给出

定理的证明. 此后, 我们将对不同的 (a, b, c, d) 讨论 S(n) 的估计, 从而给出分类.

2 重要引理

在本小节中, 我们将先列出论文中证明定理所需的各个引理. 其次, 我们将简述它们的证明思路.

我们取 N = [
√
n], 并把 N 阶 Farey 数列画到 C 中圆 Γ : |w| = e−

1
n 上. 事实上, 我们可以先在实数轴

上, 利用 N 阶 Farey 数列对 [0, 1] 区间进行划分. 具体来说, 先在 [0, 1] 上标出所有分母 q 不超过 N 的不

可约分数
p

q
. 注意到对于两个相邻分数 p1

q1
<
p2
q2

, 我们一定有 p2q1 − p1q2 = 1, 从而我们可以在它们之间添

上一个新点
p1 + p2
q1 + q2

, 这样, 对于任意内点 p

q
, 它左右两个新添上的点组成一个区间, 因此它就会唯一对应

于一段区间:

jp,q =

(
p

q
− 1

q(q + q1)
,
p

q
+

1

q(q + q2)

)
,
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这里记
p1
q1
,
p2
q2
为

p

q
左右两个相邻点. 最后, 记 j0,1 =

(
0,

1

N + 1

)
, j1,1 =

(
N

N + 1
, 1

)
, 这样, 所有 jp,q 就

形成了 [0, 1]的一个划分. 我们再把线段 [0, 1]粘到 Γ上. 现在,每个分数 p

q
就会对应 Γ上的一段圆弧 ξp,q.

我们在课上已经研究过了 ϑ(x) 函数, 即 ϑ(x) =
∑

n∈Z x
n2 . 那么当 |w| < 1 时, 我们有

1 +

∞∑
n=1

r(n)wn = ϑ(wa)ϑ(wb)ϑ(wc)ϑ(wd),

而且这个收敛是内闭一致收敛的. 我们将利用

r(n) =
1

2πi

∫
Γ

ϑ(wa)ϑ(wb)ϑ(wc)ϑ(wd)w−n−1

来估计 r(n), 因此我们将先来估计 ϑ(ws), 这里 s = a, b, c, d.

我们进行一些记号的说明. 下文中 s 将不加说明地指代 s = a, b, c, d 中一者. p, q 总是指代两个互素

的正整数. 当 v 是正整数时, 我们记

Sp,q,v =

q−1∑
j=0

exp
(
2pπij2

q
+

2vπij

q

)
.

当 v ≡ 0 (mod q) 时, 此即 Gaussain Sum Sp,q. 高斯和有已知的公式, 我们将在需要用到时给出.

引理: 在圆弧 ξp,q 上, 我们有

ϑ(ws) = φs +Φs,

这里

φs =

…
π

s

Ssp,q

q

(
1

n
− iθ

)− 1
2

,

Φs =
2

q

…
π

s

(
1

n
− iθ

)− 1
2

∞∑
v=1

Ssp,q,v exp

− π2v2

sq2
(
1

n
− iθ

)
 .

证明: 我们课上讲过了 Poisson 求和公式, 即∑
n∈Z

f(x+ n) =
∑
n∈Z

e2πinxf̂(n).

那么我们注意到若记 f(x) = e−πx2α, 这里 α ∈ C 满足 Re(α) > 0, 那么我们有 f̂(x) =
e−

π
αx2

√
α

. 从而

+∞∑
l=−∞

e−π(l+ j
q )

2α =
1√
α

+∞∑
l=−∞

e
2πilj

q e−
π
α l2 ,

我们让 α =
sq2

π

(
1

n
− iθ

)
, 我们可以推出

+∞∑
l=−∞

e−(ql+j)2s( 1
n−iθ) =

1

q

…
π

s

(
1

n
− iθ

)− 1
2

+∞∑
l=−∞

e
2πilj

q e
− π2l2

sq2( 1
n

−iθ) .

注意到 w ∈ ξp,q, 故我们写出 w = exp
(
2pπi

q
− 1

n
+ iθ

)
, 有
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ϑ(ws) =
+∞∑

v=−∞

wsv2

=
+∞∑

v=−∞

exp
(
2πipv2s

q
− v2s

(
1

n
− iθ

))

=

q−1∑
j=0

+∞∑
l=−∞

exp
(
2πip(lq + j)2s

q
− (lq + j)2s

(
1

n
− iθ

))

=

q−1∑
j=0

exp
(
2πipj2s

q

) +∞∑
l=−∞

exp
(
−(lq + j)2s

(
1

n
− iθ

))

=

q−1∑
j=0

exp
(
2πipj2s

q

)
1

q

…
π

s

(
1

n
− iθ

)− 1
2

+∞∑
l=−∞

exp
(
2πilj

q

)
exp

− π2l2

sq2
(
1

n
− iθ

)


=
1

q

…
π

s

(
1

n
− iθ

)− 1
2

q−1∑
j=0

exp
(
2πipj2s

q

)1 +
∑
v ̸=0

exp
(
2πivj

q

)
exp

− π2v2

sq2
(
1

n
− iθ

)

 .

注意到
q−1∑
j=0

exp
(
2πipj2s

q

)
exp

(
2πivj

q

)
= Ssp,q,v,

q−1∑
j=0

exp
(
2πipj2s

q

)
= Ssp,q,

同时显然交换 j 的符号可知 Ssp,q,v = Ssp,q,−v, 从而我们完成了引理的证明.

这就需要我们对 Ssp,q,v 进行估计. 论文中通过一系列引理对 Ssp,q,v 进行了刻画. 我们先列出这些引

理.

引理 2.1: 对于给定的 s, q, v, 我们有以下三种情形之一:

(i) Ssp,q,v 对所有 p 恒等于 0;

(ii) 可以找到不依赖于 p 的正整数 v′′, 使得

Ssp,q,v = exp
(
2πip′v′′

q

)
Ssp,q,

这里 p′ 满足 p′p+ 1 ≡ 0 (mod p);

(ii) 可以找到不依赖于 p 的正整数 v′′, 使得

Ssp,q,v =
(s, 2)

2(s, 8)
exp

(
2πip′v′′

4q

)
Ssp,4q,

这里 p′ 满足 p′p+ 1 ≡ 0 (mod 4p).

在介绍引理 2.2 之前, 我们再引入一批记号. 在今后出现求和号
∑
时, 有时会写成

∑′ 的形式, 这指

代在给定 q 的情形下对所有 0 < p < q, (p, q) = 1 的 p 进行求和; 若
∑′ 还有下标, 那么指代在给定 q 的情

形下对所有 0 < p < q, (p, q) = 1 且满足下标中所列条件的 p 进行求和.

对于给定的 p, q, 我们可以这么定义出唯一的 p1:

p(p1 +N) + 1 ≡ 0 (mod q), 0 < p1 ⩽ q.

我们对于某个正整数 0 ⩽ µ ⩽ q − 1, 再记

σ1 =
′∑

p1⩽µ

Sap,q,v1
Sbp,q,v2

Scp,q,v3
Sdp,q,v4

exp
(
−2nπip

q

)
.
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为了简洁, 记

{Sp
q} = Sap,qSbp,qScp,qSdp,q.

最后, 在下文中出现 K 时, 总是指一个依赖于 a, b, c, d, ϵ, n, q 的常数, 对 n, q 有一致上界, 它可能在不同的

地方指代不同的常数.

引理 2.2: 若 σ1 不恒为 0, 我们总能找到整数 v, 它依赖于 vi, a, b, c, d, q, 但不依赖于 p, P , 使得要么

σ1 =
′∑

p1≤µ

{Sp
q} exp

(
2πiup

q
+

2πivp′

q

)
,

这里记 u = −n, pp′ + 1 ≡ 0 (mod q); 要么

σ1 = K
∑
P1≤µ

{SP
4q} exp

(
2πiuP

4q
+

2πivP ′

4q

)
,

这里记 u = −4n, PP ′ + 1 ≡ 0 (mod 4q), 此时求和就变成要求对所有 0 < P < 4q, (P, 4q) = 1 且 P1 ⩽ µ

的 P 求和, 这里 P1 为唯一满足 P (P1 +N) + 1 ≡ 0 (mod 4q) 且 0 < P1 ⩽ 4q 的整数.

显然引理 2.2 可以立即推出下面的

引理 2.2’: 我们总有 σ1 = Kσ2, 这里记

σ2 =
′∑

p1≤µ

{Sp
q} exp

(
2πiup

q
+

2πivp′

q

)
,

其中 q 可能是 σ1 中 q 的一倍或四倍; 相应地, u = −n 或 −4n, 而 1 + pp′ ≡ 0 (mod q).

从而问题转化为研究 σ2 的大小.

对于高斯和 Sa,c, 我们有以下的结果: 当 (a, c) = 1 时,

Sa,c =


0, c ≡ 2 (mod 4)

ec
√
c
(a
c

)
, 2 ∤ c

(1 + i)e−1
a

√
c
( c
a

)
. 2 ∤ a, 4 | c

这里我们记

em =

1, m ≡ 1 (mod 4)

i. m ≡ 3 (mod 4)

这个结果的证明可以参照, 比如说, Bachmann 的 Die analytische Zahlentheorie 2 (1894), 146-187. 于是通

过 (较为冗长的) 计算, 我们可以得到

引理 2.3: 我们有

{Sp
q} = B

(
p

QaQbQcQd

)
ζ(p, q)q2,

这里 Qs 代表 qs 的奇数部分. 我们再定义

η(p, q, s) =



1, 2 ∤ qs = Qs

0, qs ≡ 2 (mod 4)

exp
(
1

4
sqpQsπi

)
, qs = 2µsQs, 2 ∤ µ, µ > 2

1 + exp
(
1

2
sqpQsπi

)
. qs = 2µsQs, 2 | µ, µ ⩾ 2
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最后令 ζ(p, q) 为

ζ(p, q) = ζ(p, q, a, b, c, d) = η(p, q, a)η(p, q, b)η(p, q, c)η(p, q, d).

现在我们取 Q 为 q 的奇数部分, G 是 (a,Q), (b,Q), (c,Q), (d,Q) 的最小公倍数. 我们在 8 | q; 4 | q, 8 ∤

q; 2 | q, 4 ∤ q; 2 ∤ q 时分别定义 Λ 为 8G; 4G; 2G;G. 那么显然有 Λ | q, 且 Λ 关于所有 q 有一致上界. 从而

由引理 2.3 我们可以推得

引理 2.3’: 我们有

|σ2| ⩽ Kq2
Λ∑

λ=1

∣∣∣∣∣∣∣
′∑

p1⩽µ

p≡λ (mod Λ)

exp
(
2πiup

q
+

2πivp′

q

)∣∣∣∣∣∣∣ .
为了沿着引理 2.3’ 的方向继续估计 |σ2|, 我们就需要研究 S(u, v;λ,Λ; q), 这里

S(u, v;λ,Λ; q) =
′∑

p≡λ (mod Λ)

exp
(
2πiup

q
+

2πivp′

q

)
.

论文中此后给出了一列引理 (引理 4a-引理 4e), 最后总结得到以下的

引理 2.4: 若 Λ | q, 则

S(u, v;λ,Λ; q) = O
(
q

3
4+ϵ(u, q)

1
4

)
, S(u, v;λ,Λ; q) = O

(
q

3
4+ϵ(v, q)

1
4

)
.

最后, 我们还需证明以下的

引理 2.5: 若 Λ | q, µ < q, 则对

σ4 =
′∑

p1⩽µ,p≡λ (mod Λ)

exp
(
2πiup

q
+

2πivp′

q

)
,

(回忆这里 p′, p1 满足 1 + pp′ ≡ 0 (mod q), p′ ≡ p1 +N (mod q)), 我们有

|σ4| < Kq
7
8+ϵ(u, q)

1
4 .

结合以上结果, 我们就得到了最终的主引理结果:

主引理: 我们有
′∑

p1⩽µ

Sap,q,v1
Sbp,q,v2

Scp,q,v3
Sdp,q,v4

exp
(
−2nπip

q

)
= O

(
q2+

7
8+ϵ(n, q)

1
4

)
.

我们首先来说明主引理. 回忆等式左边就是 σ1, 而它由引理 2.2’ 被 σ2 同数量级控制; 结合引理 2.3’

和引理 2.5 的结果, 我们得到

|σ2| ⩽ Kq2
Λ∑

λ=1

|σ4(u, v)| ⩽ Kq2+
7
8+ϵΛ(u, q)

1
4 .

注意到依据情形的不同, u = −n 或 u = −4n, q 也可能变成原来的 q 的四倍; 而 Λ 关于 q 有一致上界, 这

就利用前边的 5 个引理给出了主引理的证明.

我们再返回,对每个引理加一点说明 (来证明我确实认认真真看完了所有内容,而且看得非常辛苦). 下

文中将记 q = qs(s, q), s = sq(s, q), 那么 (qs, sq) = 1.

引理 2.1 的简略证明: 注意到我们有

Ssp,q,v =

q−1∑
j=0

exp
(
2πispj2

q
+

2πivj

q

)
=

qs−1∑
j1=0

exp
(
2πisqpj

2
1

qs
+

2πivj1
q

) (s,q)−1∑
µ=0

exp
(
2πivµ

(s, q)

)
,
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那么当 (q, s) ∤ v 时对所有 p 恒等于 0. 只需讨论 (q, s) | v 的情形, 此时设 v = (q, s)v′. 那么

Ssp,q,v = (s, q)Ssqp,qs,v′ .

我们可以分成三种情形: (1)2 ∤ qs; (2)2 | qs, 2 | v′; (3)2 | qs, 2 ∤ v′. 其中 (3) 的情形最为困难, 我们略去前两

种情形的说明 (前两种情形对应于结论中的 (ii)), 直接来讨论 (3) 的情形. 取 p′′ 满足

sqp(2p
′′ − 1) ≡ −v′ (mod 4qs),

那么我们有

Ssqp,qs,v′ =

qs−1∑
j=0

exp
(
2πisqp(j + p′′)2

qs
+

2πiv′(j + p′′)

q

)

= exp
(
2πisqpp

′′2

qs
+

2πiv′p′′

qs

) qs−1∑
j=0

exp
(
2πisqpj

2

qs
+

2πij(v′ + 2sqpp
′′)

qs

)

= exp
(
2πisqpp

′′2

qs
+

2πiv′p′′

qs

) qs−1∑
j=0

exp
(
2πisqp(j

2 + j)

qs

)
.

这在 4 | qs 时恒等于 0, 因为

qs−1∑
j=0

exp
(
2πisqp(j

2 + j)

qs

)
=

qs−1∑
j=0

exp

2πisqp

((
j +

qs
2

)2
+
(
j +

qs
2

))
qs


=−

qs−1∑
j=0

exp
(
2πisqp(j

2 + j)

qs

)
.

从而我们以下设 qs ≡ 2 (mod 4). 我们注意到对所有 (a, b) = 1, b ≡ 2 (mod 4), 我们有 Sa,b = 0, 这是因为

Sa,b =
b−1∑
j=0

exp


2aπi

(
j +

b

2

)2

b

 = exp
(
abπi

2

) b−1∑
j=0

exp
(
2aπij2

b

)
= −Sa,b.

从而

qs−1∑
j=0

exp
(
2πisqp(j

2 + j)

qs

)
= exp

(
−2πisqp

4qs

) qs−1∑
j=0

exp
(
2πisqp(2j + 1)2

4qs

)
= exp

(
−2πisqp

4qs

)(
1

2
Ssqp,4qs − Ssqp,qs

)
注意到 Ssqp,qs = 0, 故我们推出

Ssqp,qs,v′ =
1

2
exp

(
2πisqpp

′′2

qs
+

2πiv′p′′

qs
− 2πisqp

4qs

)
Ssqp,4qs

=
1

2
exp

(
πi(sqp− v′)p′′

qs
+

2πiv′p′′

qs
− 2πisqp

4qs

)
Ssqp,4qs

=
1

2
exp

(
2πi(2p′′ − 1)sqp+ 4πip′′v′

4qs

)
Ssqp,4qs .

现在取 v′′, p′ 满足

v′2(s, q) ≡ sqv
′′ (mod 4qs), 1 + pp′ ≡ 0 (mod 4q).
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那么

(2p′′ − 1)sqp+ 2p′′v′ ≡ (−1 + 2p′′)v′ ≡ − v′2

sqp
≡ − v′′

(s, q)p
=

v′′p′

(s, q)
, (mod 4qs)

从而

Ssqp,qs,v′ =
1

2
exp

(
2πip′v′′

4q

)
Ssqp,4qs .

最后我们注意到

Ssp,q,v = (s, q)Ssqp,qs,v′ , Ssp,4q = (s, q)Ssqp,4qs ,

这将完成引理的证明.

注: 论文中最后一步得出来的结果并不同, 我认为这里作者应该是错写出了

Ssp,4q = (s, 4q)Ssqp,4qs ,

然而我反复检查觉得作者这里出现了纰漏 (不过也不能完全确定, 因为论文跳步明显). 当然, 这一步并没

有在大局上影响定理的证明. 另外, 引理 2.1 的证明比较冗长也是因为我在看时还没有听说 Sa,c 有这样广

泛的公式; 相应地, 利用这个公式的话, 上述证明会简洁一些. 论文里这样的纰漏其实是不少的, 以下我就

不再专门写注来批评一番了.

我们不给出引理 2.2 的证明, 先延续我们对引理的讨论.

引理 2.3’ 的简略证明: 这是因为记 Q = (Q, s)Qs, 那么(
p

Qs

)
=

(
p

Q

)(
p

(Q, s)

)
,

我们推出 (
p

QaQbQcQd

)
=

(
p

(Q, a)

)(
p

(Q, b)

)(
p

(Q, c)

)(
p

(Q, d)

)
,

从而由于 (Q, s) | Λ, 我们有 (
p+ Λ

QaQbQcQd

)
=

(
p

QaQbQcQd

)
.

同时注意到根据定义我们有 η(p, q, s) = η(p+ Λ, q, s), 于是

ζ(p+ Λ, q) = ζ(p, q).

因此由引理 2.3 的结果, 我们可以让求和中的 p 依照模 Λ 分类, 从而有

σ2 = Bq2
Λ∑

λ=1

(
λ

QaQbQcQd

)
ζ(λ, q)

′∑
p1⩽µ,p≡λ (mod Λ)

exp
(
2πiup

q
+

2πivp′

q

)
,

注意到 ζ(λ, q) 是一致有界的, 从而我们完成了证明.

现在我们回头看: 事实上, 我们不给出引理 2.2 的证明, 是因为引理 2.2 本身是不正确的. 事实上, 原

论文中的

SsP,q =
1

2
SsP,4q

这一步是有问题的, 我们可以给出反例. 为了解决这个问题, 我们进行了大量的探索, 包括查阅文献, 在

Mathematics Stack Exchange 上提问等等, 但都没有进展. 后来, 经过大量思考, 我们发现, 这里我们只需

要还是与引理 2.3’ 中的证明一样, 找到一个有一致上界且整除 q 的 Λ, 然后说明那些所谓的余项以 Λ 为

周期.
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具体来说, 利用引理 2.1 的结果, 我们可以得到

σ1 = K
′∑

p1⩽µ

Sap,q1Sbp,q2Scp,q3Sdp,q4 exp
(
−2πip′

(
v′′1
q1

+
v′′2
q2

+
v′′3
q3

+
v′′4
q4

))
exp

(
−2nπip

q

)
这里 q1, q2, q3, q4 分别对应 s = a, b, c, d时应用引理 2.1所得的结果,也就是依据 s, q, vi 的取值可能取 q 或

4q. 当然, 如果全是 q 或 4q 的话, 我们依照原本论文中的思路就不会遇到问题. 因此我们下面假设 σ1 不取

0; 同时 q1, q2, q3, q4 中既有取 q 者, 又有取 4q 者. 这样, 我们有某个 qs 是模 4 余 2 的. 我们记 q0 = 4q, 这

样有 8 | q0. 我们设 q 的奇数部分, 也就是 q0 的奇数部分是 Q. 还是取 G 是 (a,Q), (b,Q), (c,Q), (d,Q) 的

最小公倍数, 那么我们这时可以取 Λ = 8G, 这样我们还是有 Λ | q0. 同时 Λ ⩽ 8abcd, 故有一致上界. 此时

我们只需验证以下性质:
1
√
q
Ssp,qi

(
p

Qs

)
关于 p 是以 Λ 为周期且有一致上界的. 这样我们还是可以关于 p 模 Λ 进行分类, 从而得到引理 2.3 中的

估计, 这样就修补了这里的错误.

我们进行分类讨论就可以说明该性质. 我们鉴于篇幅问题只说明一种情形: 即我们得到的是 Ssp,q, 这

里 4 | qs. 我们设 qs = 2µsQs. 那么我们由求和公式, 得到

Ssq,p = (s, q)Ssqp,qs

= (s, q)(1 + i)e−1
sqp

√
qs

(
Qs

sq

)(
Qs

p

)(
2µs

sqp

)
=
»

(s, q)(1 + i)e−1
sqp

√
q

(
Qs

sq

)(
p

Qs

)
(−1)

(p−1)(Qs−1)
2

(
(−1)

(sqp)2−1

8

)µs

其中用到了二次互反律和 2 是否为二次剩余判定等等. 现在我们发现, 由于 Λ 是 8 的倍数, 而显然

e−1
sqp
, (−1)

(p−1)(Qs−1)
2 ,

(
(−1)

(sqp)2−1

8

)µs

只与 p 模 8 的余数有关, 这就完成了这种情形下的讨论. 其它情

形的讨论是完全类似的.

总之, 我们还是有

σ1 = Kq20

Λ∑
λ=1

∑
p1⩽µ

p≡λ (mod Λ)

exp
(
2πiup

q0
+

2πivp′

q0

)
.

由此我们还是可以推出引理 2.3.

接下来我们尝试给出引理 2.4 的证明思路. 这可以分解为以下几步:

引理 2.4.1: 若 Λ1 | q1,Λ2 | q2, (q1, q2) = 1, 则

S(u, v1;λ1,Λ1; q1)S(u, v2;λ2,Λ2; q2) = S(u, v1q
2
2 + v2q

2
1 ;λ1q2 + λ2q1,Λ1Λ2; q1q2).

引理 2.4.2: 设 q = wξ1
1 w

ξ2
2 · · ·wξr

r , 若 (u, q) = (v, q) = 1,Λ = wζ1
1 w

ζ2
2 · · ·wζr

r , 这里 ζj ⩽ ξj , ζj 可能等

于 0. 此时, 可以取一列 vj , λj , 使得 (vj , w
ξj
j ) = 1, 且

S(u, v;λ,Λ; q) =
r∏

j=1

S(u, vj ;λj , w
ζj
j ;w

ξj
j ).

这两个引理从直观上就可以看出该怎么证, 利用中国剩余定理即可, 鉴于篇幅不再赘述. 这两个引理告

诉我们, u, v 都与 q 互素时, 相当于只需考虑 q 是素数的幂的情形.

引理 2.4.3: 若 q = wξ,Λ = wζ , ζ ⩽ ξ, (u,w) = (v, w) = 1, 则

|S(u, v;λ,Λ; q)| < Kq
3
4 .
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引理 2.4.3 的证明: 我们考虑下式

σ3 =
′∑
λ

′∑
u

|S(u, v;λ,Λ; q)|4,

这里求和号
∑′ 分别指对所有小于 Λ 且与之互素的正整数 λ 求和; 以及对所有小于 q 且与之互素的正整

数 u 求和.

断言: σ3 不依赖于 v 的取值.

断言的证明: 我们写出

P ≡ up (mod q), 1 + PP ′ ≡ 0 (mod q),

那么 p′ ≡ P ′u (mod q), 而我们需要对所有 P ≡ uλ (mod Λ) 进行求和, 即我们有

′∑
λ

′∑
u

∣∣∣∣∣∣
′∑

P≡uλ (mod Λ)

exp
(
2πiP

q
+

2πiuvP ′

q

)∣∣∣∣∣∣
4

=
′∑
λ

′∑
u

|S(1, uv;uλ,Λ; q)|4 =
′∑
λ

′∑
u

|S(1, u;λ,Λ; q)|4.

这是因为既然 λ 取遍所有小于 Λ 且与之互素的正整数, 那么 uλ 显然也一样, 于是我们可以在上式中把 uλ

改成 λ; 类似地, 我们也可以再把 uv 改成 u, 这就说明了断言.

现在把模的平方写成复数乘自己的共轭, 我们得到

σ =
′∑
λ

′∑
u

∑
p1,p2,π1,π2

exp
(
2πiu(p1 + p2 − π1 − π2)

q
+

2πiv(p′1 + p′2 − π′
1 − π′

2)

q

)

=
′∑
λ

∑
p1,p2,π1,π2

exp
(
2πivH ′

q

)
cq(H).

这里第二行中是写出 H = p1 + p2 − π1 − π2,H
′ = p′1 + p′2 − π′

1 − π′
2, 并对 u 求和, 并注意到我们有公式

cq(H) =
′∑
p

exp
(
2πipH

q

)
=
∑

δ|(H,q)

δµ
(q
δ

)
.

这里 µ 是 Möbius 函数, 即

µ(n) =


1 n = 1;

0 n被某个质数的平方整除;

(−1)k n是k个互异质数之积.

我们注意到 q = wξ, 那么 vw(H) < ξ − 1 时 cq(H) = 0; vw(H) = ξ − 1 时 cq(H) = −wξ−1; vw(H) ⩾ ξ − 1

时 cq(H) = wξ − wξ−1 = φ(q), 因此我们有

σ3 = −wξ−1

′∑
λ

∑
p1,p2,π1,π2
vw(H)=ξ−1

exp
(
2πivH ′

q

)
+ φ(q)

′∑
λ

∑
p1,p2,π1,π2

q|H

exp
(
2πivH ′

q

)
.

现在, 注意到 σ3 与 v 无关, 因此我们在上式中对所有 v 求和, 得到

φ(q)σ3 =− wξ−1

′∑
λ

∑
p1,p2,π1,π2
vw(H)=ξ−1

cq(H
′) + φ(q)

′∑
λ

∑
p1,p2,π1,π2

q|H

cq(H
′)

=w2ξ−2N1 − wξ1φ(q)N2 − wξ1φ(q)N3 + (φ(q))2N4,

这里
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N1 =
∑′

λN1,λ, 这里 N1,λ 是满足 p1, p2, π1, π2 ≡ λ (mod Λ), 且 H,H ′ ≡ 0 (mod wξ−1), q ∤ H,H ′ 的

四元解 (p1, p2, π1, π2) 的个数 (当然指在模 q 意义下);

N2 =
∑′

λN2,λ, 这里 N2,λ 是满足 p1, p2, π1, π2 ≡ λ (mod Λ), 且 H ≡ 0 (mod wξ−1), q ∤ H, q | H ′ 的

四元解 (p1, p2, π1, π2) 的个数;

N3 =
∑′

λN3,λ, 这里 N3,λ 是满足 p1, p2, π1, π2 ≡ λ (mod Λ), 且 H ′ ≡ 0 (mod wξ−1), q ∤ H ′, q | H 的

四元解 (p1, p2, π1, π2) 的个数;

N4 =
∑′

λN4,λ, 这里 N4,λ 是满足 p1, p2, π1, π2 ≡ λ (mod Λ), 且 q | H,H ′ 的四元解 (p1, p2, π1, π2) 的

个数.

于是我们有

φ(q)σ3 ⩽ w2ξ−2N1 + (φ(q))2N4,

我们下面来说明 N4 = O(q2), N1 = O(w2ξ+2). 我们先来估计 N4, 我们去掉要求 p1, p2, π1, π2 全部模 Λ 同

余的条件, 因此只需考虑

p1 + p2 ≡ π1 + π2 (mod q), p′1 + p′2 ≡ π′
1 + pi′2 (mod q).

第二个式子等价于 π1π2(p1 + p2) ≡ p1p2(π1 + π2) (mod q), 从而结合第一个式子, 得到要么

p1 + p2 ≡ 0 (mod q), π1 + π2 ≡ 0 (mod q);

要么

p1p2 ≡ π1π2 (mod q), p1 + p2 ≡ π1 + π2 (mod q)

第一种情形显然只有 O(q2) 组解; 第二种情形又可以推出 (p1 − p2)
2 ≡ (π1 − pi2)

2 (mod q), 于是 p1 − p2 ≡

±(π1 − π2) (mod q), 于是又只有 O(q2) 组解, 从而 N4 ⩽ Kq2.

对于 N1, 我们还是一样地减弱要求, 一样地得到在模 wξ−1 的情形下有 O(w2ξ−2); 因此在模 q 意义下

解的个数为 O(w2ξ+2).

因此我们可以得到估计

φ(q)σ3 ⩽ Kw2ξ−2w2ξ+2 +Kq2 + q2 ⩽ Kq4.

注意到 φ(q) = wξ−1(w − 1), 因此 σ3 ⩽ Kq3. 那么我们推出

|S(u, v;λ,Λ; q)| < Kq
3
4 .

引理 2.4.4: 若 Λ | q, (u, q) = (v, q) = 1, 则

S(u, v;λ,Λ; q) = O(q
3
4+ϵ).

引理 2.4.4 的证明: 从引理 2.4.2 及引理 2.4.3, 我们得到 q = wξ1
1 w

ξ2
2 · · ·wξr

r 时,

|S(u, v;λ,Λ; q)| ⩽ Krq
3
4+ϵ.

现在注意到

Kr < 2Kr ⩽ [(1 + ξ1)(1 + ξ2) · · · (1 + ξr)]
K ,
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而 (1 + ξ1)(1 + ξ2) · · · (1 + ξr) 是 q 的因子个数, 从而很容易说明是 O(qϵ) 的. 因此 Kr = O(qϵ), 于是我们

完成了证明.

引理 2.4.5: 若 Λ | q, (u, q) = 1, 则

S(u, v;λ,Λ; q) = O(q
3
4+ϵ).

引理 2.4.5 的简略证明: 我们还是略去一些过程, 直接断言可以找到一列 vj , λj , ξ
′
j , 使得

S(u, v;λ,Λ; q) =
r∏

j=1

S(u, vj ;λj , w
ζj
j ;w

ξj
j ), (v, q) =

r∏
j=1

(vj , w
ξj
j ) =

r∏
j=1

w
ξ′j
j .

这里 ξ′j ⩽ ξj , 且 ξj 可以取 0. 如对于那些 ξ′j = 0 的 j, 我们已经有 (vj , w
ξj
j ) = 1, 从而由引理 2.4.3 已经有∣∣∣S (u, vj ;λj , w

ζj
j ;w

ξj
j

)∣∣∣ < Kw
3
4 ξj
j . (1)

我们再来考虑那些 ξ′j = ξj 的 j. 此时 w
ξj
j | vj . 因此我们有

S
(
u, vj ;λj , w

ζj
j ;w

ξj
j

)
=

∑
p≡λ (mod w

ζj
j )

exp
(
2πiup

w
ξj
j

)
.

这在 ζj = 0 时是 c
w

ξj
j

(u) = µ(w
ξj
j ), 从而 (1) 这样的估计还是成立的. 下面设 ζj ̸= 0, 那么我们有

S
(
u, vj ;λj , w

ζj
j ;w

ξj
j

)
=

w
ξj−ζj
j −1∑
v=0

exp
(
2πiuλj

w
ξj
j

)
exp

(
2πiuv

w
ξj−ζj
j

)
,

这在 ξj ̸= ζj 时等于 0, 而 ξj = ζj 时它只剩一项, 模长为 1, 故 (1) 仍然成立.

最后还剩 0 < ξ′j < ξj 的情形. 我们记 vj = w
ξ′j
j v

′
j , 那么

S
(
u, vj ;λj , w

ζj
j ;w

ξj
j

)
=

∑
p≡λj (mod w

ζj
j )

exp

2πiup

w
ξj
j

+
2πiv′jp

′

w
ξj−ξ′j
j

 .

我们分下面三种情形讨论.

(i) 当 ζj = ξj − ξ′j 时, 我们可以取 λ′
j 满足 1 + λjλ

′
j ≡ 0 (mod w

ξj−ξ′j
j ). 那么

S = exp
(
2πiuλj

w
ξj
j

+
2πiv′jλ

′
j

w
ξj
j

) w
ξ′j−1

j∑
v=0

exp

2πiuv

w
ξ′j
j

 = 0.

(ii) 当 ζj < ξj − ξ′j 时, 我们可以让

p = p1 + vw
ξj−ξ′j
j , v = 0, 1, · · · , wξ′j

j − 1,

这里我们要求 p1 ≡ λj (mod w
ζj
j ), 并写出 1 + p1p

′
1 ≡ 0 (mod w

ξj−ξ′j
j ), 那么我们有

S
(
u, vj ;λj , w

ζj
j ;w

ξj
j

)
=

∑
0<p1<w

ξj−ξ′
j

j

p1≡λj (mod w
ζj
j

)

exp

2πiup1

w
ξj
j

+
2πiv′jp

′
1

w
ξj−ξ′j
j

 w
ξ′j−1

j∑
v=0

exp

2πiuv

w
ξ′j
j

 = 0.

(iii) 当 ζj > ξj − ξ′j 时, 我们可以让

p = λj + vw
ζj
j , v = 0, 1, · · · , wξj−ζj

j − 1.
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因此还是让 λ′
j 满足 1 + λjλ

′
j ≡ 0 (mod w

ξj−ξ′j
j ), 我们有

S = exp

2πiuλj

w
ξj
j

+
2πiv′jλ

′
j

w
ξj−ξ′j
j

 w
ξj−ζj
j −1∑
v=0

exp
(

2πiuv

w
ξj−ζj
j

)
= 0.

从而 (1) 的估计对一切情形都是成立的. 因此我们还是类似地, 将不同素数项对应的上界相乘, 我们就

完成了引理 2.4.5 的证明.

引理 2.4 的证明: 我们还是先有

S = S(u, v;λ,Λ; q) =
r∏

j=1

S(u, vj ;λj , w
ζj
j ;w

ξj
j ),

这里

q =
r∏

j=1

w
ξj
j , Λ =

r∏
j=1

w
ζj
j , (v, q) =

r∏
j=1

(vj , w
ξj
j ), (u, q) =

r∏
j=1

(u,w
ξj
j ).

我们注意到, 那些让 (u,wj) = (vj , wj) = 1 的 j 由引理 2.4.3 可以给出估计

|S| < Kw
3
4 ξj
j = K(u,w

ξj
j )

1
4w

3
4 ξj
j = K(vj , w

ξj
j )

1
4w

3
4 ξj
j

如果只有 (u,wj) = 1, 我们由引理 2.4.4 知也成立; 而如果只有 (vj , wj) = 1, 那么注意到若取 λ′ 满足

1 + λλ′ ≡ 0 (mod Λ), 我们有

S(u, v;λ,Λ; q) = S(v, u;λ′,Λ; q)

从而这样的估计还是成立的.

从而我们只剩下退化情形, 即 u, v 都不与 wj 互素. 我们由对称性, 不妨假设有 (u,w
ξj
j ) ⩾ (v, w

ξj
j ). 我

们写出

(vj , w
ξj
j ) = w

ξ′j
j , (u,w

ξj
j ) = w

ξ′′j
j , ξ′′j ⩾ ξ′j > 0.

我们记 vj = v′jw
ξ′j
j , u = u′w

ξ′j
j .

如果 ξ′j = ξj , 我们直接粗暴地放出

|S| < Kw
ξj
j = Kw

1
4 ξ

′
j

j w
ξj
j = K(vj , w

ξj
j )

1
4w

3
4 ξj
j ⩽ K(u,w

ξj
j )

1
4w

3
4 ξj
j .

而如果 ξ′j < ξj , 那么我们分两种情况讨论.

(i) 若 ζj ⩽ ξj − ξ′j , 我们有

S =
′∑

p≡λj (mod w
ζj
j

)

0<p<w
ξj
j

exp

2πiu′p

w
ξj−ξ′j
j

+
2πiv′jp

′

w
ξj−ξ′j
j

 = w
ξ′j
j

′∑
p≡λj (mod w

ζj
j

)

0<p<w
ξj−ξ′

j
j

exp

2πiu′p

w
ξj−ξ′j
j

+
2πiv′jp

′

w
ξj−ξ′j
j

 .

那么此时注意到 (v′j , w
ξj−ξ′j
j ) = 1, 我们由引理 2.4.5 得到

|S| < Kw
ξ′j
j w

3
4 (ξj−ξ′j)+ϵ

j = Kw
1
4 ξ

′
j

j w
3
4 ξj+ϵ
j = K(vj , w

ξj
j )

1
4w

3
4 ξj+ϵ
j ⩽ K(u,w

ξj
j )

1
4w

3
4 ξj+ϵ
j .

(ii) 若 ζj > ξj − ξ′j , 我们有

S = exp

2πiu′λj

w
ξj−ξ′j
j

+
2πiv′jλ

′
j

w
ξj−ξ′j
j

w
ξj−ζj
j ,
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这里我们取 λ′
j 使得 1 + λjλ

′
j ≡ 0 (mod w

ζj
j ). 因此

|S| = w
ξj−ζj
j < w

ξ′j
j ⩽ (vj , w

ξj
j )

1
4w

3
4 ξj
j ⩽ (u,w

ξj
j )

1
4w

3
4 ξj
j .

因此无论如何, 我们都有

|S| < K(u,w
ξj
j )

1
4w

3
4 ξj+ϵ
j , |S| < K(vj , w

ξj
j )

1
4w

3
4 ξj+ϵ
j .

从而将不同素数幂对应的项乘起来即可得到引理 2.4 的证明.

最后我们来给出最为困难的引理 2.5 的证明, 这将结束本小节的内容.

引理 2.5 的证明: 我们考虑 ξη− 平面上的正方形区域 0 < ξ ⩽ 1, 0 ⩽ η < 1. 在 ξ− 轴上, 我们取出以

下 q 个点:

ξ =
1

q
,
2

q
, · · · , q − 1

q
, 1.

在那些使得 (p1 +N, q) = 1 的点 ξ =
p1
q
处, 我们取其纵坐标为

η =
up+ vp′

q
,

这里 p′ ≡ p1 +N (mod q), 1 + pp′ ≡ 0 (mod q). 这样, 我们在 ξη− 平面上得到了 φ(q) 个点, 我们可以取

适合的坐标使得它们都位于正方形区域内.

我们待定某个大数 M , 对 m = 0, 1, · · · ,M − 1, 记 Mm 为满足下述条件的 p 的个数:

0 < p1 ⩽ µ, p ≡ λ (mod Λ),
m

M
⩽ up+ vp′

q
⩽ m+ 1

M
.

那么我们得知

′∑
p1⩽µ,p≡λ (mod Λ),

m
M

⩽up+vp′
q

⩽m+1
M

exp
(
2πiup

q
+

2πivp′

q

)

=Mm exp
(
2πim

M

)
+

′∑
p1⩽µ,p≡λ (mod Λ),

m
M

⩽up+vp′
q

⩽m+1
M

(
exp

(
2πi(up+ vp′)

q

)
− exp

(
2πim

M

))

=Mm exp
(
2πim

M

)
+O

(
Mm

M

)
,

从而我们有

σ4 =
′∑

p1⩽µ

p≡λ (mod Λ)

exp
(
2πiup

q
+

2πivp′

q

)
=

M−1∑
m=0

Mm exp
(
2πim

M

)
+O

( µ
M

)
.

为了估计 Mm, 我们考察函数 f(ξ, η), 定义如下:

(i) 对于 0 < ξ <
µ

q
,
m

M
< η <

m+ 1

M
, 定义 f(ξ, ζ) = 1;

(ii) 对于在矩形 0 < ξ <
µ

q
,
m

M
< η <

m+ 1

M
边界上的 (ξ, ζ), 定义 f(ξ, ζ) =

1

2
;

(iii) 对于矩形 0 < ξ ⩽ 1, 0 ⩽ η < 1 中的其它点, 定义 f(ξ, ζ) = 0. (当 m = M − 1 时, 这一条要改成

对于矩形 0 < ξ ⩽ 1, 0 < η ⩽ 1 中的其它点, 定义 f(ξ, ζ) = 0. )

(iv) 对 ξ, η 都以 1 为周期进行延拓.
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现在我们注意到在矩形每条边上至多两个点, 因此我们有

Mm =
′∑

p≡λ (mod Λ)

f

(
p1
q
,
up+ vp′

q

)
+O(1).

注意到由二维傅立叶变换, 我们有

f(ξ, η) =
+∞∑

h=−∞

+∞∑
h=−∞

ah,ke
2πiξhe2πiηk,

这里

ah,k =

∫ 1

0

∫ 1

0

f(ξ, η)e−2πiξhe−2πiηkdξdη.

这事实上是可以积出来的. 比如说, h ̸= 0 时,

ah,0 =

∫ 1

0

∫ 1

0

f(ξ, η)e−2πiξhdξdη =

∫ µ
q

0

dξe−2πiξh

∫ m+1
M

m
M

dη = − 1

2πihM

(
e−

2πihµ
q − 1

)
.

类似地, 我们有

a0,0 =
µ

qM
;

a0,k = − µ

2πikq

(
e−

2πik(m+1)
M − e−

2πikm
M

)
, (k ̸= 0);

ah,k = − 1

4π2hk

(
e−

2πihµ
q − 1

)(
e−

2πik(m+1)
M − e−

2πikm
M

)
, (h, k ̸= 0).

我们写出

Mm =
′∑

p≡λ (mod Λ)

+∞∑
h=−∞

+∞∑
k=−∞

ah,k exp
(
2πihp1
q

+
2πik(up+ vp′)

q

)
+O(1)

=

+H∑
h=−H

+H∑
k=−H

′∑
p≡λ (mod Λ)

+
′∑

p≡λ (mod Λ)

+∞∑
h=−∞

∑
|k|>H

+
∑

p≡λ (mod Λ)

∑
|h|>H

+∞∑
k=−∞

+O(1)

=Σ1 +Σ2 +Σ3 +O(1).

(i) 我们先来估计 Σ1. 我们要对 Σ1 中每一项关于 h, k 是否等于 0 进行讨论.

Σ1 中 h = 0, k = 0 的项是

a0,0

′∑
p≡λ (mod Λ)

1 =
µ

qM

′∑
p≡λ (mod Λ)

1 =
µ

qM
φλ(q).

这里 φλ(q) 是某个依赖于 λ,Λ, q 的数, 它不依赖于 m.

Σ1 中 h ̸= 0, k = 0 的项是

T1 = − 1

2πiM

∑
0<|h|⩽H

1

h

(
exp

(
−2πihµ

q

)
− 1

)
exp

(
−2πihN

q

) ′∑
p≡λ (mod Λ)

exp
(
2πip′h

q

)
.

由引理 2.4, 我们可以得到

|T1| ⩽
K

M

H∑
h=1

(h, q)
1
4

h
q

3
4+ϵ ⩽ Kq

3
4+ϵ
∑
δ|q

δ
1
4

∑
(h,q)=δ
h⩽H

1

h
⩽ Kq

3
4+ϵ
∑
δ|q

δ−
3
4

∑
h1⩽H

δ

1

h1

⩽Kq 3
4+ϵ logH

∑
δ|q

1 = O(q
3
4+ϵ logH).
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Σ1 中 h = 0, k ̸= 0 的项是

T2 = − 1

2πiq

∑
0<|k|⩽H

1

k

(
exp

(
−2πik(m+ 1)

M

)
− exp

(
−2πikm

M

)) ′∑
p≡λ (mod Λ)

exp
(
2πikup

q
+

2πikvp′

q

)
.

还是由引理 2.4, 我们可以得到

|T2| ⩽ K
µ

q

H∑
k=1

(ku, q)
1
4

k
q

3
4+ϵ ⩽ Kq

3
4+ϵ(u, q)

1
4

H∑
k=1

(k, q)
1
4

k
= O

(
q

3
4+ϵ(u, q)

1
4 logH

)
.

Σ1 中 h ̸= 0, k ̸= 0 的项记为 T3 时, 我们类似地推出有

|T3| ⩽ K
H∑

h=1

H∑
k=1

1

hk
(hk, q)

1
4 q

3
4+ϵ ⩽ Kq

3
4+ϵ(u, q)

1
4

H∑
h=1

1

h

H∑
k=1

(k, q)
1
4

k
= O

(
q

3
4+ϵ(u, q)

1
4 (logH)2

)
.

这样, 把上面这四种项加起来, 我们得到有

Σ1 =
µ

qM
φλ(q) +O

(
q

3
4+ϵ(u, q)

1
4 (logH)2

)
.

(ii) 我们再来估计 Σ2 及 Σ3. 我们取一个小常数 ψ, 如下定义区域 R1(ψ): 我们定义 R1(ψ) 为正方形

0 < ξ ⩽ 1, 0 ⩽ η < 1 中这 7 块条状区域的并:

1◦ 0 ⩽ ξ ⩽ ψ; 2◦
µ

q
− ψ ⩽ ξ ⩽ µ

q
+ ψ; 3◦ 1− ψ ⩽ ξ ⩽ 1; 4◦ 0 ⩽ η ⩽ ψ;

5◦
m

M
− ψ ⩽ ξ ⩽ m

M
+ ψ; 6◦

m+ 1

M
− ψ ⩽ ξ ⩽ m+ 1

M
+ ψ; 7◦ 1− ψ ⩽ η ⩽ 1.

这样, 我们可以发现 R1(ψ) 中含有的标记点数为 O(ψq). 我们记 R2(ψ) 为正方形 0 < ξ ⩽ 1, 0 ⩽ η < 1 中

剩下的区域, 事实上, 可以观察到 R2(ψ) 由六个矩形组成. 若 (ξ, η) ∈ R2(ψ), 我们有

ξ > ψ;

∣∣∣∣ξ − µ

q

∣∣∣∣ > ψ; 1− ξ > ψ; η > ψ;
∣∣∣η − m

M

∣∣∣ > ψ;

∣∣∣∣η − m+ 1

M

∣∣∣∣ > ψ; 1− η > ψ.

我们与论文中保持一致, 简记

ξ =
p1
q
, η =

up+ vp′

q
,

那么我们有

|Σ2| =

∣∣∣∣∣∣
′∑

p≡λ (mod Λ)

+∞∑
h=−∞

∑
|k|>H

ah,k exp (2πihξ + 2πikη)

∣∣∣∣∣∣
⩽K

′∑
p≡λ (mod Λ)

∣∣∣∣∣∣∑h ̸=0

1

h

(
e2πih(ξ−

µ
q ) − e2πihξ

)∣∣∣∣∣∣
∣∣∣∣∣∣ ∑|k|>H

1

k

(
e2πik(η−

m+1
M ) − e2πik(η−

m
M )
)∣∣∣∣∣∣

+K
′∑

p≡λ (mod Λ)

∣∣∣∣∣∣ ∑|k|>H

1

k

(
e2πik(η−

m+1
M ) − e2πik(η−

m
M )
)∣∣∣∣∣∣

⩽K
′∑

p≡λ (mod Λ)

∣∣∣∣∣∣ ∑|k|>H

1

k

(
e2πik(η−

m+1
M ) − e2πik(η−

m
M )
)∣∣∣∣∣∣

⩽K
′∑

p≡λ (mod Λ)

∣∣∣∣∣∣∣∣
∑
k>H

sin 2πk

(
η − m+ 1

M

)
− sin 2πk

(
η − m

M

)
k

∣∣∣∣∣∣∣∣ .
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这里第二个不等号是因为∣∣∣∣∣∣∑h ̸=0

1

h

(
e2πih(ξ−

µ
q ) − e2πihξ

)∣∣∣∣∣∣ =
∣∣∣∣∣

∞∑
h=1

2

h

(
sin 2πh

(
ξ − µ

q

)
− sin 2πhξ

)∣∣∣∣∣
⩽

∣∣∣∣∣∣∣∣
∞∑
h=1

2 sin 2πh

(
ξ − µ

q

)
h

∣∣∣∣∣∣∣∣+
∣∣∣∣∣

∞∑
h=1

2 sin 2πhξ

h

∣∣∣∣∣ .
有一致上界.

由于当 0 < ψ ⩽ θ ⩽ π − ψ < π 时, 我们有∣∣∣∣∣∑
k>H

2πkθ

k

∣∣∣∣∣ ⩽ K

Hψ
,

从而我们得到对 R2(ψ) 内的 (ξ, η), 我们有∣∣∣∣∣∣∣∣
∑
k>H

sin 2πk

(
η − m+ 1

M

)
− sin 2πk

(
η − m

M

)
k

∣∣∣∣∣∣∣∣ <
K

Hψ
.

而对于一般的点, 我们也有上式 < K. 从而我们取 ψ = H− 1
2 时, 我们有

Σ2 = O

(
q

Hψ

)
+O(qψ) = O

(
q√
H

)
.

其中前者是一般点的贡献, 后者是 R2(ψ) 内的点的贡献.

完全类似地, 我们可以得到 Σ3 = O

(
q√
H

)
.

因此我们综合上述讨论, 我们得到

Mm = Σ1 +Σ2 +Σ3 +O(1) =
µ

qM
φλ(q) +O

(
q

3
4+ϵ(u, q)

1
4 (logH)2

)
+O

(
q√
H

)
从而我们取 H = q, 就得到

Mm =
µ

qM
φλ(q) +O

(
q

3
4+ϵ(u, q)

1
4

)
.

那么回到 σ4, 我们有

σ4 =
µ

qM
φλ(q)

M−1∑
m=0

e
2πim
M +O

(
Mq

3
4+ϵ(u, q)

1
4

)
+O

( q
M

)
= O

(
Mq

3
4+ϵ(u, q)

1
4

)
+O

( q
M

)
.

我们取 M =
[
q

1
8

]
, 那么我们就得到

σ4 = O
(
q

7
8+ϵ(u, q)

1
4

)
+O

(
q

7
8

)
= O

(
q

7
8+ϵ(u, q)

1
4

)
.

这就完成了引理 2.5 的证明.

3 定理证明

在本小节中, 我们将进行主要定理的证明, 即

r(n) =
π2

√
abcd

nS(n) +O(n
17
18+ϵ).
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之前的文章中, 我们提到了一个证明思路, 即利用

r(n) =
1

2πi

∫
Γ

ϑ(wa)ϑ(wb)ϑ(wc)ϑ(wd)w−n−1dw

来估计 r(n). 我们将圆周 Γ 划分为若干小圆弧 ξp,q, 可得

r(n) =
1

2πi

N∑
q=1

′∑
p

∫
ξp,q

ϑ(wa)ϑ(wb)ϑ(wc)ϑ(wd)w−n−1dw

其中

w = e−
1
n+ 2πip

q +iθ, θ ∈
(
− 2π

q(q + q′′)
,

2π

q(q + q′)

)
由引理,

ϑ(ws) = φs +Φs

对 s = a, b, c, d 成立, 于是我们可以把 r(n) 表达式中每个 ϑ(ws) 拆分, 得到 16 项. 我们记

J1 =
1

2πi

N∑
q=1

′∑
p

∫
ξp,q

φaφbφcφdw
−n−1dw

J2 为剩余项的和. 下面我们先来估计 J1. 将 φs 的表达式代入, 得

J1 =
π2

√
abcd

1

2πi

N∑
q=1

′∑
p

q−4{Sp
q}
∫
ξp,q

(
1

n
− iθ

)−2

w−n−1dw.

再通过 ∫
ξp,q

=

∫ − 2π
q(q+N)

θ=− 2π
q(q+q′′)

+

∫ 2π
q(q+N)

θ=− 2π
q(q+N)

+

∫ − 2π
q(q+q′)

θ= 2π
q(q+N)

将 J1 分成三段, 记为

J1 = J1,1 + J1,2 + J1,3

对于 J1,2, 通过简单计算我们可知

z−2 =
e−z

(1− e−z)2
+O(1)

代入 z =
1

n
− iθ, 得到 (

1

n
− iθ

)−2

= F
(
we−

2πpi
q

)
+O(1)

其中

F (z) =
z

(1− z)2
.
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记 η 为圆周 Γ 中去掉
(
− 2π

q(q +N)
,

2π

q(q +N)

)
的部分, 于是

J1,2 =
π2

√
abcd

1

2πi

N∑
q=1

′∑
p

q−4{Sp
q }
∫ 2π

q(q+N)

θ=− 2π
q(q+N)

F
(
we

− 2πpi
q

)
w−n−1dw +O

(
N∑

q=1

′∑
p

q−4 |{Sq
p}|
∫ 2π

q(q+N)

θ=− 2π
q(q+N)

|w|−n−1 dw

)

=
π2

√
abcd

1

2πi

N∑
q=1

′∑
p

q−4{Sp
q }
∫ 2π

q(q+N)

θ=− 2π
q(q+N)

F
(
we

− 2πpi
q

)
w−n−1dw +O

(
N∑

q=1

′∑
p

1

q2
1

qN

)

=
π2

√
abcd

1

2πi

N∑
q=1

′∑
p

q−4{Sp
q }
∫
Γ

F
(
we

− 2πip
q

)
w−n−1dw +K

N∑
q=1

′∑
p

q−4{Sp
q }
∫
η

F
(
we

− 2πpi
q

)
w−n−1dw +O

(
1

N

)

=
nπ2

√
abcd

N∑
q=1

′∑
p

q−4{Sp
q }e−

2npπi
q +K

N∑
q=1

q−4

∫
η

e−
1
n
−iθ

(1− e−
1
n
−iθ)2

e1−niθdθ
′∑
p

{Sp
q }e−

2npπi
q +O

(
1

N

)

=
π2

√
abcd

nS(n)− nπ2

√
abcd

∞∑
q=N+1

′∑
p

q−4{Sp
q }e−

2npπi
q +O

 N∑
q=1

q−4

∫
η

∣∣∣e− 1
n
−iθ
∣∣∣∣∣∣1− e−

1
n
−iθ
∣∣∣2 dθ

∣∣∣∣∣∣
′∑
p

{Sp
q }e−

2npπi
q

∣∣∣∣∣∣
+O

(
1

N

)

=
π2

√
abcd

nS(n) +O

n
∞∑

q=N+1

q−4

∣∣∣∣∣∣
′∑
p

{Sp
q }e−

2npπi
q

∣∣∣∣∣∣
+O

 N∑
q=1

q−4

∫ ∞

π
qN

dθ
1

n2
+ θ2

∣∣∣∣∣∣
′∑
p

{Sp
q }e−

2npπi
q

∣∣∣∣∣∣
+O

(
1

N

)

其中

S(n) =

∞∑
q=1

′∑
p

q−4{Sp
q}e−

2npπi
q

最后一个等号是因为∣∣∣e− 1
n−iθ

∣∣∣∣∣∣1− e−
1
n−iθ

∣∣∣2 =
1

e
1
n + e−

1
n − 2 cos θ

=
1(

e
1
2n − e−

1
2n

)2
+

(
2 sin θ

2

)2 = O

 1
1

n2
+ θ2

 .

当 θ ∈
(

2π

q(q +N)
, π

)
时成立, θ ∈

(
π, 2π − 2π

q(q +N)

)
时有对称结果.

由主引理,
′∑
p

{Sp
q}e−

2npπi
q = O

(
q2+

7
8+ϵ (n, q)

1
4

)
代入得

J1,2 =
π2

√
abcd

nS(n) +O

(
n

∞∑
q=N+1

q−
9
8+ϵ (n, q)

1
4

)
+O

(
N∑
q=1

Nq−
1
8+ϵ (n, q)

1
4

)
+O

(
1

N

)

=
π2

√
abcd

nS(n) +O

n∑
δ|n

δ−
7
8+ϵ

∑
q1≥N+1

δ

q
− 9

8+ϵ
1

+O

N∑
δ|n

δ
1
8+ϵ

∑
q1≤N

δ

q
− 1

8+ϵ
1

+O

(
1

N

)

=
π2

√
abcd

nS(n) +O

n1+ϵ
∑
δ|n

δ−
7
8+ϵ

(
N + 1

δ

)− 1
8

+O

n 1
2+ϵ
∑
δ|n

δ
1
8+ϵ

(
N

δ

) 7
8

+O

(
1

N

)

=
π2

√
abcd

nS(n) +O

n 15
16+ϵ

∑
δ|n

δ−
3
4+ϵ

+O

n 15
16+ϵ

∑
δ|n

δ
−
3

4
+ϵ

+O

(
1

N

)

=
π2

√
abcd

nS(n) +O
(
n

15
16+ϵ′

)
下面计算 J1,1 与 J1,3. 由对称性, 我们计算 J1,3. 首先将 J1,3 以如下方式拆分为 Σ1 和 Σ2:

J1,3 =
π2

√
abcd

1

2πi

N∑
q=1

′∑
p

q−4{Sp
q}
∫ 2π

q(q+q′)

2π
q(q+N)

(
1

n
− iθ

)−2

w−n−1dw = K

N1∑
q=1

+K
N∑

q=N1+1

= KΣ1 +KΣ2
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其中 N1 待定. 下面我们分别计算 Σ1 和 Σ2:

|Σ1| =K

∣∣∣∣∣∣
N1∑
q=1

′∑
p

q−4{Sp
q}
∫ 2π

q(q+q′)

2π
q(q+N)

(
1

n
− iθ

)−2

w−n−1dw

∣∣∣∣∣∣
=K

∣∣∣∣∣∣
N1∑
q=1

′∑
p

q−4{Sp
q}
∫ 2π

q(q+q′)

2π
q(q+N)

(
1

n
− iθ

)−2

e−
2πnpi

q −niθdθ

∣∣∣∣∣∣
≤K

N1∑
q=1

′∑
p

q−4q2
∫ ∞

π
qN

dθ
1

n2
+ θ2

≤K
N1∑
q=1

N
φ(q)

q

=O (NN1) ,

|Σ2| =K

∣∣∣∣∣∣
N∑

q=N1+1

′∑
p

q−4{Sp
q}
∫ 2π

q(q+q′)

2π
q(q+N)

(
1

n
− iθ

)−2

w−n−1dw

∣∣∣∣∣∣
=K

∣∣∣∣∣∣
N∑

q=N1+1

′∑
p

q−4{Sp
q}

q−1∑
µ=q′+q−N

∫ 2π
q(N+µ)

2π
q(N+µ+1)

(
1

n
− iθ

)−2

e−niθ− 2πnpi
q dθ

∣∣∣∣∣∣
=K

∣∣∣∣∣∣
N∑

q=N1+1

q−4

q−1∑
µ=1

∫ 2π
q(N+µ)

2π
q(N+µ+1)

(
1

n
− iθ

)−2

e−niθdθ
′∑

q′+q−N≤µ

{Sp
q}e−

2πnpi
q

∣∣∣∣∣∣ .
记 p1 = q′ + q −N . 由法雷数列的性质, 0 < p1 ≤ q 且 p (p1 +N) + 1 ≡ 0 (mod q).

于是由主引理,
′∑

p1≤µ

{Sq
p}e−

2πnpi
q = O

(
q2+

7
8+ϵ (n, q)

1
4

)
代入得

|Σ2| ≤K
N∑

q=N1+1

q−4

q−1∑
µ=1

∫ 2π
q(N+µ)

2π
q(N+µ+1)

dθ
1

n2
+ θ2

q2+
7
8+ϵ (n, q)

1
4

≤K
N∑

q=N1+1

q−
9
8+ϵ (n, q)

1
4

∫ 2π
q(N+1)

2π
q(N+q)

dθ
1

n2
+ θ2

=O

(
N∑

q=N1+1

(n, q)
1
4

q
9
8−ϵ

n2

(
2π

q(N + 1)
− 2π

q(N + q)

))

=O

(
n1+ϵ

∞∑
q=N1+1

(n, q)
1
4

q
9
8

)

=O

n1+ϵ
∑
δ|n

δ
1
4

δ
9
8

∑
q1≥N1+1

δ

q
− 9

8
1


=O

(
n1+ϵ′N

− 1
8

1

)
取 N1 = ⌊n 4

9 ⌋, 则

J1,3 = O (NN1) +O
(
n1+ϵ′N

− 1
8

1

)
= O

(
n

17
18+ϵ′

)
,

同理,

J1,1 = O
(
n

17
18+ϵ′

)
,

19 57 



于是

J1 = J1,1 + J1,2 + J1,3 =
π2

√
abcd

nS(n) +O
(
n

17
18+ϵ

)
.

下面计算 J2. 共有 15 项, 我们取其中一项为例进行计算, 如

I =
1

2πi

N∑
q=1

′∑
p

∫
ξp,q

φaφbΦcΦdw
−n−1dw

类似上面的操作, 利用 ∫
ξp,q

=

∫ − 2π
q(q+N)

θ=− 2π
q(q+q′′)

+

∫ 2π
q(q+N)

θ=− 2π
q(q+N)

+

∫ − 2π
q(q+q′)

θ= 2π
q(q+N)

我们可以将 I 分成三段 I = I1 + I2 + I3.

先计算 I2, 将 φs 与 Φs 的公式代入得

I2 = K
N∑
q=1

q−4

∫ 2π
q(q+N)

− 2π
q(q+N)

(
1

n
− iθ

)−2

eniθ
∞∑

v3=1

∞∑
v4=1

(
′∑
p

Sap,qSbp,qScp,q,v3
Sdp,q,v4

)
exp

(
−
π2( v

2
3

c
+ v2

4

d
)

q2( 1
n
− iθ)

)
dθ,

所以

|I2| ≤ K
N∑
q=1

q−4

∫ 2π
q(q+N)

0

1
1

n2
+ θ2

∞∑
v3=1

∞∑
v4=1

∣∣∣∣∣∣
′∑
p

Sap,qSbp,qScp,q,v3
Sdp,q,v4

∣∣∣∣∣∣ exp
(
−
π2n( v

2
3

c
+ v2

4

d
)

q2(1 + n2θ2)

)
dθ.

取 l > 0 为一个小量, 通过下面的操作我们将上述和分解为三部分:
N∑
q=1

∫ 2π
q(q+N)

θ=0

=
∑

0<q≤n
1
2
−l

∫ 1

qn
1
2
+l

θ=0

+
∑

0<q≤n
1
2
−l

∫ 2π
q(q+N)

θ= 1

qn
1
2
+l

+
∑

n
1
2
−l<q≤N

∫ 2π
q(q+N)

θ=0

= Σ′
1 +Σ′

2 +Σ′
3

我们再分别进行估计:

Σ′
1 ≤K

∑
0<q≤n

1
2
−l

q−4 n2

q(q +N)
q2+

7
8+ϵ (n, q)

1
4

∞∑
v3=1

∞∑
v4=1

exp
(
−Ln2l

(
v23 + v24

))

=O

(
n

3
2+ϵ

N∑
q=1

(n, q)
1
4

q
17
8 −ϵ

exp
(
−Ln2l

))

=O
(
n3exp

(
−Ln2l

))
=O(n

17
18+ϵ),

Σ′
2 ≤K

∑
0<q≤n

1
2
−l

q−4q2+
7
8+ϵ (n, q)

1
4

∫ 2π
q(q+N)

θ= 1

qn
1
2
+l

dθ
1

n2
+ θ2

∞∑
v3=1

∞∑
v4=1

exp
(
−L

(
v23 + v24

))

≤Knϵ
∑

0<q≤n
1
2
−l

(n, q)
1
4

q
9
8

n

∫ ∞

n
1
2
−l

q

dt

t2 + 1

≤Kn 1
2+l+ϵ

∑
0<q≤n

1
2
−l

(n, q)
1
4

q
1
8

≤Kn 1
2+l+ϵ

∑
δ|n

δ
1
4 δ−

1
8

∑
0<q1≤n

1
2
−l

δ

q
− 1

8
1

≤Kn 1
2+l+ϵn

7
8 (

1
2−l)

=O
(
n

15
16+ϵ

)
,
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Σ′
3 ≤K

∑
n

1
2
−l<q≤N

q−4q2+
7
8+ϵ (n, q)

1
4

∫ 2π
q(q+N)

θ=0

dθ
1

n2
+ θ2

∞∑
v3=1

∞∑
v4=1

exp
(
−L

(
v23 + v24

))

≤K
∑

q>n
1
2
−l

(n, q)
1
4 q−

9
8+ϵn

∫ 2πn
q(q+N)

0

dt

1 + t2

≤Kn1+ϵ
∑
δ|n

δ
1
4 δ−

9
8

∑
q1>

n
1
2
−l

δ

q
− 9

8
1

=O
(
n

15
16+ϵ

)
.

于是, I2 = O
(
n

17
18+ϵ

)
.

对于 I3, 我们可以采用与之前 J1,3 完全相同的计算方法，可得

I3 = O
(
n

17
18+ϵ

)
.

同理,

I1 = O
(
n

17
18+ϵ

)
.

于是,

I = I1 + I2 + I3 = O
(
n

17
18+ϵ

)
.

对于 J2 剩余的项，我们有同样的结论，于是

J2 = O
(
n

17
18+ϵ

)
.

综上我们即证明了主要定理：

r(n) =
π2

√
abcd

nS(n) +O
(
n

17
18+ϵ

)
.

4 后续讨论

下面我们进行命题的后续讨论, 即对 S(n) 的取值进行讨论, 进而分析出 ax2 + by2 + cz2 + dt2 属于哪

一个类别.

我们先回顾一下 S(n) 的定义

S(n) =

∞∑
q=1

′∑
p

q−4{Sp
q}e−

2npπi
q .

我们记

Aq =
′∑
p

q−4{Sp
q}e−

2npπi
q ,

则

S(n) =
∞∑
q=1

Aq.

引理 4.1: 对于 (q, q′) = 1, s ≡ p (mod q′), s ≡ r (mod q), 我们有 {Ss
qq′} = {Sp

q′}{Sp
q}.
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证明: 由 {Sq
p} 的定义, 我们只需证明 Sas,qq′ = Sap,q′Sar,q.

Sap,q′Sar,q =

q−1∑
m=0

exp 2arπim2

q

q′−1∑
n=0

exp 2apπin2

q′

=

q−1∑
m=0

q′−1∑
n=0

exp 2aπi(q′rm2 + qpn2)

qq′

=
∑

j≡m (mod q)

j≡n (mod q′)

exp 2aπisj2

qq′

=

qq′−1∑
j=0

exp 2aπisj2

qq′

=Sas,qq′ .

于是引理 4.1 得证.

引理 4.2: (q, q′) = 1 时, AqAq′ = Aqq′ .

证明:

AqAq′ =

(
′∑
p

{Sp
q′}e

− 2npπi
q′

)(
′∑
r

{Sr
q}e−

2nrπi
q

)

=
′∑
p

′∑
r

{Sp
q′}{Sr

q}e
− 2nπi(pq+rq′)

qq′

=
′∑

s≡r (mod q)j≡p (mod q′)

{Ss
qq′}e

− 2nπis
qq′

=Aqq′ .

于是，由引理 4.2，

S(n) =

∞∑
q=1

Aq =
∏
w

χw

其中, w 为素数,

χw =
∞∑
k=0

Awk

记 ∆ = abcd, 我们将所有素数分为两类：

(i)w = 2 或 w | ∆;

(ii)w ̸= 2 且 w ∤ ∆.

先对第 (ii) 类的素数求解 χw, 对于这些 w, 设 n = wln′, w ∤ n′, 我们有

引理 4.3: 对于第 (ii) 类的 w, 我们有 χw =

(
1−

(
∆

w

)
1

w2

)(
1 +

∑l
k=1

(
∆

wk

)
1

wk

)
.

证明: 我们利用高斯和的结论, 可得

Sp
wk = w2k

(
∆

wk

)
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于是,

Awk =w−4k

′∑
p

{Sp
wk}e

−2npπi

wk

=w−2k

′∑
p

(
∆

wk

)
e−

2npπi

wk

=w−2k

(
∆

wk

) ′∑
p

e−
2n1pπi

wk−l .

所以

Awk =



(
∆

wk

)
w−k−1(w − 1) k ≤ l

−
(

∆

wk

)
w−k−1 k = l + 1

0 k ≥ l + 2

故

χw =1 +
l∑

k=1

(
∆

wk

)
w−k−1(w − 1)−

(
∆

wl+1

)
w−l−2

=

(
1−

(
∆

w

)
1

w2

)(
1 +

l∑
k=1

(
∆

wk

)
1

wk

)
.

于是引理 4.3 得证.

我们记 m =
∏

w|n,w∈(ii)w
vw(n), 同时

χ(1) =
∏
w∈(i)

χw,

χ(2) =
∏

w∈(ii)

χw.

由引理 4.3

∣∣∣χ(2)
∣∣∣ =
∣∣∣∣∣∣ ∏w∈(ii)

(
1− (

∆

w
)
1

w2

)1 +

vw(m)∑
k=1

(
∆

wk
)
1

wk

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ ∏w∈(ii)

(
1− 1

w2

) ∏
w∈(ii),w|m

1− ( ∆
wvw(m)+1 )w

−vw(m)−1

1− (∆
w
)w−1

∣∣∣∣∣∣
≥1

2

∏
w|m

(
1− 1

w

)

≥φ(m)

2m

>
K

log logm

≥ K

log logn.

下面计算 χ(1), 也即计算 χ2 与 χw(w | ∆).

先考虑 w 为奇素数且 w | ∆ 的情况, 设

a = wµaa1, b = wµbb1, c = wµcc1, d = wµdd1
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不妨设

µa ≤ µb ≤ µc ≤ µd.

若 µa ≥ 1, 则对于不是 w 倍数的 n, n 不能表示成 ax2 + by2 + cz2 + dt2. 于是此时的 a, b, c, d 属于第

(2) 类.

若 µa = 0, µb ≥ 1, 则对于 n = ax2 + by2 + cz2 + dt2, 必有 n ≡ ax2 (mod w), 即 na−1 为 w 的平方剩

余. 于是有无穷多个 n 无法被 ax2 + by2 + cz2 + dt2 表示. 此时 a, b, c, d 也属于第 (2) 类.

对于剩余的 a, b, c, d, 我们有如下结果:

引理 4.4: 对于 µa = µb = 0, µc ≤ µd, 我们有如下结果：

(i)µc ≥ 1, µd ≥ 2,

(
ab

w

)
= (−1)

w+1
2 时, 存在一列 n，χw = 0;

(ii)µc = µd = 1,

(
ab

w

)
=

(
c1d1
w

)
= (−1)

w+1
2 时, 当 n = wk 时, 存在 K > 0, χw ∼ K

n
;

(iii) 对于其它情况, 存在 K > 0, χw > K, ∀n. 证明过程略 (利用高斯和结论进行计算，并不困难).

下面对 χ2 进行类似讨论，设

a = 2µaa1, b = 2µbb1, c = 2µcc1, d = 2µdd1,

不妨设

µa ≤ µb ≤ µc ≤ µd.

若 µa ≥ 1, 则对于不是 2 倍数的 n, n 不能表示成 ax2 + by2 + cz2 + dt2. 于是此时的 a, b, c, d 属于第

(2) 类.

若 µa = 0, µb ≥ 2, 则对于 n = ax2 + by2 + cz2 + dt2, 必有 n ≡ ax2 (mod 4), 即 na−1 为 4 的平方剩

余. 于是有无穷多个 n 无法被 ax2 + by2 + cz2 + dt2 表示。此时 a, b, c, d 也属于第（2）类.

对于剩余的 a, b, c, d, 我们有如下结果:

引理 4.5: 对于 µa = 0, µb ≥ 1, µc ≤ µd, 我们有如下结果：

(i)χ2 对一列 n 为 0, 如果

µa, µb, µc, µd =0, 1, 1,≥ 3;

0, 1, 2,≥ 4;

0, 1,≥ 3,≥ 3;

0, 0,≥ 2,≥ 2;

0, 0, 0,≥ 3, a ≡ b ≡ c (mod 4)

(ii) 对于 n = 2k 存在 K > 0, χ2 ∼
K

n
, 如果

µa, µb, µc, µd =0, 1, 1, 2, a+ d1 ≡ b1 + c1 ≡ 4( (mod 8)) or b1 + c1 + 2a ≡ a+ d1 + 2b1 ≡ 4 (mod 8);

0, 1, 2, 3, b1 + d1 ≡ a+ c1 ≡ 4 (mod 8) or b1 + d1 + 2a ≡ a+ c1 + 2b1 ≡ 4 (mod 8);

0, 1, 1, odd, a+ b ≡ c1 + d1 ≡ 4 (mod 8) or a+ b+ 2c1 ≡ c1 + d1 + 2a ≡ 4 (mod 8);

0, 0, 0, 0, a ≡ b ≡ c ≡ d (mod 4) and a+ b+ c+ d ≡ 4 (mod 8);

0, 0, 0, 2, a ≡ b ≡ c ≡ d1 (mod 4) and a+ b+ c+ d1 ≡ 4 (mod 8).

24 62 



(iii) 对于其它情况，存在 K > 0, χ2 > K, ∀n.

证明过程略.

综合以上的讨论, 我们可以知道, 如果 a, b, c, d 满足:

1. 不在引理 4.5 的 (i)(ii) 中;

2.∆ 的任何素因子不满足引理 4.4 的 (i)(ii);

3. 任何奇素数不整除 a, b, c, d 中 ≥ 3 个数;

4.a, b, c, d 中至少一个数为奇数;

5.a, b, c, d 中至少两个数不被 4 整除;

则存在 K > 0,

S(n) >
K

log logn.

由主要定理, 即可知对于这样的 a, b, c, d, 任意充分大的正整数均可被表示.

如果 a, b, c, d 不满足上面 3/4/5 中任意一个, 则由前面的讨论知有无穷多个 n 不能被表示. 若不满足

1/2, 我们下面进行讨论.

首先我们证明: 若引理 4.4(i) 对某个奇素数成立或引理 4.5(i) 成立, 则无穷多个 n 不能被表示.

若奇素数 w 满足引理 4.4 的 (i)，我们分情况讨论:
1⃝2 ≤ µc ≤ µd, 且

(
ab

w

)
= (−1)

w+1
2 :

我们考虑 n = wn1, (n1, w) = 1, 下证这样的 n 不能被表示.

对于 wn1 = ax2 + by2 + cz2 + dt2, 我们可知 (w, x) = (w, x) = 1, 否则 w | x,w | y, 推出 w2 | n，矛盾!

由 w | ax2 + by2, 我们知 ab ≡ −b2
(y
x

)2
(mod w) 故

(
ab

w

)
=

(
−1

w

)
= (−1)

w−1
2 , 与条件矛盾.

2⃝µc = 1, µd ≥ 2,

(
ab

w

)
= (−1)

w+1
2 :

此时我们可以完全类似的说明下列 n 无法被表示：

n = wn1, w ∤ n1,
(c1n1

w

)
= −1.

若引理 4.5(i) 成立，则我们可以通过简单讨论说明下列 n 不能被表示：

1⃝µa, µb, µc, µd = 0, 1, 1,≥ 3

若 b1 + c1 ≡ 0 (mod 4), 则 n ≡ a+ 4 (mod 8) 不能被表示;

若 b1 + c1 ≡ 2 (mod 4), 则 n ≡ a+ 2b1 + 4 (mod 8) 不能被表示;
2⃝µa, µb, µc, µd = 0, 1, 2,≥ 4

若 a+ c1 ≡ 0 (mod 4), 则 n = 2n1, n1 ≡ b1 + 4 (mod 8) 不能被表示;

若 a+ c1 ≡ 2 (mod 4), 则 n = 2n1, n1 ≡ b1 + 2a+ 4 (mod 8) 不能被表示;
3⃝µa, µb, µc, µd = 0, 1,≥ 3,≥ 3

n ≡ a+ 2b1 + 4 (mod 8) 不能被表示;
4⃝µa, µb, µc, µd = 0, 0,≥ 2,≥ 2

若 a+ b ≡ 0 (mod 4), 则 n = 2n1, 2 ∤ n1 不能被表示;

若 a+ b ≡ 2 (mod 4), 则 n ≡ a+ 2 (mod 4) 不能被表示;
5⃝µa, µb, µc, µd = 0, 0, 0,≥ 3, a ≡ b ≡ c (mod 4)

n ≡ a+ b+ c+ 4 (mod 8) 不能被表示.

下面考虑引理 4.4(ii) 与引理 4.5(ii).

25 63 



先考虑引理 4.4(ii), 即 µc = µd = 1,

(
ab

w

)
=

(
c1d1
w

)
= (−1)

w+1
2 时, 我们分情况讨论：

1⃝c1 > 1, d1 > 1, 则 n = wk, 2 ∤ k 不能被表示:

证明: 我们先证明一个如下的

引理: w ∤ A,w ∤ B,
(
AB

w

)
= (−1)

w+1
2 , 则对于 ∀X,Y , 我们有 2 | vw (AX2 +BY 2)

引理的证明: 若 2 ∤ vw (AX2 +BY 2), 我们不妨设 w ∤ X,w ∤ Y , 则此时仍有 w | AX2 +BY 2.

故 AB ≡ −B2

(
Y

x

)2

(mod w). 于是
(
AB

w

)
=

(
−1

w

)
= (−1)

w−1
2 , 与条件矛盾.

回到原题, 若 wk = ax2 + by2 + w (c1z
2 + d1t

2), 由于 k 为奇数, 故由引理知 c1z
2 + d1t

2 ̸= 0. 又由于

c1 > 1, d1 > 1 我们可由递降法得知 ax2 + by2 ̸= 0. 设 λ = vw (ax2 + by2), 则由引理, 2 | λ. 由于 2 ∤ k, 所

以 k > λ, 且 wk−λ =
ax2 + by2

wλ
+
c1z

2 + d1t
2

wλ−1
. 于是 vw (c1z

2 + d1t
2) = λ− 1, 与引理矛盾.

2⃝c1 = 1, d1 ≥ 3, 则 n = 2 · wk, 2 ∤ k 不能被表示;
3⃝c1 = 1, d1 = 2, w ̸= 5, 则 n = 5wk, 2 ∤ k 不能被表示;
4⃝c1 > 1, d1 = 2, w = 5, 则 n = 7 · 5k, 2 ∤ k 不能被表示;
5⃝c1 = 1, d1 = 1, w ̸= 3, 则 n = 3 · wk, 2 ∤ k 不能被表示;
6⃝c1 = 1, d1 = 1, w = 3, a > 1, b > 1, 则 n = 3k+1, 2 ∤ k 不能被表示;
7⃝c1 = 1, d1 = 1, w = 3, a = 1, b > 1, 则 n = 2 · 3k+1, 2 ∤ k 不能被表示.

唯一一种例外情况是 x2 + y2 + 3z2 + 3t2, 可以表示所有正整数.

上面第 2⃝类到第 7⃝类的证明与第一类完全类似, 就不赘述了. 对于这种例外情况, 证明过程与拉格朗日

四平方和定理基本相同, 不是本文的证明重点.

再考虑引理 4.5(ii). 我们可以类似上面的过程进行分类讨论, 由于过程太过复杂, 我们在此不给出具

体的讨论过程, 只附上最后的结果：

属于第 (1) 类的 {a, b, c, d} 有:

{1, 2, 3, 6}, {1, 2, 3, 22}, {1, 2, 3, 38}, {1, 2, 6, 11}, {1, 2, 6, 19}

{1, 1, 10, 10}, {1, 2, 2, 9}, {1, 2, 2, 17}, {1, 2, 2, 25}, {1, 1, 2, 18}

{1, 2, 9, 18}, {1, 2, 17, 18}, {1, 2, 18, 25}, {1, 1, 2, 34}, {1, 1, 2, 50}

{1, 2, 9, 34}, {1, 2, 9, 50}, {1, 2, 17, 50}, {1, 1, 2, 2}, {1, 1, 1, 1}

{1, 1, 1, 9}, {1, 1, 1, 17}, {1, 1, 1, 25}, {1, 1, 5, 5}, {1, 1, 1, 36}

{1, 1, 1, 68}, {1, 1, 1, 100}, {1, 1, 4, 9}, {1, 1, 4, 17}, {1, 1, 4, 25}, {1, 1, 5, 20};

Kloosterman 未能判定属于哪一类别的 {a, b, c, d} 有:

{1, 2, 17, 34}, {1, 2, 11, 38}, {1, 2, 19, 38}, {1, 2, 19, 22}.

这些数组现在也都已经被解决, 都属于第 (1) 类.

其余满足引理 4.5(ii) 的 {a, b, c, d} 均属于第 (2) 类.

关于这一部分的证明过程，感兴趣的读者可以阅读:

The Completion of a Problem of Kloosterman, by Gordan Pall;

On the expression of a number in the form ax2 + by2 + cz2 + du2, by Ramanujan.

由此我们即完成了整个问题的讨论. 通过解析数论的巧妙计算方法, 我们证明了前面的引理及主要定

理, 再经过进一步的讨论, 所有的 {a, b, c, d} 都被我们成功分类!
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An elementary introduction to
Kuznecov’s article on modular forms

written in 1981
Bowen Xue, Zhenpeng Li

May, 2022

1 Introduction
History has witnessed the fast development of modular forms, which is common

in a number of mathematical branches. There is no denying that due to the idea of
modular forms, analytical number theory embraces its brand new era. This article
is intended to record the results and some proofs roughly, especially those related
to analytical number theory. Our main reference is the classic work that belongs to
Kuznecov. His estimates, via the use of modular forms and former conclusions, are
more precise than his contemporaries’.

In essence, those basic formulae come from the Fourier expansion of some fun-
damental functions. However, by virtue of the deformation of integrals, we obtain a
series of nontrivial results. The reason for our deformation comes from some masters’
estimates and rich properties of Bessel function. We will focus on the deformation
but skip some inequalities so that we can make our article seem easy.

This article is based on [1] and [2]. They do help us a lot.

2 Notation
Before we begin our journey, some definitions are important.
Let G be the modular group PSL(2,Z). We equip the upper plane H with a

G-action, that is, (
a b
c d

)
z =

az + b

cz + d
.

1
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3 HECKE OPERATORS 2

Besides, Laplace operator L = −y2( ∂2

∂x2 +
∂2

∂y2
) is also frequent. We will consider

its eigenfunctions of discrete spectrum, named after cusp forms of weight 0. Here
we recognize that they are nontrivial real-analytical automorphic functions, which
satisfy the equality f(gz) = f(z), ∀g ∈ G and finiteness condition

∫
D
|f(z)|2dz <∞,

where D is the fundamental field of G and dz = dxdy
y2

, the G-invariant measure of H.

The gray domain is the fundamental field.

On the basis of some knowledge on compact operators, we know that the Laplace
operator has Lebesgue spectrum of multiplicity one which fills out the semiaxis 1

4
⩽

λ < ∞, and it has a discrete spectrum of finite multiplicity located on the semiaxis
λ ⩾ 0 and having no points of accumulation in every finite interval.

The simplest subgroup of G may be translations < z 7→ z + n >. We call it G∞.
Hecke defined operators acting on automorphic functions, T (n), n ∈ N+. Let us

prove some basic propositions.

3 Hecke operators
3.1 Definition and properties

A matrix M is called order n if detM = n. We consider the equivalence relation
of M1 and M2 if M1 = gM2, g ∈ G. It is not difficult to verify that all representatives
are of the form (

a b
0 d

)
, ad = n, d > 0, b = 0, 1, ..., d− 1.

Hence, the following definition is valid.
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3.1 Definition and properties 3

Definition 3.1. For every automorphic function f and n > 0, we define

T (n)(f) =
1√
n

∑
ad=n
d>0

∑
b mod d

f

(
az + b

d

)
. (3.1)

Or equivalently,
T (n)(f) =

1√
n

∑
Mi

f(Miz), (3.2)

where Mi runs over all representatives.
It is trivial that the images of Hecke operators are also automorphic. And the

following theorem implies that they are commutative.
Theorem 3.2. n, m ∈ N+, then

T (n)T (m) =
∑

d|(m,n)

T
(mn
d

)
. (3.3)

Proof. Step 1: If (m,n) = 1, then,

T (n)T (m)f =
1√
mn

∑
ad=n

∑
b mod d

∑
a′d′=m

∑
b′ mod d′

f

(
aa′z + a′b+ b′d

dd′

)
. (3.4)

Because m and n are coprime, aa′ and dd′ run over every divisor of mn and
a′b+ b′d runs over the residue system of dd′. As a result, T (n)T (m) = T (mn).

Step 2: If m = p and n = pr and p prime, then,

T (p)f =
1
√
p

(
f(pz) +

p−1∑
b=0

f

(
z + b

p

))
. (3.5)

Then,

p
r+1
2 T (pr)T (p)f =

r∑
k=0

pk−1∑
t=0

(
f

(
pr−k+1z + tp

pk

)
+

p−1∑
b=0

f

(
pr−k + t+ bpk

pk+1

))
. (3.6)

Similarly, basic number theory tells us that,

T (pr)T (p) = T (pr+1)T (pr−1). (3.7)

Step 3: If m = ps and n = pr and p prime, then we can assume s ⩽ r.
If s < r, T (p)T (pr)T (ps) = T (pr) (T (ps+1) + T (ps−1)). Hence, we can do induc-

tion on T (pr)T (ps+1). If s = r, the same as the above case.
All the three steps have told us all. ■
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3.2 Inner product of automorphic funtions 4

Lemma 3.3. If we let Chebyshev polynomial be

Un(cos θ) =
sin(n+ 1)θ

sin θ
, (3.8)

then
T (pr) = Ur

(
1

2
T (p)

)
=

∑
0⩽k⩽r/2

(−1)k(r − k)!

k!(r − 2k)!
(T (p))r−2k . (3.9)

Proof. It is trivial. ■

Corollary 3.4. p prime and 2 cos θ is an eigenvalue of T (p), where θ ∈ C. Then
sin(r+1)θ

sin θ
is an eigenvalue of T (pr).

3.2 Inner product of automorphic funtions
Lemma 3.5. T (n) is Hermitian with respect to this inner product of automorphic
functions,

(f1, f2) =

∫
D

f1(z)f2(z)dz, (3.10)

where D is the fundamental field and dz is the G-invariant measure.

Proof. It suffices to considering the case when p prime. Then,

(T (p)f)(z) =
1
√
p

p∑
j=0

f(αgjz) =
1
√
p

p∑
j=0

f(α̃g̃jz), (3.11)

where,

α =

(
1 0
0 p

)

gi =



(
1 j

0 1

)
j = 0, ..., p− 1(

0 −1

1 0

)
j = p

α̃ =

(
p 0
0 1

)
g̃j =

(
0 1
−1 0

)
gj
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3.3 Relation to eigenfunctions of Laplace operator 5

As a result, if we change variables by z′ = αgjz and conform the integral domain,
we can get,

(T (p)f1, f2) =
1
√
p

p∑
j=0

∫
D

f1(αgjz)f2(z)dz (3.12)

=
1
√
p

∫
B

f1(z)f2(α−1z)dz, (3.13)

where B =
p⋃

j=0

αgjD.

The same as this, we cam get,

(f1, T (p)f2) =
1
√
p

∫
B̃

f1(z)f2(α̃z)dz, (3.14)

where B̃ =
p⋃

j=0

g̃jD.

But note that α−1z = α̃z = pz. So what we only need to do is to compare B
and B̃. We claim that they are both the fundamental field of G∞ and the proof is
reserved for practice. ■

3.3 Relation to eigenfunctions of Laplace operator
We denote ψ as the eigenfunction of the discrete spectrum of Laplace operator

equipped with the eigenvalue λ > 1
4
. And let κ =

√
λ− 1

4
. The Fourier expansion

of ψ is clear. And the regular property makes the following formula appropriate,

ψ(z) =
+∞∑
−∞

cn(y)e
2πinx. (3.15)

So, apply this to characteristic equation, we can get,

− y2c′′n + 4π2n2y2cn = λcn, (3.16)

which is the classical Bessel equation. Then,

cn(y) = ρ(n)
√
yKiκ(2π|n|y) + ρ̃(n)

√
yIiκ(2π|n|y), (3.17)

with ρ(n) and ρ̃(n) to be decided.
But the second component is always unbounded. Finiteness condition request it
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3.3 Relation to eigenfunctions of Laplace operator 6

to be zero.
Simultaneously, when n = 0, the concrete calculation suggests that ρ(0) = 0. So,

ψ(z) =
∑
n ̸=0

ρ(n)
√
yKiκ(2π|n|y)e2πinx. (3.18)

Beside, Kν(y), considered as a function of ν, is even and entire on the complex
plane. When ν purely imaginary and y positive, Kν(y) is a real number. As a result,
if ψ(z) takes on real value, an extra condition is inevitable,

ρ(n) = ρ(−n). (3.19)

This part provide a case of Hecke operators acting on special functions.

Lemma 3.6. The same as above and let n ⩾ 1, then,

(T (n)ψ)(z) =
∑
m ̸=0

tn(m)
√
yKiκ(2π|n|y)e2πinx, (3.20)

where,
tn(m) =

∑
d|(m,n)
d>0

ρ
(mn
d2

)
. (3.21)

Proof.

T (n)ψ =
1√
n

∑
ad=n
a>0

∑
b mod d

∑
m ̸=0

ρ(m)

√
ay

d
Kiκ

(
2π|m|ay

d

)
exp

(
2πim

ax+ b

d

)
, (3.22)

and, ∑
b mod d

exp

(
2πim

b

d

)
=

{
d, if d | m,
0, else.

, (3.23)

tell us all. ■

Then, using the following proposition, we can choose a special basis in an attempt
for simplification.

Proposition 3.7. Hecke operators commute with the Laplace operator.
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3.3 Relation to eigenfunctions of Laplace operator 7

If Vλ is the λ-characteristic space of L, Vλ is also the invariant space of T (n).
We have told readers dimVλ <∞ and T (n) Hermitian and commutative. Hence, we
pose induction on T (n) and make them diagonal under some basis. Note that the
dimension is finite, our induction will stop finally. That means, we can choose a basis
such that every T (n) act as a stretch on them. That is, if ψj is the eigenfunction of
λj and,

T (n)ψj = µj(n)ψj, (3.24)
we can get,

ψ0(n) = const. (3.25)
If we use our Fourier coefficients, we can get,∑

d|(m,n)
d>0

ρj

(mn
d2

)
= µj(n)ρj(m). (3.26)

If we take m = 1, we get,
µj(n) =

ρj(n)

ρj(1)
. (3.27)

As a result, we get the matrix form of the formula (3.3),

ρj(n)ρj(m) = ρj(1)
∑

d|(m,n)

ρj

(mn
d2

)
. (3.28)

Example 3.8.
(T (n)E) (z, s) = τs(n)E(z, s), (3.29)

where E(z, s) is Eisenstein series that will be discussed later. Its definition is that,

E(z, s) = ys +
1

2

∑
(c,d)=1
c ̸=0

ys

|cz + d|2s
. (3.30)

And,
τs(n) = |n|s−1/2

∑
d|n
d>0

d1−2s. (3.31)
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4 INNER PRODUCT BETWEEN REAL-ANALYTIC POINCARE SERIES 8

4 Inner product between real-analytic Poincare se-
ries

When z ∈ H and s ∈ C, Poincare defined the series Pn(z, k) = nk−1
∑

g∈G∞\G

e2πingz

(cz+d)k
,

where gz = az+b
cz+d

. Similarly, Selberg defined Un(z, s) =
∑

g∈G∞\G
(Imgz)se2πingz, which

is called real-analytic Poincare series.
This section is the highlight of the entire paper. Due to calculating this inner

product from two basis, principal properties of Poincare series are described in two
senses, both numerically and analytically. Corollary 5.1 and theorem 5.3 can be
understood easily in this way. As for Poincare series, it can be regarded as the
expansion of group representation theory, where sums with respect to group elements
exist everywhere. Moreover, in the theory of Riemann surfaces, the Riemann θ
functions share the sane philosophy.

Remark. When Re s > 1, the series absolutely converge. And U0(z, s) = E(z, s).
Besides, we can verify that Un is automorphic, and if we let σ = Re s,

LUn(z, s) = s(1− s)Un(z, s) + 4πnsUn(z, s+ 1), (4.1)
|Un(z, s)| ⩽ yσe−2πny + E(z, σ)− yσ. (4.2)

Theorem 4.1. s1, s2 ∈ C, and Re s1, Re s2 > 3
4
, Re (s1 + s2) <

5
2
. Then,

(Un(·, s1), Um(·, s2)) = δmn
Γ(s1 + s2 − 1)

(4πn)s1+s2−1

+

(√
n

m

)s2−s1
23−s1−s2

sin π(s1 − s2)

∞∑
c=1

S(n,m; c)

cs1+s2
Φ(s1, s2;

4π
√
mn

c
), (4.3)

where S(n,m; c) =
∑

1⩽d⩽|c|
(c,d)=1

dd′≡1mod c

exp
(
2πi
(
nd
c
+ md′

c

))
is the Klooster’s sum and,

Φ(s1, s2; x) = π

∫ ∞

1

(u− 1/u)s1+s2−2 (− sin(πs1)Js1−s2(xu) + sin(πs2)Js2−s1(xu))
du

u
.

(4.4)

The idea of this proof is in center of Fourier expansion. So, we can first calculate
the Fourier coefficients of Un.
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4.1 Fourier expansion of Un 9

4.1 Fourier expansion of Un

Lemma 4.2. Re s > 1, n ∈ N, z ∈ H, then,

Un(z, s) =
+∞∑

m=−∞

e2πimxBn(m; y, s), (4.5)

where,

Bn(m; y, s) = δmny
se−2πny

+
1

2

∑
c ̸=0

S(n,m; c)

|c|2s
y1−s

∫ +∞

−∞
exp

(
−2πimyξ − 2πn

c2y(1− iξ)

)
dξ

(1 + ξ2)s
. (4.6)

Moreover, when Re s > 3
4
, the formula is well-defined and holomorphic.

Proof. Dismiss all the strictness, we can get,

Un(z, s) = yse2πinz +
1

2

∑
(c,d)=1
c ̸=0

ad≡1mod c

ys

|cz + d|2s
exp

(
2πina

c
− 2πin

c(cz + d)

)

= yse2πinz +
1

2

∑
c ̸=0

ys

|c|2s
∑

1⩽d⩽|c|
(c,d)=1

e2πin
a
c fn

(
x+

d

c
; c, y, s

)
, (4.7)

where,

fn(x; c, y, s) =
+∞∑
−∞

|iy +m+ x|−2s exp

(
−2πin

c2(iy +m+ x)

)
. (4.8)

Note that fn has period one, so,

fn =
+∞∑

m=−∞

e2πimxbn(m; c.y, s), (4.9)

where,

bn(m; c, y, s) =

∫ 1

0

e−2πimξfn(ξ; c, y, s)dξ

Change order
========= y1−2s

∫ +∞

−∞
exp

(
−2πimyξ − 2πn

c2y(1− iξ)

)
dξ

(1 + ξ2)s
. (4.10)
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4.2 One way of calculating inner product 10

We may as well omit [i, i∞) and (−i∞,−i] for one-valued branch. And we can
change the toy contour to Im ξ = ∆, −1 < ∆ < 1. Then,

Re(−iξ) = ∆, Re

(
−1

1− iξ

)
< 0,

∣∣(1 + ξ2
)∣∣−s

<
(
(1− |∆|)2 + (Re ξ)2

)−σ
.

(4.11)
Hence, for any s for which Re s > 1/2 and any ∆ ∈ (−1, 1) we have,

|bn(m; c, y, s)| ⩽ A(y, σ)e−2π|m∆|y, σ = Re s. (4.12)

As a result, this series converge absolutely when y > 0 and σ > 1/2 and if the
following series converges, we can substitute (4.9) in (4.7).∑

c ̸=0

S(n,m; c)

|c|2σ
. (4.13)

It really converges when σ > 3/4. In fact, Kloosterman sums satisfy Weil’s estimate,

|S(n,m; c)| ⩽ |c|1/2 min

{√
(n, c)d

(
c

(n, c)

)
,
√

(m, c)d

(
c

(m, c)

)}
. (4.14)

So, for any fixed n, this series is determined by
√
n
∑
c ̸=0

d(c)

|c|2σ−1/2 , which converges when

σ > 3/4.
Replace fn by its Fourier expansion, and our target will be reached.

■

4.2 One way of calculating inner product
It is easy to see that, the inner product I above satisfies that,

I =
∑

g∈G∞\G

∫
D

Un(z, s1)(Im gz)s2e2πimgzdz (4.15)

G-invariant
========

∑
g

∫
gD

Un(z, s1)y
s2e2πimzdz (4.16)

=

∫
B

Un(z, s1)y
s2e2πimzdz, where B is the strip of [0, 1]× [0,∞) (4.17)

= δmn
Γ(s1 + s2 − 1)

(4πn)s1+s2−1
+

1

2

∫ ∞

0

ys2−2e−2πmy
∑
c ̸=0

S(n,m; c)

|c|2s1
ys1bn(m; c, y, s1). (4.18)
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4.2 One way of calculating inner product 11

The last step uses Fourier expansion of Un. And if we can change the order, we will
get the target form of (4.3). To reach this, we note that,

|ys1bn (m; c, y, s1)| ⩽ y1−σ1

∫ ∞

−∞

dξ

(1 + ξ2)σ1
, σ1 = Re s1. (4.19)

So, when we temporarily assume σ2 > σ1 > 1 and m ⩾ 1, the integrand in (4.18)
is majorized by yσ2−σ1−1e−2πmy

∑
c ̸=0

|S(n,m;c)|
c2σ1

. As a result, change the order of sum-
mation over c and integration over y and use the representation of bn, we can obtain
that the inner integral is equal to,∫ ∞

0

ys2−s1−1 exp

(
−2πm(1 + iξ)y − 2πn

c2(1− iξ)y

)
dy. (4.20)

Here, the writer skipped a lot of calculation and claimed that using the well-known
integral representation for the Hankel function of the first kind of a purely imaginary
argument,

Kv(z) =
1

2

∫ ∞

0

exp

(
−z
2

(
u+

1

u

))
du

uv+1
Re z > 0, (4.21)

we can get, the integral in (4.20) is equal to,

2

|c|s2−s1

(
n

(1 + ξ2)m

) s2−s1
2

Ks1−s2

(
4π

√
nm

|c|

√
1 + iξ

1− iξ

)
. (4.22)

Substitute it into the above formula, the second term in (4.18) is,

2

(√
n

m

)s2−s1 ∞∑
c=1

S(n,m; c)

cs1+s2

∫ ∞

−∞
Ks1−s2

(
4π

√
nm

c

√
1 + iξ

1− iξ

)(
1 + ξ2

)− s1+s2
2 dξ.

(4.23)
And if we let v =

√
1+iξ
1−iξ

which changes along right unit semicircle from −i to i,
we can obtain,

(4.23) = (−i)22−s1−s2

∫ i

−i

Ks1−s2(xv)

(
v +

1

v

)s1+s2−2
dv

v
, x =

4π
√
nm

c
. (4.24)

Cut the complex v−plane along the negative real semiaxis, and deform the path
of the integral above. We can obtain a path from the imaginary axis from −i∞ to
−i and from i to i∞, because for each fixed v and fixed x > 0, when |v| → ∞ in
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4.3 The other way 12

the right half-plane, Kv(xv) � |v|−1/2. So the integral along the bigger semicircle
converges to 0 when σ1 + σ2 ≤ 5/2.

And In the integral from i to i∞, we have,

Kv(z) =
π

2 sin πv

{
e−iπv/2J−v

(
ze−iπ/2

)
− eiπv/2Jv

(
ze−iπ/2

)}
, (4.25)

and in the integral from −i∞ to −i, we have,

Kv(z) =
π

2 sin πv

{
eiπv/2J−v

(
zeiπ/2

)
− e−iπv/2Jv

(
zeiπ/2

)}
. (4.26)

Hence, substitute the above expressions and combine same terms, we can get the
formula (4.4).

In order to erase the extra assumption of s, it suffices to verifying the series in
(4.3) converges absolutely and use the principle of analytic continuation. Since we
have estimates,

|J±v(x)| � x−|Re v|, (4.27)
and, ∫ ∞

1

uµJv(u)du, (4.28)

is finite for any Reµ < 1/2, we can obtain, when x→ 0+

|Φ (s1, s2; x)| �
{
x2−σ1−σ2 , min (σ1, σ2) > 1,
x− |σ1 − σ2| ln 1

x
, min (σ1, σ2) ⩽ 1.

(4.29)

Thus, the general term in the series in (4.3) can be dominated by o (|c|−2|S(n,m; c)|)
if min(σ1, σ2) > 1, and by o

(
|c|−2min(σ1,σ2) ln|c||S(n,m; c)|

)
if min(σ1, σ2) ⩾ 1.

And then, every proposition in this section has been proved.

4.3 The other way
The subsection 3.3 has stepped forward a lot. Here we can use their information

to calculate the inner product the second time.

Lemma 4.3. The eigenfunctions above are complete in this Hilbert space.

Theorem 4.4. Let s1 and s2 be complex variables. For any fixed value of one of
them, the inner product is a meromorphic function of the second variable in the
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4.3 The other way 13

entire plane, and for all s1 and s2 with Re sj > 1 it equals to,

I = π(4π)1−s1−s2

(√
n

m

)s2−s1
(

∞∑
j=1

ρj(n)ρj(m)Λ(s1, s2;κj)

+
1

π

∫ +∞

−∞

(m
n

)ir
σ2ir(n)σ−2ir(m)Λ(s1, s2; r)

cosh πr

|ζ(1 + 2ir)|2
dr

)
, (4.30)

where σs(n) =
∑
d|n
ds and,

Γ(s1, s2; r) =
Γ(s1 − 1/2 + ir)Γ(s1 − 1/2− ir)Γ(s2 − 1/2 + ir)Γ(s2 − 1/2− ir)

Γ(s1)Γ(s2)
.

(4.31)
Proof. If we let,

Ei(f) =
∫
D
f(z)ψj(z)dz

E(r, f) =
∫
D
f(z)E(z, 1/2 + ir)dz,

(4.32)

We have Parseval’s equality,

(Un (·, s1) , Um (·, s2)) =
1

4π

∫ ∞

−∞
E (r, Un (·, s1)) E (r, Um (·, s2)dr

+
∞∑
j=0

Ej (Un (·, s1)) Ej (Um (·, s2)). (4.33)

Similarly, using their Fourier coefficients, we will obtain,

(Un(·, s), ψj) =

∫ ∞

0

ys−2

∫ 1

0

e2πinzψj(z)dxdy (4.34)

= (2πn)1/2−sρj(n)

∫ ∞

0

e−yKiκj
(y)ys−3/2dy. (4.35)

And we can get a simple form,

(Un(·, s), ψj) = 2π
√
n(4πn)−sρj(n)

Γ (s− 1/2 + iκj) Γ(s− 1/2− iκj)

Γ(s)
, (4.36)

and,
1

π
(Un(·, s), E(·, 1/2 + ir))

= 22−2s(nπ)1/2−s−irσ2ir(n)
Γ(s− 1/2 + ir)Γ(s− 1/2− ir)

Γ(s)Γ(1/2− ir)ζ(1− 2ir)
(4.37)
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5 APPLICATION 14

Substituting these Fourier coefficients in Parseval’s equality, we obtain the main
assertion of the lemma. We reserve the others for readers.

■

5 Application
In this section, we will only show the outcome from the analysis above without

proofs.

Corollary 5.1. m, n ∈ N+, |Im t| ⩽ 1
4
, then,

∞∑
j=1

ρj(n)ρj(m)

cosh πκj
H(κj, t) +

1

π

∫ +∞

−∞

(m
n

)ir
σ2ir(n)σ−2ir(m)

H(r, t)

|ζ(1 + 2ir)|2
dr

=
δmn

π2

t

sinh πt
+

2t

π sinh(2πt)

∞∑
c=1

S(n,m; c)

c
Φ(

4π
√
mn

c
, t), (5.1)

where

H(r, t) =
cosh πr

cosh π(r + t) cosh π(r − t)
, (5.2)

Φ(x, t) = x

∫ ∞

x

(J2it(u) + J−2it(u))
du

u
. (5.3)

Proof. Let s1 = 1 + it and s2 = 1 − it. In this case, compare the two forms of the
inner product. Intereted readers can complete the remaining proof. ■
Corollary 5.2. Given ϵ > 0, X ⩾ 2 and n ⩾ 1,∑

κj⩽X

|ρj(n)|2

cosh πκj
=
X2

π2
+O

(
X log(X) +Xnϵ + n

1
2
+ϵ
)
. (5.4)

Theorem 5.3. h(r) is an even function of complex variables holomorphic on the
strip {Im r ⩽ ∆} with ∆ > 1

2
and h(r) = O

(
|r|−2−δ

)
where δ > 0. m, n ∈ N+.

Then,
∞∑
j=1

ρj(n)ρj(m)

cosh πκj
h(κj) +

1

π

∫ +∞

−∞

(m
n

)ir
σ2ir(n)σ−2ir(m)

h(r)

|ζ(1 + 2ir)|2
dr

=
δmn

π2

∫ +∞

−∞
r tanh πrh(r)dr +

∞∑
c=1

S(n,m; c)

c
ϕ(

4π
√
mn

c
), (5.5)
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6 SUMMARY 15

where,

ϕ(x) =
2i

π

∫ +∞

−∞
J2ir(x)

r

cosh πr
h(r)dr. (5.6)

Remark. The estimate (5.4) can be obtained when we let m = n. Now weight
function H plays a role of filtration. Moreover, theorem 5.3 can be obtained if we
integrate (5.1) over t and change the order of sum and integration.

Theorem 5.4. When n, m fixed and T → ∞,

|
∑

1⩾c⩾T

S(n,m; c)

c
| � T 1/6(lnT )1/6. (5.7)

Remark. This estimate is the first nontrivial conclusion all over the world. Ju. V.
Linnik conjectured that the average on the left is much smaller than any T ϵ. And
Selberg found a counterexample to show that the analog of Linnik’s conjecture for
an arbitrary discrete subgroup of SL(2,R) is wrong.

6 Summary
We briefly discuss the basic ideas of this topic and some theorems. In this process,

we turn to be familiar with modular forms and contemporary analytic number theory.
The deeper our grasp of arithmetic group is, the better we can understood the
number theory. I think it is what Kuznecov’s article suggests. The introduction is
still imperfect, and we apologize for all possible errors and fault sentence in advance.
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A journey to space-time singularity

Yu xueyi

June 2022

1 Introduction

This is a reading report on general relativity and space time singularity. The
book or article I read is listed in Section 6 (Reference).

Section 2(Causal structure in space time) will introduce the basic
concept and result about the causal structure in general relativity, and introduce
the concept of Cauchy surface. Section 3(The longest causal path, and
conjugate point on non-spacelike geodesics) will investigate when can a
non-spacelike geodesic be a longest non-spacelike path.

Section 2,3 can be seen as preparation to Section 4,5. Section 4 (Hawk-
ing’s singularity theorem on the cosmology), Section 5(Penrose’s sin-
gularity theorem on the blackhole) will introduce two exciting evidence of
the existence of singularity, one exists in the beginning of universe, the other
exists in the death of a massive star.

Because Hawking’s singularity theorem do with time-like geodesics, Pen-
rose’s singularity theorem do with null-geodesic. Hawking’s singularity theorem
is easier to understand for beginner, so I don’t follow the route of history and
introduce it first.

2 Causal structure in space time

The Minkowski space is the four-dim linear space equipped with the (0,2) metric

tensor


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 on each point. Call the four axis t, x, y, z; t express

time; x,y,z express space. The Minkowski space is the mathematics model of
space time in special relativity.

But in general relativity, the things is a little different.The space-time is
locally a Minkowski space on every point. That’s to say,every point in the
space-time manifold M (a four-dim manifold that is smooth enough to ensure
the theorem in this article to be right ) is equipped with a (0,2) metric tensor gab,
which is equivalent to the metric tensor in the Minkowski space under coordinate

1
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transformation. But this space-time (M,g)can be curve in large scale, the curve
of space-time is source of gravitation

Definition 2.1. a four-dim vector xa is said to be timelike if gabx
axb < 0; null

if gabx
axb = 0; spacelike if gabx

axb > 0

Figure 1: three types of vector

When a particle is moved in space timethe tangent vector of its world line
is always timelike ( particle with static mass,like electron) or null ( particle
without static mass,like photon).

Definition 2.2. a C1 curve xµ(s) in space time is said to be non-spacelike path
or a casual path if the tangent vector dxµ/ds is timelike or null on every point.

The causal path xµ(s) is a geodesic under proper parameter s if D2xµ/ds2 =
0 along the path .D means covariant derivative. This means that the tangent
vector is parallel while moving along the curve. The parameter s is called a
affine parameter

Use the metric g, we can define the length of a causal path from p to q is

l =

∫ sq

sp

√
−gab

dxa

ds

dxb

ds
ds

. Attention to the negtive sign. While in Minkowski space , the length is simply

l =

∫ sq

sp

√
dt2 − d~x2

.
Every substance and information can only travel through non-space like

curve.So we have

Definition 2.3. Γ is a subset of M. Then the casual future of Γ, called as
J +(Γ), is the point that can be reached by a future-directed causal path begin-
ning from a point in Γ. The causal past J−(Γ) can be defined as the same.

. Figure 2 shows the casual future of a point q, Figure 3 shows the casual
future of a round ring W in space.

2
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Figure 2: casual future example 1

Figure 3: casual future example 2

Definition 2.4. Given two points p,q in M, if p is in the causal future of q,
then we can define the causal diamond between p,q , named Dpq , is the intersect
of J +(q) and J−(p)

.
Clearly each causal path from p to q is in Dpq , most of the time Dpq is compact,

however there are counter examples. If we moved a point from space time in
the causal diamond, then Dpq can be non-compact (figure 4)

Figure 4: casual diamond Dpq is not compact if I moved away a point

If the Dpq is compact,then the space of causal path from p to q is compact
too when we give M certain restrictions(Theorem 2.2). This can be seen using
the intuition of Arzela-Ascoli theorem, but our space time is not a metric space
yet. We can define a metric (Euclid metric) on M use a local finite atlas and
”partition of unity”.

Recall that letM is paracompact, then there exist a local finite atlas {Ua, φa},
and {C1} functions ga on each map, such that

3
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(1)0 ≤ ga ≤ 1 ;
(2)the support of ga is contained in Ua ;
(3)

∑
a ga(p) = 1or any p ;

Then the set of ga is called a partition of unity. ga is the weights of each
map. If there is only one map that cover p. We can define the metric at p
simply the metric as in Euclid space. If there are many maps that cover p, we
can calculate the weighted average of every metrics use the weights function ga.
Then we can define the length of γ which is a C1 curve from p to q, then define
d(p,q)=inf{length(γ)|γ is a C1 curve from p to q}. One can proof the topology
ofM under the metric d is the same as the natural topology ofM by verifying
the set {the open subset of every Ua} is a topological basis ofM in both cases.

Then we can proof the theorem we mentioned before, but before that we
should proof a baby version.

Theorem 2.1. Let (M, g) be the four-dim Minkowsky space. If the Dpq is com-
pact,then the space of C1 causal path from p to q is compact too.

Proof. we can see C1 causal path γ(s) from p to q as a C1 map from [0,1] to
M , such that γ(0) = q, γ(1) = p, we can let the parameter s simply represent
the t-axis value of γ(s), however we should we should act a linear function on
it so that γ(0) = q, γ(1) = p.

γ(s) may be not equicontinuous when they are just normal curve.But cause
γ(s) is causal path, they are equicontinuous: Because γ(s) is causal path, then
|dt| > |d~x|,(t represent time, ~x represent space) then ds2E = dt2 + d~x2 < 2 ∗ dt2,
then |ds| <

√
2|dt|, then d(γ(s1), γ(s2)) <

√
2|s1 − s2|.

Recall that γ are all in a compact place Dpq , use Arzela-Ascoli theorem,
function space γ(s) is compact, then the curve space γ is compact

The compactness of the space of causal path means a lot to us, in such space
there is a longest causal path from any two compact sets (such as from two
points, or from a point to a compact set). But this compactness only holds for
some ”normal enough” space. There is a restriction that have good physical
intuition, that is ”globally hyperbolic”.

Definition 2.5. A space-time (M,g) is called globally hyperbolic if there is a
Cauchy surface H. That is, H is a spacelike 3-dim submanifold of M, and the
point of M−H is divided into J +(Γ) (future) orJ−(Γ) (past). If a point p is
in the future of H, then any past-pointed closed casual path without end point
will pass though H; if a point q is in the past of H, then any future-pointed
closed casual path will pass though H.

The intuition is that if you want to predict what happened in p, you just need
to know the data on H, figure 6 shows a counter example of globally hyperbolic
space-time. A point r is kicked out from the space time. If you want to predict
what will happen at p, you also need the data that comes from the lost point r.

Then we come to the theorem that shows the compactness (theorem2.2,
theorem2.3, especially theorem 2.4).
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Figure 5: Cauchy surface example

Figure 6: Cauchy surface counter example

Theorem 2.2. if (M,g) is globally hyperbolic, H is a Cauchy surface. Let q be
a point in the past of H, then the future-pointed causal path segment from q
that has an end point on H form a compact space

Proof. Take γ1, γ2, ..., γn, ... be a infinte sequence of future-pointed C1 causal
path segment from q that has an end point on H.

(M,g) is locally a Minkowski space at p.Then there is a open neighborhood
of q called U, and a coordinate (t, ~x) on U such that the Lorentz metric is
ds2 = adt2 + bd~x2 , a ∈ (−1− ε,−1 + ε), b ∈ (1− ε, 1 + ε).while ε is sufficiently
small.

We set the Euclid metric is ds2E = dt2 + d~x2 , one can verify that U is a
metric space under this Euclid metric. And the topology won’t change

Use the symbol in the proof of theorem 2.1. Cause γ is timelike, then
ds2 = a dt2 + b d~x2 > 0, then

|dt|1− ε
1 + ε

|d~x|

then

ds2E = dt2 + d~x2 <
2

1− ε
dt2

then

|ds| <
√

2

1− ε
|dt|

then d(γ(s1), γ(s2)) <
√

2|s1 − s2|, then the map γ(s) is equicontinuious.
Then the image of γ(s) is within the closer of U, which is compact. Use Arzela-
Ascoli theorem, then γn restricted to U will have a subsequence converge to γa,
which is a causal path segment which has a end point q’ on ∂U .Then we can
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extend the convergence causal path segment from q’ use the same method. We
can extend it until it pass through H.

To make our proof more rigorous, let’s do some subtle work. Each time
we extend our convergence causal path segment, we define ladd the sup of the
Euclid-length of the segment we can add on the original path(we have shown
that l can’t be zero,because we can always extend).Then each step we will extend
until the length add at least ladd/2, this can be done.

Then our convergence causal path won’t have a end point at the past of H.
If so, we call the endpoint r. We call the end point of each step of extend rn,
then rn → r. Use the definition ladd(rn)→ ladd(r).

But we have promise that each step we will extend until the length add
ladd(rn)/2, but the rn converge, so we have ladd(rn)→ 0, then we have ladd(r) =
0, a contradiction!

Then our convergence causal path won’t have a end point at the past of H,
we can call it γ. use the global hyperbolic of (M,g), γ will have a end point on
H, that’s what we want

Figure 7: proof of theorem 2.2

Theorem 2.3. The point q is defined in theorem 2.2, then DHq := J +(q) ∩
(J−(H) ∪H) is compact.

Proof. If DHq is not compact. There will be q1, q2, ..., qn, ... in DHp that don’t

have a limit point in DHq , then the causal path γ1, γ2, ..., γn, ... (γn pass through
q and qn ) will have a converge subsequence γnk that converge to a causal
path γ. Then for sufficiently large k, γnk will be within a neighborhood of
γ, which is compact.Then qnk is within the compact neighborhood of γ, but
qnk is a subsequence of qn and won’t have a limit point, contradict with the
compactness!

Theorem 2.4. if (M,g) is globally hyperbolic, H is a Cauchy surface. Let q be
a point in the past of a point p, then the C1 causal path segment from q to p
form a compact space.

This theorem is also right if p,q is replaced by compact set. Because the
direct product of compact set is compact
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Figure 8: proof of theorem 2.3

Proof. There are two situations: p, q are within two different sides of H, or p,
q are within the same side of H

(1)p, q are all in the future of H
γ1, γ2, ..., γn, ... are causal path from p to q. γn can be extend to H and then

call it βn . From theorem 2.2 we have known that βn will have limit causal
path β. Cause each βn pass though q, then β will pass though q too. Call the
segment on β from q to p γ. Cause β is the limit causal path of βn, γ is the
limit causal path of γn.

(2)p is in the future of H, while q is in the past.
γ1, γ2, ..., γn, ... are causal path from p to q. γn can be divided into γ1n and

γ1n. γ1n are causal path segment from q to H; γ2n are causal path segment from
H to p. From theorem 2.2 we have known that γ1n will have a subsequence γ1ni

converge to γ1. We also know that γ2ni
will have a subsequence γ2nij

converge to

γ2. Put together γ1,γ2 and then form a causal path γ from p to q. Cause γ1nij

converge to γ1, γ2nij
converge to γ2, then γnij converge to γ, then γ is the limit

causal path of γn.

From now on we only consider our space-time (M, g) is globally hyperbolic.
This have good reason because we always expect the future of our universe is
determined by some initial state.

3 The longest causal path, and conjugate point
on non-spacelike geodesics

From theorem 2.4 we know in a globally hyperbolic space-time there is a longest
causal path from any two compact sets. If the two compact sets is two points
p,q (p is in the future of q) we call itthe longest causal path from p to q. Use
variation of curve it can be showed that the longest causal path must be a
timelike or null geodesics (theorem 3.1).

In the opposite, a timelike or null geodesics may not be the longest causal
path from p to q. As an example. Let’s see the longitude begin at the north
pole N (figure.9), as the path have pass though the south pole S, it’s still a
geodesic, but no longer a shortest path. We notice that S is a conjugate point
of S, that is, some geodesics emitted from N will focus at S again. We will show
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that a geodesics is a shortest path (in Lorentz metric, the longest causal path)
only if it’s geodesics and have no conjugate point on it (Theorem 3.1).

Figure 9: Longitude that have pass though south pole is no longer the shortest
path

To define conjugate point we should define variation of curve first.

Definition 3.1. A variation α of a C1 causal path γ(from q to p) is a C1 map
from [−ε,+ε]× [0, sp] (set sq = 0) to M such that

(1)α(0, s) = γ(s)
(2)α(u, s) := γu(s) is also a C1 causal path from q to p.
∂α(u, s)/∂(u)|u=0 := Z(s) is called the variation vector. From the definition

we have Z(0) = 0, Z(sp) = 0.

Then we define conjugate point

Definition 3.2. ( p is conjugate point of point q) p is in the causal future of
q, γ is the non-spacelike geodesic from p to q. We call p is a conjugate point of
q, if there is a variation of γ, such that

(1)γu(0) = q
(2)γu(sp) = p
(3)γu(s) solve the geodesic equation d2γ(s)/ds2 = 0 in first order. That is

d2γε(s)/ds
2 = o(ε) .

To ensure that γu is significantly different from γ. We have to set another
restriction. Named the begin vector of γ(s) is ~a(u) = d γu(0)/ds. Named the
begin vector of γ(s) is ~a(u) = d γu(0)/ds . Named the end vector of γ(s) is
~b(u) = d γu(sp)/ds . The restriction is that

(4)
d~a(u)

du
6= 0

That is, the beginning vector change direction in first order. This is equiva-
lent to

d~b(u)

du
6= 0

because if
d~b(u)

du
= 0
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recall
d2γu(s)

ds2
= o(u)

, then ~a(u) = o(u), then

d~a(u)

du
= 0

a contradiction.

Figure 10: q′ is a conjugate point of q on geodesic pq

Then we come to a Necessity about when can a causal path be a longest
causal path.

Theorem 3.1. p is in the causal future of p Then a C1 causal path γ from p to
q is a longest causal path only if γ is a non-spacelike geodecsic, and there are
no conjugate point of q on γ.

Proof. In variation of curve , named L(u) := Length(γu) Some calculation
(reference(2) Lemma.4.5.4) shows that

∂L

∂u
|u=0 =

∫ sp

0

g(Z(s),
d2γ(s)

ds2
)ds (1)

g( , ) is the inner product of two vector use the Lorentz metric g. Z is
the variation vector we mentioned above. If γ is not a geodesic . That is, If
d2γ(s)/ds2) isn’t zero along γ, we can set Z(s) such that g(Z(s), d2γ(s)/ds2) > 0
when d2γ(s)/ds2 is non-zero. So that ∂L/∂u > 0, then there is some γu near γ
that is longer than γ. So to be a shortest path, γ must be a geodesic.

If there are conjugate point q′ of q on pq, then there is a variation γu of qq’
such that γu solve the geodesic equation in first order, that is d2γε(s)/ds

2 =
o(ε). The variaton vector Zu(s) is continuous in u,z , so it is bounded in a
neighborhood of γ . Then formula (1) shows that

∂L

∂u
|u=ε = o(ε)

That is, the length change of γu don’t change in second order.
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Recall the restriction that d~b(u)/du 6= 0, ~b is the end vector of qq’. Then γu
(the variation of qq’ ) together with q’p form a ”kink”. We will show that by
rounding off the kink we can increase the length in second order, then the new
curve will be longer than γ.

Named the combination of γu and q’p is ηu. We have η0 = γ. ηu is a curve
from q to p whose tangent vector is continuous expect at q′. Named the end
vector of γu at q′ is ~bu. Named the begin vector of q′p at q′ is ~au = ~b0 (because
γ is C1). A variation of ηu is ηuw, the length of ηuw is Lu(w)

Similar to (1) calculation (reference(2) Lemma.4.5.4) shows that

∂Lu(w)

∂w
=

∫ sq′

0

g(Zuw(s)
d2ηuw(s)

ds2
)ds+

∫ sp

sq′

g(Zuw(s)
d2ηuw(s)

ds2
)ds

+ g(Zuw(sq′), buw)− g(Zuw(sq′), auw)

(2)

There is a technical fact that in a neighbourhood of q′, For any two vector ~a,
~b, there is vector ~z such that g(~z,~b)−g(~z,~b) > K||~a−~b||·||~z||, while ||~z|| is the Eu-
clid length of ~z. So we can set Zuw(s′q) is a vector like this, and set ||Zuw(s′q)|| =
1. We can also set Zuw on other point such that d2Zuw(s)/d2s is zero in
(0, s′q), (s

′
q, sp), and Zuw(0) = Zuw(sp) = 0. This set ensures d2ηuw(s)/ds2 is

still zeros in (0, s′q), (s
′
q, sp), which makes things easier.

Notice that from definition of variation vector , we have

∂(~auw −~buw)

∂w
=
∂− ~Zuw
∂s

+
∂+ ~Zuw
∂s

The set of Z ensures both one of the right side ∂− ~Zuw

∂s , ∂
+ ~Zuw

∂s have Euclid

length greater than C||~Zuw|| = C, C is a constant. Then we have

||∂(~auw −~buw)

∂w
|| > 2C

So ||~auw −~buw|| doesn’t reduce to less than 1
2 ||~au −~bu|| when w ∈ [0, ||~au −

~bu||/2c]. Then from formula (2), when w = ||~au −~bu||/2c ,we have

Lu(w)− Lu(0) =

∫ w

0

g(Zuw(s′q), buw)− g(Zuw(s′q), auw)dw

> wK||~Zuw||
||~au −~bu||

2
= wK

||~au −~bu||
2

= K
||~au −~bu||2

2c
,

(3)

Recall d~b(u)/du 6= 0, then ||~au−~bu|| = ||~b0−~bu|| = ku(1 + o(1)) so Lu(w)−
Lu(0) = Kk

2c u
2(1 + o(1))(u → 0) . This means that ηuw do increase the length

in second order. So for some sufficiently small u,w; ηuw is longer than γ. Then
γ is not the longest when there are conjugate point.
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The following situation is also useful. If S is a spacelike 3-dim surface. q is
in the causal past of S. What kind of causal path γ can be the longest from p
to S. When can guess that γ should be a geodesic and have no conjugate point
on it. There are another necessity that γ must be orthogonal to S, that is the
tangent vector of γ at p (p is on S) is orthogonal to the tangent hyperplane of
S at p.

Figure 11: pq has to have no conjugate point q’ on S

Figure 12: pq has to be orthogonal to S

The definition of conjugate point is much like the situation of two point, but
a little different

Definition 3.3. (q is a conjugate point of surface S) S is a spacelike 3-dim
surface. q is in the causal past of S. γ is the non-spacelike geodesic from q to S
and orthogonal to S at p, p is on γ. We call q is a conjugate point of S at p, if
there is a variation of γ, such that

(1)γu(0) = q
(2)γu(sp) is still on S
(3)γu is still orthogonal to S
(4)And γu(s) solve the geodesic equation d2γ(s)/ds2 = 0 in first order. That

is d2γε(s)/ds
2 = o(ε) .

To ensure that γu is significantly different from γ. We have to set another
restriction. Named the begin vector of γ(s) at q is ~a(u) = dγu(0)/ds. The
restriction is that

(5)
d γu(sp)

du
6= 0

That is, the end point of γ at S change position in first order. This is
equivalent to
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d~a(u)

du
6= 0

,
because if

d~a(u)

du
= 0

recall
d2γu(s)

ds2
= o(u)

then
d γu(sp)

du
= 0

a contradiction.

The necessity of longest causal path in this situation is what we have men-
tioned above

Theorem 3.2. q is in the causal past of S Then a C1 causal path γ from q to
p(on S) is a longest causal path from q to S, only if

(1)γ is a non-spacelike geodecsic.
(2)There are no conjugate point of q on γ (see figure 11)
(3)And γ is orthogonal to S. (see figure 12)

Proof. From theorem 3.1 , if (1) is not right, Then there is a longer causal path
from q to p.

Let’s verify (2). If q’ is a conjugate point of S at p on qp. Then we can
variate q’p to q’p’(p’ is still on S) who solve the geodesic equation in first order.
Then the length of q’p’ don’t change in first order. And q’p’ with qq’ form a
”kink” , we can round off the kink as in the proof of thm 3.1. Then the new
curve will be longer in second order. Then there will be a longer causal path
from q to S

Let’s verify (3). γu is a variation of γ From calculation(Reference 2, Lemma
4.5.5) similar to formula (1)(2), we get

∂L

∂u
|u=0 =

∫ sp

0

g(Z(s),
d2γ(s)

ds2
)ds+ g(Z(s),

dγ(s)

ds
)|s = 0 (4)

So we can choose Z such that Z(0) satisfy g(Z(s), dγ(s)ds )|s = 0 > 0. And Z(s)

decay quickly so that
∫ sp
0
g(Z(s), d

2γ(s)
ds2 )ds is sufficiently small. So ∂L

∂u |u=0 > 0.
From variation we can got a longer curve.

Theorem 3.2 will be useful in the proof of singularity theorem.
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4 Hawking’s singularity theorem on the cos-
mology

Dose the universe have a beginning, or it has existed for infinite time and will
still exist? These question is beyond the reach of science until Einstein write
his field equation

Rij −
1

2
Rgij = 8π Tij

in 1915, which can also be written as

Rij = 8π (Tij −
1

2
Tgij) = 8π T̂ij

.
The left hand side is the curvature in space-time, and the left hand side is the

matter. It shows how matter curve the space-time. Shortly after this , Alexan-
der Friedmann use the equation to investigate the dynamics of the universe.
His work based on the assumption that the universe is uniform isotropic, this
is luckly well satisfied by our observable universe according to modern obser-
vations. Friedmann’s work shows that the universe have a beginning, and may
have an end. But whether if uniform isotropic condition isn’t satisfied. Some
work shows that the deviate of isotropic may prevent singularity from happen.

In this section we will introduce Hawking’s singularity theorem on the cos-
mology. Hawking proofs it in 1970, encouraged by the work of Penrose. This
theorem shows that our universe must have a dramatic beginning in some sense.
My introduction don’t follow the history route. But since the Hawking’s singu-
larity theorem only do with time-like geodesic. It’s easier to understand.

The proof do a lot with conjugate point. The conjugate point is easy to
form in universe. Because the positive energy will cause positive curvature, and
positive curvature will cause geodesic come together.

Let’s show a convenient way to show when a conjugate point can from
S is a space-like three-dim surface. Let γ be a time-like geodesic orthogonal

to S and intersect S at p. Then there is a transfer φs of a neighborhood U of
p on S. That is , from every point q in U, there is a geodesic γq begin at q,
orthogonal to S and point to the same direction of γ. Define φs(q) = γq(s) .
Clearly φ0 = id. φs can be seen as a map from a three-dim manifold to another
three-dim manifold, φ′s(p) is a 3*3 matrix. So We can define

A(s) =
√
det(φ′s(p)

T gij φ′s(p))

.
A(s) can be seen as the volume change of U while transfer along γ, clearly

A(0) = 1.

Theorem 4.1. At some point p′ on γ , if A(sp′) = 0, then p′ is a conjugate point
of γ.
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Proof. A(sp′) = 0 means that for some ~x in linear space, φ′s(p)~x = 0 . Then
choose Qn in U such that Q1, Q2... is on a curve in S that pass P and its
tangent vector corresponds to ~x in the tangent space of S at p. Then we have
||φs(Qn), φs(P )|| = o(||Qn, P ||), ||, || is the Euclid length. Use the definition of
φs, then ||γQn

(sp′)− γQn
(sp′)|| = o(||Qn, P ||).We can change γQn

a little bit to
γ′Qn

, the begin point of γ′Qn
is still Qn, γ′Qn

is still orthogonal to S. But the end
point is moved to γ(sp′). Cause the distance from γQn(sp′) to γQn(sp′) is less
then first order. We can still let γ′Qn

solve the geodesic equation in first order.
Then from definition P ′ is conjugate point of S at P.

Figure 13: the transfer φs acts on a neighbor U of p on S

The Raychaudhuri equation (1955) of time-like geodesic shows how A(s)
change under the influence of matter. It is just a deformation the 00 component
of Einstein equation

R00 = 8π(T00 −
1

2
Tg00)

to a ordinary differential equation of A(s). The Einstein equation should be
used in a proper coordinates.

The coordinate is that: First cause S is a three-dim space like surface, we
can set a three-dim vector ~x to every point q on U as a C1 coordinate, in
fact, the coordinate of q is (0, ~x) . Second, in a neighbor of γ, we set the
coordinate of γq(s) is (s, ~x) . Since for any s < sp′ (p′ is the conjugate of S at
P). A(sp′) > 0, that is φ′s(p) is non-singular. So use the inverse function theorem
φs(p) is diffeomorphism (so injective) for sufficiently small U as a neighbor of p.
Since [0,s] is compact , the Euclid radius of possible U of every s1 on [0,s] has a
positive lower bound. So on [0,s], the coordinate is well defined C1 coordinate
for sufficiently small U. This means that if we got a ODE of A(s), it is hold on
any [0,s] for s < sp, so it is hold on [0, sp).

There is a good property of our coordinate, which will make the calculation
much easier.

Theorem 4.2. In this coordinate , the metric tensor on gij satisfy gi0 = g0i = 0
(i=1,2,3). This means that φs(U) is still orthogonal to γ while transferring.

This theorem holds because s is a parameter represent the length on each
curve. A rigorous proof is this
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Proof. Cause γ is orthogonal to S, then gi0(P ) = g0i(P ) = 0 (i=1,2,3) , that is
gi0(γ(0)) = 0 . Also

dgi0(γ(s))

ds
|s=0 = g(

dγq(s)

dxi
,
dγ(s)

ds
)

g(,) is the Lorentz inner product, cause

dγq(s)

dxi
= 0

, so

dgi0(γ(s))

ds
|s=0

is zero. Cause

d2gi0(γ(s))

d2s
= g(

d(D2γq(s)/d
2s)

dxi
,
dγ(s)

ds
)

.
Cause γq(s) is geodesic , then D2γq(s)/d

2s = 0 , then

d2gi0(γ(s))

d2s
= 0

Recall the initial condition

gi0(γ(0)) = 0

,
dgi0(γ(s))

ds
|s=0 = 0

then we have gi0(γ(s)) = 0.

So under the coordinate (t, ~x) we defined above, the metric is simply

ds2 = −dt2 + gijxixj(i, j = 1, 2, 3) (5)

Under this coordinate we have

A(s) =
√
det(gij(s)) (6)

Cause the parameter has a intuitive meaning, the time, so we use t instead
of s from now on.

From the definition of Ricci curvature we have

R00 = −1

2
∂t(g

ik∂tgik)− 1

4
(gik∂tgkj)(g

jm∂tgmi) (7)

Then we have

R00 = −1

2
∂tTr(g

−1ġ)− 1

4
Tr(g−1ġ)2 (8)
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From the equation of A(t) (6) we have

θ =
Ȧ

A
=

1

2
Tr(g−1ġ) (9)

θ is called the volume expansion, it describe the volume change of the frontier of
a small bunch of geodesics around γ , the ”frontier of geodesic bunch” is φt(U)
in fact.

Define

σij = gik ˙gkj −
1

3
δijTr(g

−1ġ) (10)

which describe the shape change of the frontier of a small bunch of geodesics
around γ, that is φt(U) , is named as ”shear”.

Then R00 can be reduce to

R00 = −∂tθ −
1

3
θ2 − 1

4
Tr σ2 (11)

Recall the Einstein equation

R00 = 8π(T00 −
1

2
Tg00) (12)

Define

T̂00 = T00 −
1

2
Tg00 (13)

is a kind of matter tensor.
Then (12) is equivalent to

R00 = 8πT̂00 (14)

Then from (11), (14) we get the the Raychaudhuri equation (1955)

dθ

dt
+

1

3
θ2 = −1

4
Tr σ2 − 8πT̂00 (15)

Recall θ = Ȧ/A, so (15) is a ODE of A(t)
If T̂00 ≥ 0 , which is satisfied by normal matter. Then the right hand side

of (15) is non-positive, effect is that A(t) tend to decrease, that means time-like
geodesic tends to come together. So we can see in fact the conjugate point is
easy to form (See figure.14) .

Theorem 4.3. Assume T̂00 ≥ 0. If θ(0) = −λ is negative, then there is a
conjugate point of S on γ(t) within t ∈ [0, 3/λ].

Proof. From T̂00 ≥ 0, then the right hand side of (15) is negative.
then we have the left hand side of (15) is

dθ

dt
> −1

3
θ2 (16)
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Figure 14: conjugate point p of S is easy to form

So if θ(0) = −λ is negative, Then from the comparision theorem in ODE,
we have

θ(t) <
3

x− 3/λ

Then θ(t) will go to −∞ within t ∈ [0, 3/λ]. This meas that A(t) will go to
zero within [0, 3/λ], then there is a conjugate point of S on γ(t) within [0, 3/λ].

T̂00 ≥ 0 is a restriction on matter , which is called the strong energy condi-
tion. It is satisfied by non-relativistic matter, radiation . But not satisfied by
Dark energy, which is a discovery of modern observation (1998).

Hawking singularity Theorem says that

Theorem 4.4. (Hawking 1970) If the condition below is satisfied
(1)The strong energy condition T̂00 ≥ 0 is satisfied.
(2) If the universe is globally hyperbolic , that is , there is a Cauchy surface

S
(3) On S the Hubble constant is everywhere positive. That is , on every

point p, the initial expansion θp(0) = Ȧ(0)/A(0) defined above is positive. And
the expansion θp(0) on S has a positive lower bound θmin

Then our universe is time-like geodesic incomplete, that is , there is some
time-like geodesic before S that can’t be extend to any time parameter to the
past. So, the particle traveling though this geodesic may mysteriously have a
”beginning” in her time.

(1) is satisfied by normal matter, but sadly, not the dark energy, which
dominate in our universe since 9.8 billion years ago (our universe aged 13.7
billion years). (2) is the assumption we always tend to believe. (3) means our
universe is expanding, which may be supported by observation.

Proof. If a point q is in the past of S. From theorem 2.3 we know the point
on S that can be reached by q by a causal path is compact, From theorem 2.4
we know there is a longest causal path γ from q to S, intersecting with S on p.
Then from theorem 3.2 we known that γ must be time-like geodesic orthogonal
to S, and there is no conjugate point of S on it.
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Figure 15: every particle have a finite history...

Notice θp(0) ≥ θmin, cause in this case our geodesic is pointing to the past.
We have to change the sign of θp(0), then we get θp(0) ≤ −θmin From the strong

energy condition T̂00 ≥ 0 (we have discussed the affect of it) , then γ must have
a conjugate point q′ of S on it when the time parameter is smaller than 3

−θp(0) ,

it is equivalent to

lenth(pq′) ≤ 3

−θp(0)
≤ 3

θmin
.

Cause pq have to be longest path, so q′ is not on pq′, then

lenth(pq) ≤ lenth(pq′) ≤ 3

−θp(0)
≤ 3

θmin
.

That means that every point q in the past of S will have a longest-causal
path to S that are shorter than 3/θmin, that means every causal-path point to
the past are shorter than 3/θmin (see figure.15), then our universe is timelike
geodesic incompelete

The result means that the history of any particle before S is shorter than
3/θmin. Where do it begin? We call this place singularity.

In this theorem, there may be many singularity, but from astronomy ob-
servation , mysteriously, our universe only have one, we call it the Big-Bang
singularity.

5 Penrose singularity theorem on black hole

Stars resist the gravitation by heat pressure of the matter in star. And the heat
energy comes from nuclear reaction in the heart of the star. At the end of the
life , the star will consume out of its nuclear fuel and lose heat gradually. Then
the heat pressure can’t resistance the gravitation and then the star will collapse.
What will a dead star result to be, it may result as a white dwarf or neutron
star . But Chandrasekhar shows that white dwarf have a mass greater than
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1.4Msun can’t resistance its gravitation by Electron degeneracy pressure and
exists stably, Oppenheimer shows that neutron star can’t have a mass greater
than 3Msun can’t resistance its gravitation by neutron degeneracy pressure and
exists stably. What will a star have a mass greater than 3Msun become when
it dead, this is a mystery. Oppenheimer and Snyder (1939) shows that if ignore
the pressure of matter, and star collapse in a spherical symmetry way. It will
collapse to be smaller than its Schwarzschild radius rs = 2m , and will keep
collapsing to a singularity. Then all the mass is located at a single point, which
seems to be crazy. But the singularity may be seen as a result of perfect spherical
symmetry. It’s not clear whether singularity will form in real universe.

Figure 16: The figure in Penrose’s original paper. A star Collapses in a spherical
symmetry way will result in a singularity. S2 is a trapped surface, F 4, B3 is its
future and future boundary.

In 1965 Penrose published his paper ”Gravitational collapse and space-time
singularities”. It shows that the singularity is inevitable if some condition is
satisfied

Cause Penrose work do a lot with trapped surface Γ , a compact 2-dim
space-like C1 surface that satisfy some condition , and its causal future J +(Γ).
Let’s investigate some property of J +(Γ), if Γ is a compact 2-dim space-like C1

surface.

Theorem 5.1. Space-time (M, g) is globally-hyperbolic. Γ is a compact 2-dim
space-like C1 surface. Then ∂J +(Γ), the boundary of J +(Γ), is a consist of
the null-geodesic that comes from Γ and orthogonal to Γ
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Figure 17: The future boundary of W is made bynull-geodesic that comes from
W and orthogonal to W

Proof. If a point u on ∂J +(Γ) and can be connected to Γ by a causal path
γ. Cause Γ is compact , we can choose γ be the longest. Cause u is on the
boundary of future, so length(γ) = 0. If not, length(γ)0, then in a neighbor U
of u, from continuity , every point in U can be connected to Γ by a causal path
γ′, contradict with the definition of boundary.

So, cause γ is the longest, similarly to theorem 3.2, we have γ is a geodesic
orthogonal to Γ. Cause lenth(γ) = 0, then we have γ is a null-geodesic.

It remain to proof that there do has a causal path γ that connect u with γ
. (See fig.17 , in figure.17 W means Γ) . This may not be right if (M, g) is not
globally hyperbolic. Imagine kick off a ”ring” R on ∂J +(Γ) from (M, g), then
the point on ∂J +(Γ) and behind R it is still on ∂J +(Γ), but can’t connect to
Γ by a causal path, because they causal path have to pass the ”ring” R.

Now we proof the theorem is right if (M, g) is globally hyperbolic. Let u
be a point on J +(Γ). Cause u is on the boundary , there will be a sequence
of point p1, p2, ... in J +(Γ) such that pn → u. From the definition of J +(Γ)
, there will be a causal path from pn to γ, name it γn. p1, p2, ... converge, so
they are in a compact set, from globally hyperbolic and theorem 2.4, they form
a compact space. So they have a converge sequence γnk

. It converge to a path
γ, Because γnk

is causal path, , then the tangent vector on every point of γnk

in non-spacelike, then because γnk
converge to γ, then the tangent vector on

every point of γ in non-spacelike, then γ is a causal path from u to Γ

Now we can define the trapped surface.

Definition 5.1. (Not rigorous)
Trapped surface:a compact 2-dim space-like C1 surface Γ that satisfy both

of the the two local null geodesic beams( that is, light beams) orthogonal to γ
(going outside and inside) at p will decay the area of they wavefront when they
leave p.

In figure.16, S2(= T 2) is an example of trapped surface. (Figure.19 shows
it more clearly). In the case of fig.16, calculation shows that, the gravitation
is strong enough that the in-going and out-going light-rays all ”going inside”!
So the area of the two wave-front all decay. That is a motivational example of
trapped surface.
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Figure 18: a picture of trapped surface γ, and its causal future. Notice both
blue ring and orange ring go smaller when time increase

From continuity, the trapped surface is still a trapped surface if the spherical
symmetry is perturbed. Trapped surface can be seen as a result of high matter
density and strong gravitation. And Penrose work shows that once the trapped
surface is formed, singularity is inevitable.

Let’s make the definition of trapped surface more rigorous.

Figure 19: Two light rays orthogonal to W at the same point, one can be seen
as ”income” direction, and one can be seen as ”outcome” direction

First, let’s define the two orthogonal direction of light rays. given a point p
on Γ, Γ has tangent space W at p, space-time (M,g) also have a tangent space
V at p. W is a 2-dim spacelike subspace of 4-dim V. It can be verified that there
is only two null-vector ~a,~b (up to multiplied by a real number ) in V that are

orthogonal to W. Then set ~a,~b to be the beginning vector of the two light rays
γp, ηp . One can be seen as ”incoming” , and one as ”outgoing” . (see figure 19)

Secondly we can choose a neighbor U of p on Γ. Each point q in U can
have a coordinate (x1, x2). On every point q of U we can similarly define γq, ηq,
choose the direction of γq, ηq such that γq, ηq is continuous in q. γq(s) has a
affine parameter s( ”affine” means the tangent vector in parallel along the curve
, that is D2γq(s)/d

2s). Set γq(0) = q, then the parameter s of each γq(s) is
determined up to multiply by a constant(the constant of each geodesic γq can
be distinct from each other).

The same as the case of timelike geodesics, define φs(q) = γq(s) . Clearly
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φ0 = id. φs can be seen as a map from a 2-dim manifold (U) to another 2-dim
manifold, φ′s(p) is a 2× 2 matrix. So We can define

A(s) =
√
det(φ′s(p)

T gij φ′s(p))

A(s) means the wave front of the light ray beams while transferring. (see
figure. 20)

Figure 20: A(s) is a measurement of the area of the wavefront of a local light-ray
beam.

Then, choose proper parameter for each γq(s) so that

∂Xq(0)

∂xi(q)
= 0(i = 1, 2)

on each q.
Xq(0) means the tangent vector of γq at q. The equation means the begin-

ning vector of γq is parallel while moving along U.
Then similar to theorem 4.2, we have the wavefront of light beams φs(U) is

the orthogonal to γ.
Set θ(s) = Ȧ/A, θ is called the area expansion, or simply expansion
Then we can define trapped surface rigorously

Definition 5.2. (rigorous)
Trapped surface a compact 2-dim space-like C1 surface Γ that satisfy both

of the the two null geodesic γp, ηp orthogonal to γ at p have a positive initial
area expansion. That is, θ1p(0) > 0, θ2p(0) > 0. θ1p means the area expansion
of γp, θ2p means the area expansion of ηp

use similar calculation in section 4, we got equation similar to (15). This
is called the null Raychaudhuri equation, which is a analogy to the original
Raychaudhuri equation (15).

dθ

ds
+

1

2
θ2 = −1

4
Tr σ2 − 8πT̂uu (17)

T̂uu means the component of T̂ at the direction of tangent vector of γ at
γ(s). Notice that (17) is a little different to (15), the coefficient of θ2 in left
hand side change from 1/3 to 1/2, this is because Γ in section 5 is 2-dim , but
S in section 4 is 3-dim.

Similar to Section 4, we have
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Theorem 5.2. If θ(0) = −λ is negative(this will be satisfied by a trapped surface)
. And if the weak energy condition

T̂uu ≥ 0

is satisfied, there will be a conjugate point of Γ at p on γ(s) when s ∈ [0, 2/λ1].
(See figure.21)

Proof. The proof is the same as theorem 4.3, you just have to change the coef-
ficient from 3 to 2 .

But notice in theorem 5.2 we also have to assume (M, g) is null-like geodesic
complete, that is, any null-like geodesic can be extend to sufficiently large affine
parameter. If (M, g) is not null-like geodesic complete, the geodesic may can’t
extend before it come to a conjugate point. We can say it meet a singularity
before it meet a conjugate point.

Figure 21: conjugate point will form at some parameter u ∈ [0, 2/λ1]

Finally we come to Penrose singularity theorem

Theorem 5.3. (Penrose 1965)
In space-time (M, g) If the condition below is satisfied
(1)The weak energy condition T̂uu ≥ 0 is satisfied.
(2)(M, g) is globally hyperbolic .And there is a Cauchy surface S that is

non-compact
(3)A trapped surface Γ is formed.
Then (M, g) is null-like geodesic incomplete. In fact this is a evidence of the

existence the singularity. We think some null-like geodesic can’t extend because
it ”hit to a singularity”. Just as Hawking ones said

”Although we have omitted the singular point from the definition of space-
time, we can still recognize the ’holes’ left where they have been cut out by the
existence of incomplete geodesics.”

(1) is satisfied by normal matter, and particularly dark energy. In fact , it’s
satisfied by any usual relativistic classical matter field. (2) is the assumption we
always tend to believe. (3) Happens when matter density is high and gravitation
is strong enough.

Proof. Step 1: If (M, g) is null-like geodesic complete, then ∂J +(Γ) is
compact
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To get a contradiction , we assume (M, g) is null-like geodesic complete,
that is, any null-like geodesic can be extend to Sufficiently large parameter.

Cause ∂J +(Γ) is a boundary of a space-time region, then it’s closed in
(M, g) and have no boundary as a 3-dim manifold.

Cause Γ is a trapped surface, we will show that, strangely, ∂J +(Γ) is com-
pact. We say compactness is strange result because you can see the example in
figure 1, figure 2, non of the ∂J + is compact.

Cause the trapped surface Γ is compact, and θ1p(0), θ1p(0) is continuous in
P(P is on Γ), Then there will have a positive lower bound of θ1p(0), θ1p(0), cal
bound λ

Then from theorem 5.1 we got ∂J +(Γ) is made of null-geodesic segment γp
that is orthogonal to Γ at some point p on. Cause γp should be a shortest path
from point on p to Γ. There should be no conjugate point of Γ on segment γp.
But the weak energy condition tells us that, if keep extend, γp will come to a
conjugate point when s ∈ [0, 2/λ], so the parameter of point on γp won’t be
large than 2/λ .

We can define map f

Γ× [0, 2/λ]× {1, 2} → (M, g)

that is , f(p, s, 1) = γp(s), f(p, s, 2) = ηp(s) (γp is null-geodesic going inside,
ηp is null-geodesic going outside). We can see f is continuous. Cause the
parameter of point on γp won’t be larger than 2/λ, then

∂J +(Γ) ⊂ f(Γ× [0, 2/λ]× {1, 2})

Cause Γ×[0, 2/λ]×{1, 2} is compact, f is continuous, we have f(Γ×[0, 2/λ]×
{1, 2}) is compact. Then ∂J +(Γ) is a closed subset of compact set, then ∂J +(Γ)
is compact.

Step 2: in fact ∂J +(Γ) can’t be compact
Let’s also show ∂J +(Γ) can’t be compact . In fact, we can set a C1 timelike

segment field on (M, g)(such as a direction at each point where LengthLorentz/LengthEuclid
become the maximal). Then the integral curve of the segment field F will con-
nect a point p at Γ and a point g(q) at Cauchy surface S (See fig.22). Cause
segment field F is C1, then we have map g: ∂J +(Γ)→ S is continuous.

g is also a injection, if not, two point p, q on ∂J +(Γ) satisfy g(p) = g(q),
then there will be a integral curve of F called α connect q,p(p is in the future)
. But α is timelike (See fig.23), so we can start at Γ, walk along a null-geodesic
γ to q, and then walk along α to p, then γ ∪ α is a casual path from Γ to p
and its length is positive. Then p won’t on ∂J +(Γ) , contradiction. So g is a
injection .

Then because segment field F is C1 , we have g−1 is also continuous. Then
g is a homeomorphism from ∂J +(Γ) to a subset S0 of S. S is not compact, S0

is homeomorphic to ∂J +(Γ), so S0 should be compact. So S0 should have a
boundary , but ∂J +(Γ) is a three-dim manifold without boundary , a contra-
diction!
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Let’s see why the assumption that (M, g) is null-like geodesic complete is
needed to get a contradiction. Remember in the first half of our proof, we
have shows that if (M, g) is null-like geodesic complete, ∂J +(Γ) is compact.
If (M, g) is null-like geodesic incomplete, like the space time in figure.21 (the
null geodesic can’t extend when they meet the singularity). To make things
more easy, we just consider in figure.21 spacetime is 2+1 dim, then the trapped
surface S2 is a 1-dim ring, We can see the future bound of trapped surface
∂J +(S2) is homeomorphism to a 2-dim sphere without a point, because the
top of the sphere is a singularity , and it’s not in our space-time, we have to
remove it. So ∂J +(S2) is homeomorphism to a 2-dim open disk, which is not
compact.

Figure 22: a homeomorphism g from ∂J +(Γ) to S0

Figure 23: p, q is on ∂J +(Γ), If there are line segment α from p to q, then α
can’t be time-like

At the end of massive star. nuclear fuel is consumed, no force can resist
gravitation, then star will collapse. we can expect the matter-density will get
very high and then a trapped surface will be formed , then things end up in
one/some singularity. There are no proper physical theory near the singularity,
that’s the boundary of our knowledge. What the singularity really is , that’s a
question that is challenging the wisdom of human being.

The Penrose’s work is just a new beginning of the study of black hole. His
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work give general relativity theorist new tools and perspective. Important work
like black hole area non-decreasing theorem (Hawking 1971), No-hair theorem
of blackhole(1973 and later) was made after that.

The observation evidence of black holes is also accumulated as time goes
by.In 1996 and 1998, two teams lead by Genzel and Ghez, published their ob-
servation of the star orbits around Sagittarius A∗, and find it is high massive
(4.1 × 106Ṁsun), but located in a relatively small area. In 2015 , LIGO first
detected the gravitational waves emitted from the merging of two blackholes.
In 2019 and 2022, ETH release the ”photo” of two massive black holes, one is
at the center of galaxy M81, one is at the center of our Milky Way. The second
one is exactly Sagittarius A∗ which has been studied by teams of Genzel and
Ghez.

6 Reference

there are four main reference
(1) Penrose Roger (1965), ”Gravitational collapse and space-time

singularities”
this is the original paper of Penrose singularity theorem on black holes ,

which only have less than 3 pages.
(2)S.W.Hawking , and G.F.R.Ellis, ”The large scale structure of

space time”, Cambridge university press,1973,
this is a professional book on General Relativity and space-time singularity.
(3)”Light Rays, Singularities, and All That” by Ed Witten
They are in fact a summer camp lecture notes of Witten in 2018, you can

find it on arXiv, you can find the lecture video ”Light rays and black holes 1,
2” on internet.

In this lecture, Witten explain in simple language but give reader deep per-
spective on space-time singularity. This lecture is enjoyable if you are interested
in this subject and have basic knowledge on General Relativity.

(4) ”Gravitation ” by Charles W. Misner, Kip S. Thorne, and John
Archibald Wheeler.

A Big Mac textbook on General Relativity, written by three master.
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1 Introduction

A tiling is a covering of the plane by polygons or other shapes that do not overlap with each other.
A tiling which cannot coincide with its original pattern when shifting any finite distance without
rotation, is called a aperiodic tiling. The contrast is called an periodic tiling.

Figure 1: The Penrose tiling

The Penrose tiling, found in the 1970s, is a famous example of an aperiodic tiling. Despite its
lack of translational symmetry, it possesses both reflection symmetry and fivefold rotation symmetry,
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aside with abundant wonderful properties. The tiling was created by Roger Penrose, and was firstly
discussed by Penrose and J.H.Conway, who found some of its fantastic features and constructed some
of its geometric structure.

In the early 1980s, the algebraic structure of Penrose tiling was discovered, which in my opinion
means the beginnning of serious mathematical research of this marvellous phenomenon. In the following
years 1982, D.Shechtman found a diffraction pattern in the metallic phase of some Al-Mn alloy turning
out to have fivefold rotation symmetry, which contradicts with the existing opinion of the structure of
crystals. After fighting against opposition for two years, his work was finally published, which triggered
his Nobel prize at 2011 and the new concept of “quasicrystal”.

There is the fabulous connection between the Penrose tiling and quasicrystals, just as the connection
between periodic tiling and crystals. I will finally show in this paper that the Penrose tiling is a
projection of a trivial periodic tiling with a higher dimension, the same as the quasicrystal is the
projection of a high dimensional crystal, as it was written in the textbooks of solid state physics.

This paper is organized basically in two parts. At first I will summarize some of the basic properties
from tiling and crystal to the fascinating Penrose tiling and quasicrystal, which serves as an exhibition of
this topic. And then I will present some of the algebraic structures of the Penrose tiling, in other words
do some mathematical approaches, which as an introduction, will show the profounding cannotation
of this topic aside from just “Interesting Mathematics”.

2 Basic Properties

2.1 From tiling to crystal

A tiling is a non-overlapping cover of the plane, where some obvious examples are the square tiling
and the regular hexagon tiling. If we do some simple math of a tiling by a regular polygon of n edges,
then we have

(n− 2)π

n
×m = 2π (1)

where m is the number of polygon tiles around a perigon, therefore requiring m ∈ N, and we have

n

n− 2
∈ N (2)

which leads to a solution of n = 3, 4, or 6.
A crystal is a material state where the atoms(or ions) are highly ordered, forming a lattice that

extends in all directions. It usually consists of two properties known as the traslational symmetry and
the long range orientational order, and the latter are usually characterized by reflection symmetry or
rotation symmetry.

The Crystallographic Restriction Theorem states that if a translational symmetric crystal owns
a property of n-fold rotation symmetry and reflection symmetry, then n can only take the value of
{1, 2, 3, 4, 6}. The proof are also some simple maths, for if we take one vertice on a horizontal line L in
the lattice and suppose the length between two adjacent vertices on the line are d, then we can rotate
the line by lθ and get L1, here θ = 2π

n are the basic angle of n-fold rotation symmetry. After getting
L2 by reflecting L1 along L, we notice the length between the mth vertice of L1 and L2 equals to the
length between some two vertices on the original line L, that is, there exists an integer k satisfy

2md cos lθ = kd (3)

by substitution of θ and rearranging the equation we have for every m and l,

2m cos l
2π

n
∈ Z (4)
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thus we have n ∈ {1, 2, 3, 4, 6}.

2.2 Penrose tiling and quasicrystal

Among these tilings, aperiodic tilings seemed to be more interesting than periodic tilings, and many
methods to produce an aperiodic tilings were found gradually. An example are the “reptile” method.
Its main idea is to create a fractual pattern by putting the tiles together to form a same tile with a
bigger size. Thus any finite-distanced shifting can be considered in a large enough pattern same with
the tile, and one prooves the shifting cannot coincide with the original tiling.

Figure 2: The sphinx reptile figure

But there is the problem that the tiles one can find to create a reptile can always be combined
together trivially to form a periodic tiling, like a parallelogram tiling. So mathematicians began
searching for an aperiodic tiling S such that for any set of tiles T ⊂ S, T cannot form a periodic tiling.

In 1961 Hao Wang guessed that such S do not exist, but in 1964 R. Berger constructed a S satisfy
card (S) = 104. Later D. Knuth decreased the number to 92, and finally in 1974, R. Ponrose gave a
construction of S such that card (S) = 4, which is the original Penrose Tiling.

Suppose there is a crystal lattice L = {(x, y) : x, y ∈ Z} ⊂ R2 on the plane and let ϕ = 1+
√
5

2
be the golden ratio, we pick out the set of points T ⊂ L such that every (x, y) ∈ T , the square
S = {(m,n) : x− 1 < m ≤ x, y − 1 < n ≤ y} ⊂ R2 has an nonempty intersection with the line y =
(ϕ− 1)x. Then the projections of all points in T onto the line create a 1-dimensional pattern that
is long range orientational ordered, but not translational symmetric. This can be seen as the 1D
quasicrystal, also a 1D tiling, if we connect two consecutive projections on the line and take them as
1D tiles. What linked the Penrose tiling with quasicrystals are the generalization to 5D spaces, when
an appropriate plane intersect with R5 lattices and create the Penrose tiling pattern, which will be
finally proved as Theorem 2 down below.

2.3 Geometric properties

Apart from the original 6-pieces tiling, two types of the eventual version all consist two pieces,
namely “the kite and dart” and “the thick rhombus and the thin rhombus”. But the two types are
essentially the same, as there exist a transformation between them. As a remark, the Penrose tiles

Figure 3: The thick and thin rhombuses with arrows as matching rules
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Figure 4: The kite and dart tiles with arcs as matching rules

Figure 5: The substitutional tiles serving as matching rules

aren’t just two polygons of “kite and dart”, or “thick and thin rhombuses”, but along with a matching
rule to make sure the tiles cannot be combined together to form a trivial parallelogram periodic tiling.
The matching rules can be in the form of arrows needing to be matched along along a coincident edge,
or arcs inside the polygon needing to be continuous, or simply substitutional tiles as in the example
figures.

Using these tiles one can easily create a Penrose tiling, but the numbers of different Penrose tilings
are infinite, actually uncountable. Here two tilings are different means that one cannot coincide with
the other by shifting a finite distance without rotation. Nevertheless, any finite pattern in any Penrose
tiling can be found in every other Penrose tilings, and their numbers in every other Penrose tiling
are infinite. Futhermore, Conway proved a so-called local isomorphism theorem, stating that a finite
pattern of a circle with radius d in any Penrose tiling, can be found in somewhere at most distance

ϕ3d from any point in any other Penrose tilings, here ϕ stands for the golden ratio 1+
√
5

2 .

3 Algebraic Structures

3.1 Notations and remarks

The main idea of this part is to prove that from five generating parameters γ0, γ1, γ2, γ3, γ4 along
with the requirements

∑4
j=0 γj = 0 (thus it’s four degree of freedom) one can produce a Penrose tiling

pattern on R2, or name it, the complex plane C. I will like to name this Theorem 1 the pentagrid
generating theorem. Also by using the pentagrid generating theorem, we can prove the Theorem 2
mentioned above, which I will name it the plane intersection theorem.

A remark is needed, that in this section we will work on the Penrose tiling of thick and thin rhom-
buses, instead of the kite and dart pattern above. And the matching rules will be in the form of arrows
attached to each edge of the thick and thin rhombus, such that the matching of the two rhombus must
satisfy that the coincident edge have the arrows of the same direction. So therefore we can give a
definition.

Def 3.1. we call a tiling “rhombus tiling” if the tiles are the thick and thin rhombuses, and a tiling
“AR-rhombus tiling” if the two rhombuses are arrowed according to the matching rule.
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We take ζ as the quintic unit root eiθ, and θ = 2π
5 . All the

∑
j means

∑4
j=0. We take ⌈x⌉ as the

roof function of x, means the least integer m satisfy m ≥ x. So we will start from pentagrids.

3.2 Pentagrids

Def 3.2. Let γ0, γ1, γ2, γ3, γ4 ∈ R satisfy
∑

j γj = 0, then define

Gj :=
{
z ∈ C : Re

(
zζ−j

)
+ γj ∈ Z

}
⊂ C (5)

to be named as the j-th grid.

By some deformation we can see that

Gj =
{
z : z = ζj (n− γj + αi) , n ∈ Z, α ∈ R

}
(6)

is a cluster of lines with distance 1 rotated jθ counterclockwise from the vertical initial state z =
−γj + αi.

Then we call
G :=

⋃
j

Gj (7)

the pentagrid (generated by (γj)j).

If there does not exist three gridlines intersecting together, we call G a regular pentagrid. Otherwise
singular.

In this paper we always talk about regular pentagrids.

3.3 Theorem 1

We now state the pentagrid generating theorem.

Theorem 1. By the following operations of a pentagrid G generated by (γj)j, one can construct a
rhombus tiling and attach arrows to it to create an AR-rhombus tiling, which is a Penrose tiling.

Proof. We will first show the method to generate a rhombus tiling.
Define

Kj (z) :=
⌈
Re

(
zζ−j

)
+ γj

⌉
∈ Z (8)

and f : C → C as

f(z) =
∑
j

Kj(z)ζ
j (9)

we now consider the behavior of Kj(z). Due to the property of roof functions, we know Kj(z)
does not change as long as Re

(
zζ−j

)
+ γj is less than or equal to a integer n. Then with reference to

expression(6), we can find that Kj(z) holds as a constant between two adjacent lines in Gj .
Thus we can observe the behavior of f(z), and know that f(z) changes(as a complex number, or

a vector) by ζj iff when z crosses a gridline of Gj . Hence if we consider the intersection point P of a
gridline li from Gi and lj from Gj and the four meshes A,B,C,D around P , with A,B on one side of
li, and A,D on one side of lj , then we have

f(A)− f(B) = f(D)− f(C) = ζj (10)

f(A)− f(D) = f(B)− f(C) = ζi (11)
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thus the difference under f between adjacent meshes, be like ζj , form an edge of a rhombus, since the
module of ζj is 1 for all j.
In other words, if we take f(C) ⊂ C as the set of vertices of rhombuses with edge lenth 1, we form a
rhombus tiling of the plane C. The proof of this statement only need a check of |f(z)| goes to +∞,
which is obvious if we take

λj(z) := Kj(z)− (Re
(
zζ−j

)
+ γj) (12)

and notice both 0 ≤ λj(z) < 1 and f(z) = Re(z) +
∑

j(γj + λj(z)ζ
j).

The next thing we do now is to attach arrows to this rhombus tiling. As a remark, the arrowing
process is necessary since we have to make sure these rhombuses are put together to form a Penrose
tiling instead of some trivial parallelogram periodic tiling.

We will first assign an index to every vertice. Let λj(z) be defined as above, and we can observe
that ∑

j

Kj(z) =
∑
j

λj(z) (13)

this is because there holds both
∑

j ζ
j = 0 and

∑
j γj = 0 as we supposed. Noticing that the LHS of

expression (13) is the sum of five integers while the RHS is the sum of five real numbers each in the
interval [0,1), we know that

∑
j Kj(z) ∈ Z ∩ [0, 5). Furthermore λj(z) = 0 means Re

(
zζ−j

)
+ γj ∈ Z,

which means z falls on the gridline of Gj . Since we suppose all pentagrids are regular, then for a fixed
z, λj(z) = 0 can only hold for at most two j. Thus expression (13) cannot be zero, and we have∑

j

Kj(z) ∈ {1, 2, 3, 4} (14)

and we call this value the index of the vertice f(z).
Now we will start attaching arrows according to the index of vertices. First we notice that adjacent

vertices in rhombus tiling represents neighbouring meshs in pentagrids, thus transporting along a fixed
edge only changes a unique Kj(z) by 1, so the index difference between the starting and ending vertices
is also 1. Hence we only have to deal with the situation when a edge connects two vertices of the index
{1,2} or {2,3} or {3,4}. We will arrow as follows.

2 ↠ 1 (15)

3 ↠ 4 (16)

And between the edge of vertice 2 and 3 we connect with one-head arrow although the directions
are yet unknown. Noticing that in the original matching rules of thick and thin rhombuses, the direc-
tions of one-head arrows are determined after all the two-head arrows are fixed, then we have finished
arrowing the rhombus tiling. Now the only thing we need to prove of theorem 1 is this operation is
well-defined, that is, the neighbouring rhombus have the same direction of one-head arrow(if it is a
one-head arrow) on their coincident edges.

We will do some simplification. Without loosing generality, we can assume the edge connecting the
{2,3} vertice is horizontal, and by the map γj 7→ γj − Re(dζ−j) for every j, we still have

∑
j γj = 0,

while in the expression of Gj , Re
(
zζ−j

)
+ γj was replaced by Re

(
(z − d)ζ−j

)
+ γj and thus causing

the tiling pattern shifting d rightward for every d. Therefore we can suppose γ0 = 0 and the 2-3 edge
in the rhombus tiling correspond to the imaginary axis in the pentagrid.

we suppose the neighbouring rhombus correspond to the vertice A,B of the pentagrid, and the
two vertice with index {2,3} correspond to the mesh P,Q of the pentagrid. Then by the simplification
above, we know that P,Q are adjacent against the gridline G0. Furthermore we assume A is the
intersection of G0 with Gp, and B is the intersection of G0 with Gq.

Then by observing the matching rules of the thick and the thin rhombus, we know that the one-head
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arrow always points from the vertice of the acute angle to the vertice of the obtuse angle. Thus we
just need to prove the angel of vertice P in A and in B are both acute or obtuse. From the generating
function f(z) we know that the angle of P in A is the angle between the radial ζp and the positive
real axis x > 0, while angle of P in B equal to the angle spanned by radial ζj and x > 0. Drawing
them out we found when i=1,4 the angles of ζi and x > 0 are acute while when i=2,3 these angle are
obtuse. Thus what we need to prove is that p and q have different parity.

imagine z moving upward on the imaginary axis of the pentagrid, we have

Kj(iy) =
⌈
Re(iyζ−j) + γj

⌉
= ⌈sin(jθ)y + γj⌉ , j = 1, 2, 3, 4, y ∈ R (17)

since the pentagrid is regular and iy is already on G0, then sin(jθ)y+γj ∈ Z can only hold for at most
one j. Thus noticing sin(1θ) + sin(4θ) = 0 and sin(2θ) + sin(3θ) = 0, we conclude that γ1 + γ4 /∈ Z
and γ2 + γ3 /∈ Z.

we then let
g1(y) := K1(iy) +K4(iy)− ⌈γ1 + γ4⌉ (18)

g2(y) := K2(iy) +K3(iy)− ⌈γ2 + γ3⌉ (19)

and gi(y)(i = 1, 2) have the form ⌈a⌉ + ⌈b⌉ − ⌈a+ b⌉ with a + b /∈ Z, and by eumeration we know
gi(y)(i = 1, 2) takes its value in {0, 1}.

Now we let y goes from −∞ to +∞, and consider the behavior of gi(y). Since Kj(z) is invariant
as long as z do not cross the lines in Gj , and when z do crosses, Kj(z) changes by 1, we know that
whenever iy coincide with G1, K1(iy) increases by 1 and thus g1(y) increases by 1. Whenever iy
coincide with G4, K4(iy) decreases by 1 and thus g1(y) decreases by 1. The same work with 2,3 as it
is with 1,4. So here is our proof of p, q differ in parity.

First we proof p ̸= q. This is because g1(y) oscillates between 0 and 1, thus the intersection with
lines in G1 and lines in G4 alternates. The same works for G2 and G3, so we know that two adjacent
intersection points A,B cannot be from the same Gi, which means p ̸= q.

Next if p and q have the same parity, then either {p, q} = {1, 3} or {p, q} = {2, 4}. We compute the
index of vertice P . Note that by simlification above, we have set edge PQ horizontal on the opposite
of 0-th grid. Therefore the index of Q is always one more of the index of P . By assumption edge PQ
was assigned with a one-head arrow, then vertice P should have index 2 and Q with 3, but since γ0 = 0
we have γ1 + γ2 + γ3 + γ4 = 0, followed by the fact from enumeration that ⌈γ1 + γ4⌉+ ⌈γ2 + γ3⌉ = 1.
Hence

Ind(P ) =
∑
j

Kj(iy) = g1(y) + g2(y) + 1 (20)

where iy, on the imaginary axis, is between the point A and B. We suppose A is above B.
If p = 1 and q = 3, then when iy goes from B to A, it have already crossed G3 but not yet crossed

G1. Thus g2(y) have already decreased but g1(y) not yet increased, which indicates g1(y) = g2(y) = 0.
If (p, q) = (3, 1), or (4, 2), or (2, 4), we correspondently have (g1(y), g2(y)) = (1, 1), or (1, 1), or (0, 0).
Without exception g1(y) + g2(y) is even, and thus Ind(P ) is odd, which means it cannot equal to 2.
So this is a contradiction, and we finished our proof of theorem 1.

3.4 Theorem 2

We will now state the plane intersection theorem.

Theorem 2. The vertices of the Penrose tiling generated by the parameters γ0, γ1, γ2, γ3, γ4 in Theorem
1 have the form

∑
j kjζ

j, where (k0, k1, k2, k3, k4) ∈ R5 satisfy the 5D cube {(xj)j ∈ R5 : kj −1 < xj ≤
kj ,∀j} have an intersection with the plane below:
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∏
:



∑
j

xj = 0

∑
j

(xj − γj)Re(ζ2j) = 0

∑
j

(xj − γj)Im(ζ2j) = 0

Proof. If (xj)j ∈
∏
, in other words satisfy the three conditions above, then the vector (xj − γj)j ∈ C5

is vertical to the following three vectors in C5:
α0 = (1, 1, 1, 1, 1) = (ζ0j)j , α2 = (ζ2j)j , and α−2 = (ζ−2j)j . If we expand them to a basis of C5, the
missing two vectors can be α1 = (ζj)j and α−1 = (ζ−j)j . Thus (xj − γj)j ∈ span(α1, α−1), and we
have z1, z2 ∈ C such that

xj − γj = z1ζ
j + z2ζ

−j (21)

Noticing the LHS of (21) is real and ζ and ζ−j mutually conjugate, we have z1 conjugate to z2, and
thus

xj − γj = 2Re(z2ζ
−j) = Re(2z2ζ

−j) (22)

Then for any (kj)j satisfying the 5D cube attached to it intersects with
∏
, there exist (xj)j , or say,

2z2, such that
kj = ⌈xj⌉ (23)

or say,
kj =

⌈
Re(2z2ζ

−j + γj)
⌉

(24)

hence
∑

j kjζ
j = f(2z2), and thus is a vertice of the generated Penrose tiling. The other direction is

the same.

4 Summarize

4.1 What we have done

In this paper, we first talked about crystal and tiling of a plane and the correlation between them,
then we discussed the similar correlation between quasicrystal and the Penrose tiling. Afterwards
we went through some of the geometrical properties of the Penrose tiling, and finally introduced a
mathematical approach of its algebraic structures, whose main idea is to generate a pentagrid from
five parameters, and present a dual relation between the intersection points of the pentagrid with the
rhombus of the Penrose tiling, and the mesh of the pentagrid with the vertice of the Penrose tiling,
assigning an index with each vertice and finally generate a Penrose tiling pattern by arrowing the
rhombus according to the index of its vertice.

4.2 Forecast

Upon the basis of the algebraic structure, more further properties were found and discussed, not
only in algebraic fields, but also analytic fields, such as viewing the space of all Penrose tiling as a
metric space, since it has a “natural compact metric topology” and discuss its properties as a strictly
ergodic dynamical system, which is done in Robinson, E. A. (1996). The Dynamical Properties of
Penrose Tilings. Transactions of the American Mathematical Society, 348(11), 4447–4464.

Other triggering thoughts are that mathematics again have gone in front of physics, for the Penrose
tiling was found in 1974, and its algebraic structures, which is the main topic of this paper, is found in
1981, just enough to get before the time when it was applied to explain the phenomenon of quasicrystals.
Just as before when calculus was found in the 17th centry, and Riemann geometry in the 19th, and many
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other unlimited examples, mathematics have presented us somewhat magical but end up conclusive
methods, tools and models for us to recognize our world.
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Abstract
This article is an introduction to Ising model, including the combinatorial solution of 2D

Ising model and the thermodynamic properties of a large crystal.

1 Introduction
The Ising model is an important model used in statistical physics to deal with various phase

transition problems. A phase transition point of a crystal means a discontinuity point of its par-
ticular thermodynamic function (e.g., free energy, internal energy, specific heat, etc., as a function
of temperature T ) or the derivative of some order of this function. In order to determine whether
a phase transition will occur in a crystal, we need to find a way to calculate the thermodynamic
functions. The main idea of the Ising model is to simplify the calculation of each physical quantity
by arranging the atoms in the crystal in a n-dimensional grid (n ⩽ 3) and considering only the
mutual energy between adjacent atoms in the grid.

In the following, we will give a concrete construction of Ising model. Take n = 2 as an
example. Consider a L-row M -column square lattice with N = L ×M lattice points, one atom
at each lattice point, and two possible spin states for each atom: σi = ±1, i = 1, 2, · · · , N . Thus,
there are 2N configurations of the spin states of the particles at all lattice points. We assume that
the energy of this system consists only of the mutual energy between adjacent atoms. Under this
assumption we can obtain the energy (also called the Hamiltonian) of the particular configuration
σ = (σ1, σ2, · · · , σN):

Eσ := −J
∑
{i,j}

σiσj (1.1)

where the summation is over all {i, j} corresponding to adjacent atoms, and J is the mutual energy
constant.

According to statistical physics, all configurations of σ are possible and the probability of each
configuration is proportional to e−βEσ , where β = 1

kBT
, kB is Boltzmann’s constant, and T is the

absolute temperature.
What we are concerned with is the normalization constant ZN of this distribution, that is:

ZN :=
∑
σ

e−βEσ (1.2)

ZN is also called the partition function in statistical physics. We will give the definition of the
relevant thermodynamic functions, and will see that these functions correspond to the partition
function and its partial derivatives of different orders, thus the solution of the partition function
is the key to solving the Ising model.
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Definition 1.1. The free energy ψN , internal energy UN , and specific heat CN of the system is
given by

ψN := −N−1kBT lnZN (1.3)

UN :=
1

N

∑
σ

Eσ
e−βEσ

ZN

= kBT
2 ∂

∂T
(− ψN

kBT
) (1.4)

CN :=
∂UN

∂T
(1.5)

The results obtained by Onsager are as follows. We will prove this theorem by a combinatorial
approach in Section 2.

Theorem 1.2 (Onsager).

− ψ

kBT
= ln 2 +

1

2π2

∫ π

0

∫ π

0

ln
(
(cosh 2β)2 − sinh 2β(cos ξ + cos η)

)
dξdη (1.6)

when | tanh β| < 1

4
, where ψ = lim

N→∞
ψN .

2 Combinatorial Solution of 2D Ising Model
The main idea of solving the 2D Ising model by combinatorial methods is to transform it into

a combinatorial counting problem on graphs. The methods contain three main steps, which are
shown in the following three subsections respectively.

2.1 Transforming into a Graph Problem
First we will see how the problem is related to graphs. WLOG, we may assume that J = 1,

or just let β = J/kBT .
Consider a 2D square lattice with L × L sites, and denote all adjacent particle pairs by N ,

then we can naturally generate a graph G = (V,N ) by the lattice, where V contains all sites and
N exactly contains all edges. The partition function of the 2D Ising model on the lattice can be
calculated as follow:

ZL2 =
∑
σ

e−βEσ

=
∑

σ1,σ2,··· ,σL2=±1

∏
{i,j}∈N

eβσiσj

=
∑

σ1,σ2,··· ,σL2=±1

∏
{i,j}∈N

(cosh β + σiσj sinh β)

= (1− u2)−L(L−1)
∑

σ1,σ2,··· ,σL2=±1

∏
{i,j}∈N

(1 + σiσju)

(2.1)

where u = tanh β, and the third equation holds because of σiσj = ±1.
Notice that ∏

{i,j}∈N

(1 + σiσju) =

2L(L−1)∑
m=0

um

 ∑
H∈Am

∏
{i,j}∈NH

σiσj

 (2.2)
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where Am is the set of all subgraphs of G that contains m edges, and NH is the set of all edges of
H.

By observing the degree of each σi in (2.2), we can see that since the summation is over
σi = ±1 for each i, only even subgraphs (that is, the degree of each vertex in the subgraph is
even) can make contributions to the summation. Let A be the set of all even subgraphs of G, and
m(H) = #NH

, then after a simple calculation we can obtain

ZL2 = 2L
2

(1− u2)−L(L−1)

(
1 +

∑
H∈A

um(H)

)
(2.3)

2.2 An Important Combinatorial Identity
In this subsection, we are going to obtain an important combinatorial identity, which trans-

forms the summation over all even subgraphs into a product of paths, in order to simplify the
combinatorial expression (2.3) for the convenience of subsequent solving. But first we need to
explain some definitions and notations.

Definition 2.1. A path p over G is a sequence of directed edges (e1, e2, · · · , en), with each ek
starting at the site where ek−1 ended and never goes backwards over ek−1, k = 2, · · · , n. A closed
path is a path that starts and ends at the same site. The equivalence class [p] consists of all
equivalent closed paths of p, that is, all circular permutations (ek, ek+1, · · · , en, e1, · · · , ek−1) and
their inversions (ek−1, · · · , e1, en · · · , ek). A periodic path is a periodic sequence which repeats a
non-periodic sequence of edges which belongs to a closed path for m times (m > 1).

Remark 2.2. In this subsection, all paths we mention are closed path, for simplicity.

Besides, we need to define the sign and weight of a path as follows.

Definition 2.3. The sign of a closed path p is given by

s(p) := (−1)1+t (2.4)

where 2πt is the angle turned by a tangent vector while traversing p. And the weight of p is given
by

Wp(u) := s(p)un (2.5)
where n is the number of edges in p.

Example 2.4. A path p is given in Figure 1, whose 4 edges form a square. As we traverse p
counterclockwise, the tangent vector will turn by 2π, since at every site it will turn by π/2. So the
sign s(p) = (−1)1+1 = 1.

Figure 1: A simple example of sign

With these definitions, we can try to obtain the identity shown in the following theorem.
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Theorem 2.5.
1 +

∑
H∈A

um(H) =
∏
[p]

(1 +Wp(u)) (2.6)

where the product is over all equivalence class [p] of non-periodic paths.

This identity was initially proposed as a conjecture in lecture notes by Feynman in 1960, and
then proved by Sherman in 1960 and Burgoyne in 1963. The convenience of this transformation
lies in the fact that it turns the sum of subgraphs, which is difficult to compute, into a product
that is relatively easy to compute.

The proof of the identity contains two steps. First we will expand the product into edge-
disjoint paths, that is:

∏
[p]

(1 +Wp(u)) = 1 +
∞∑
k=1

∑
[p1],[p2],··· ,[pk]

Wp1(u)Wp2(u) · · ·Wpk(u) (2.7)

where [p1], [p2], · · · , [pk] are edge-disjoint. After showing this, what remains to prove is that the
terms Wp1(u)Wp2(u) · · ·Wpk(u) where at least one edge ei is traversed for ri > 1 times all cancel
out. This part is a bit difficult, therefore is omitted here and only the sketch of the first part will
be shown as follows.

Sketch of proof of Theorem 2.5. For each even subgraph H of G, the way to decompose it into
different edge-disjoint paths depends on all sites of degree 4 in H. We want to show that

∞∑
k=1

∑
[p1]∪[p2]∪···∪[pk]=H

Wp1(u)Wp2(u) · · ·Wpk(u) = um(H) (2.8)

WLOG, we may assume that H is connected, otherwise the equality can be obtained by simply
multiplying the equalities of connected subgraphs.

For each site of degree 4 in H, the paths will have a crossing at this site, which has three
types: selfcrossing, turning left and turning right (see Figure 2). Let ti be the number of the ith
type crossing (i = 1, 2, 3), respectively, and let n4 = t1 + t2 + t3. A simple identity is:

s(p1)s(p2) · · · s(pk) = (−1)t1 (2.9)

which comes from the fact that a path without any selfcrossings has a sign of 1, and every self-
crossing make a −1 contribution to the sign.

Figure 2: Three types of path crossing
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Since every site of degree 4 can have all three types of crossings, the summation in (2.8) can
be written as:

∞∑
k=1

∑
[p1]∪[p2]∪···∪[pk]=H

Wp1(u)Wp2(u) · · ·Wpk(u) = um(H)
∑

t1+t2+t3=n4

n4!

t1!t2!t3!
(−1)t11t21t3

= (−1 + 1 + 1)n4um(H)

= um(H)

(2.10)

Then after making an sum over all even subgraph H, the theorem is proved.

2.3 Combinatorial Approach to Onsager’s Formula
After the effort of the last subsection we have transformed the partition function into

ZL2 = 2L
2

(1− u2)−L(L−1)
∏
[p]

(1 +Wp(u)) (2.11)

In this subsection we will start from this and finally give a proof of Theorem 1.2.
Let’s consider all paths that start at a particular site P1 and end at the same site Pn+1 = (x, y)

in n steps. Since what we concern is the asymptotic properties of the system as L → +∞, the
boundary conditions can be ignored, and thus we may assume that P1 = (0, 0). First we need to
define the amplitude of this union of paths.

Definition 2.6. The amplitude of a path p is given by

W p(u) := αnlᾱnrun (2.12)

where α = eiπ/4, and nl, nr are the number that p turns left and right, respectively. The upward
amplitude Un(x, y) is the summation of amplitude of all paths that start from (0, 0) and moving
upward to (x, y) in the n-th step. Similarly is the downward amplitude Dn(x, y), leftward
amplitude Ln(x, y), rightward amplitude Rn(x, y) defined. Moreover, if |x| + |y| > n (which
means no such path exists), then Un(x, y) = Dn(x, y) = Ln(x, y) = Rn(x, y) = 0.

There is one additional note to be made about this definition: we should give the path a initial
direction, so that the turning from it to the first step will also be counted in. For a non-closed
path, we can randomly set this direction, for example all upward. But for a closed path p that
start and end at (0, 0), we should let this direction be the same as the last step, which makes

W p(u) = −Wp(u) (2.13)

hold.
With the definitions above, we can easily get the recurrence relation of Un(x, y) as well as the

other three amplitudes as follows.

Proposition 2.7. For all n ∈ N, (x, y) ∈ Z2,

Un(x, y) = uUn−1(x, y − 1) + 0Dn−1(x, y − 1) + uᾱLn−1(x, y − 1) + uαRn−1(x, y − 1)

Dn(x, y) = 0Un−1(x, y + 1) + uDn−1(x, y + 1) + uαLn−1(x, y + 1) + uᾱRn−1(x, y + 1)

Ln(x, y) = uαUn−1(x+ 1, y) + uᾱDn−1(x+ 1, y) + uLn−1(x+ 1, y) + 0Rn−1(x+ 1, y)

Rn(x, y) = uᾱUn−1(x− 1, y) + uαDn−1(x− 1, y) + 0Ln−1(x− 1, y) + uRn−1(x− 1, y)

(2.14)
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Now we want to calculate these amplitudes at (0, 0). The equations above contain translations,
but after Fourier transform these translations will be converted to phase shifts, making recurrence
relations a lot simpler. Here we use the discrete-time Fourier transform (DTFT), which transforms
a sequence into a periodic function.

Lemma 2.8 (DTFT). Take any Fn(x, y) ∈ Bn(x, y) := {Un(x, y), Dn(x, y), Ln(x, y), Rn(x, y)}, for
all ξ, η ∈ [0, 2π], the DTFT of Fn(x, y)

F̂n(ξ, η) :=
∞∑

x=−∞

∞∑
y=−∞

Fn(x, y)e
−i(ξx+ηy) (2.15)

is well defined and the inverse Fourier transform holds:

Fn(x, y) =
1

(2π)2

∫ 2π

0

∫ 2π

0

F̂n(ξ, η)e
i(ξx+ηy)dξdη (2.16)

Since Fn(x, y) = 0 when |x| + |y| > n, the summation in (2.15) is actually a finite sum, so
it is well defined. Therefore the sum and the integral in (2.16) can be interchanged, by a simple
calculation we can verify that the lemma holds.

Apply the DTFT to (2.14), then the translations will disappear due to the summation and
the new recurrence relations are as follows.

Proposition 2.9. The Fourier transform of Fn(x, y) satisfies:

ϕn(ξ, η) := (Ûn(ξ, η), D̂n(ξ, η), L̂n(ξ, η), R̂n(ξ, η))
T = uMϕn−1(ξ, η) (2.17)

where the entries of M can be denoted by α, v := e−iη, h := eiξ:

M =


v 0 ᾱv αv
0 v̄ αv̄ αv
αh ᾱh h 0

αh αh̄ 0 h̄

 (2.18)

Now it’s time to finally prove Theorem 1.2.

Proof of Theorem 1.2. Consider all closed paths that start and end at (0, 0). Remind that if one
such path finally moves upward to (0, 0), then its initial direction is also upward. That means
when solving Ûn(ξ, η) by (2.17), ϕ0(ξ, η) should be set as (1, 0, 0, 0)T , thus we can obtain

Ûn(ξ, η) =
(
(uM)n(1, 0, 0, 0)T

)
1
= (uM)n(1, 1) (2.19)

Similar are the other three F̂n(ξ, η). So the summation over all F̂n(ξ, η) equals to tr(uM)n.
Combining with the inverse Fourier transform we can obtain∑

Fn∈Bn

Fn(0, 0) =
1

(2π)2

∫ 2π

0

∫ 2π

0

tr(uM)ndξdη (2.20)

This summation is actually the sum over all closed paths with length n (periodic and non-
periodic), according to (2.13), just differing by a constant. Since there are L2 sites, we have∑

p(n)

Wp(u) = − L2

(2π)2

∫ 2π

0

∫ 2π

0

tr(uM)ndξdη (2.21)
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For each closed path p that repeats w times, it is counted for 2n

w
times, and its weight is

Wp(u) = (−1)w+1Ww
p0
(u) (2.22)

where p0 is the corresponding non-periodic path. Therefore we have

∞∑
n=1

1

2n

∑
p(n)

Wp(u) =
∑
[p]

(
∞∑

w=1

(−1)w+1

w
Ww

p (u)

)
=
∑
[p]

ln(1 +Wp(u))

= ln
∏
[p]

(1 +Wp(u))

(2.23)

When |u| < 1

4
, tr(uM) < 1. By uniformly convergence and by substituting (2.21) we get

ln
∏
[p]

(1 +Wp(u)) =
L2

2(2π)2

∫ 2π

0

∫ 2π

0

∞∑
n=1

−tr(uM)n

n
dξdη

=
L2

2(2π)2

∫ 2π

0

∫ 2π

0

tr(ln(I − uM))dξdη

=
L2

2(2π)2

∫ 2π

0

∫ 2π

0

ln det(I − uM)dξdη

(2.24)

What remains is to calculate is det(I − uM):

det(I − uM) = (u2 + 1)2 + 2u(u2 − 1)(cos ξ + cos η)
= cosh−4 2β(cosh2 2β − sinh 2β(cos ξ + cos η))

(2.25)

Combining (1.3,2.11,2.24), we finally get

− ψ

kBT
= lim

L→∞
L−2 lnZL2

= lim
L→∞

(
ln(2(cosh 2β)

2(L−1)
L ) +

1

2(2π)2

∫ 2π

0

∫ 2π

0

ln (cosh2 2β − sinh 2β(cos ξ + cos η))
cosh4 2β

dξdη
)

= ln 2 +
1

2π2

∫ π

0

∫ π

0

ln(cosh2 2β − sinh 2β(cos ξ + cos η))dξdη

(2.26)

and complete the proof.

3 Thermodynamic properties of a large crystal
In this part,we will discuss the critical value of a large crystal, that is,the temperature(or

other thermodynamic quantities) at the singularity,which is exactly the point of phase change.
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To simplify the computation,we assume

λ = − ψ

kBT
=

free energy
kBT

(3.1)

We have

λ = ln 2 +
1

2π2

∫ π

0

∫ π

0

ln(cosh2 2β − sinh 2β(cos ξ + cos η))dξdη)

= ln 2 cosh 2β +
1

2π2

∫ π

0

∫ π

0

ln(1− sinh 2β

cosh2 2β
(cos ξ + cos η))dξdη)

= ln 2 cosh 2β +
1

2π2

∫ π

0

∫ π

0

ln(1− k(cos ξ + cos η))dξdη)

= ln 2 cosh 2β −
∞∑
n=1

(
(2n)!

(n)!

)2

k2n

(3.2)

where 2k =
sinh 2β

cosh2 2β
,and the last equation comes from the power series of logarithm.The

series converges for |2k(cos ξ+cos η)| ≤ |4k| < 1.For J > 0(k > 0), at k =
1

4
, that is, at the critical

value β = βC(or temperature TC = 2Jk−1
B ln−1(

√
2 + 1)) given by

1

2
= 2k =

sinh 2β

cosh2 2β
(3.3)

it diverges.Similarly,for J < 0(k < 0),it implies divergence at k = −1

4
, TC = 2Jk−1

B ln−1(
√
2− 1)

The internal energy

U = kBT
2 ∂

∂T

(
− ψ

kBT

)
= −J coth(2β)

[
1 + (2 tanh2 2β − 1)

2

π
F (4k)

] (3.4)

where F (x) is elliptic integral of the first kind

F (x) =

∫ π/2

0

(1− x2 sin2 θ)−
1
2 dθ (3.5)

F is a elliptic function with a property that
F → ln[4(1− x2)]−1/2 as x→ 1− (3.6)

so it diverges at 4k = 1.
The specific heat C is given by

C =
∂U

∂T

=
8k

π
(β coth 2β)2[2F (4k)− 2E(4k) + (2 tanh2 2β − 1)(

π

2
+ (2 tanh2 2β − 1)F (4k))]

(3.7)

where E is the complete elliptic integral of the second kind,defined by

E(x) =

∫ π/2

0

(1− x2 sin2 θ)
1
2 dθ (3.8)

so C divergent at the critical point.
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李政道-杨振宁零点理论简介

王骏澎

2022 年 6 月 14 日

1 引言: 统计物理简介

统计物理 (statistical physics) 是研究由大量微观粒子组成的宏观系统的学科，目前理
论较为完善的是平衡态1统计物理。像这样一个极其复杂 (粒子数量在 1023 左右的数量级)
的系统，要直接进行具体的力学分析是几乎不可能的。于是，人们开始考虑引入新的假设，

从另一个角度对这样的系统进行研究。

统计物理的两条基本假设

遍历假设 (ergodic hypothesis): 对于一个孤立系统2，在经过足够长的时间后，系统会

经历所有可能的微观状态。

等概率假设 (equal-probability hypothesis): 对处在平衡态的系统，它的每个微观状态
的出现概率3相同。

在统计物理发展的早期，曾有不少人试图用纯力学手段证明这两条假设，但大部分时

候只能在一些极度简化的系统中证明正确性，同时还发现了一些这两条假设不成立的系统。

但如果不考虑这两条假设的正确性，直接在它们的基础上进行推导，却可以得到十分丰富的

结果；至于这些结果的正确性，则可以直接通过实验来进行验证，而无需纯力学的推导。

系综理论的一些基本概念

系综 (ensemble) 指的是大量具有相同宏观性质的力学系统的集合。在测量一个处于平
衡态的宏观系统的某个宏观物理量时，测量通常会持续一段时间，而这段时间对于微观粒子

来说，已经是足够之前说的两条基本假设成立的时间了，我们测量得到的物理量，实际上是

这个宏观系统所对应的系综的平均值。统计物理中常用的系综有以下几种：

微正则系综 (microcanonical ensemble): 固定粒子数 N，系统总能量 E 和体积 V 的系

统所对应的系综。

正则系综 (canonical ensemble): 固定粒子数 N，温度 T 和体积 V 的系统所对应的系

综。

巨正则系综 (grand canonical ensemble): 固定化学势 µ，温度 T 和体积 V 的系统所对

应的系综。

1指系统不受外力作用，且宏观性质不随时间发生改变的状态。
2与外界既没有物质交换，也没有能量交换的系统。
3按照量子力学的观点，系统只能取一系列分立的状态，因此微观状态的总数会是一个有限的正整数。当然，它在通常的条件

下会远大于粒子总数。
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在微正则系综中，由于 N,E, V 固定，所以系统的总微观状态数 Ω也是一个固定值。定

义系统的熵 (entropy)S 为：

S(N,E, V ) = kB lnΩ(N,E, V )

其中 kB ≈ 1.38 × 10−23J/K 为 Boltzmann 常数。通过一些推导可以证明，这一定义与经
典热力学中对熵的定义 S =

∂Q

∂T
是等价的，这就将系统的微观性质与宏观的热力学状态函

数联系了起来。从熵出发，可以推导出系统的各种热力学性质，那么自然也可以从微观状态

数出发来得到它们。

在正则系综与巨正则系综中，也有类似于微正则系综中的微观状态数这样的，可以导出

各种热力学状态函数的微观统计量，即配分函数 (partition function)Z(N,T, V ) 和巨配分

函数 (grand partition function)Ξ(µ, T, V )。正则系综可以想象成要研究的系统与一个大热

源接触，而系统与大热源共同构成一个孤立系统并达到热平衡。由于大热源很大，它在向系

统传递能量时自身温度几乎不变，因此可以认为温度是固定值。不严格地说，配分函数就是

系统和大热源共同构成的孤立系统的微观状态数。类似的，巨正则系综对应的系统可以想

象成与一个大热源兼大粒子源接触，二者共同构成平衡态的孤立系统，巨配分函数就是总系

统的微观状态数。关于它们的严格定义请读者自行查阅统计物理相关书籍。此外，这两个函

数满足关系式

F (N,T, V ) = −kBT lnZ(N,T, V )

J(µ, T, V ) = −kBT lnΞ(µ, T, V )

其中 F 为 Helmholtz 自由能 (free energy)，J 为巨热力势 (grand thermodynamic poten-
tial)，它们均为热力学状态函数。

2 相变理论与统计物理

物质中物理、化学性质完全相同，并与其他部分有明显分界线的均匀部分称为一个相

(phase)。而物质由一个相转变为另一个相的过程称为相变 (phase transition)，比如常见的
水结冰或变为水蒸气的过程就是相变。在相变过程中物质的一些状态函数会发生改变，有

些是连续改变的，而有些则不连续。人们根据系统的热力学势函数4及其各阶偏导数在相变

时的表现对其分了类：热力学势连续而其一阶偏导数不连续的称为一级相变，一阶偏导数连

续而二阶偏导数不连续的称为二级相变，依此类推。

现在来考虑一个具体的系统。在一个体积为 V 的容器中，充有某种单原子分子气体，分

子数量为 N，此时系统总的分子势能为

U =
∑

1⩽i<j⩽N

u(rij)

其中 rij 是第 i 个与第 j 个分子之间的距离，u(r) 表示两个距离为 r 的分子之间的势能。

我们假设 u 有以下性质：存在 b ⩾ a > 0，使得当 r ⩽ a 时，u(r) = +∞；当 r > b 时，

u(r) = 0；当 a < r ⩽ b 时，−∞ < u(r) < +∞。在通常的温度和压强下，分子间作用势通
常都有与此相近的性质，因此这样的近似是合理的。现在允许这个容器与一个装有同种单

原子分子气体的，固定温度 T 和化学势 µ 的大热源兼大粒子源交换能量和物质，那么这是

4比如前面说到的三种系综，它们对应的热力学势函数分别为熵、Helmholtz 自由能和巨热力势
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一个对应于巨正则系综的系统。根据统计物理的结论，它的巨配分函数为

Ξ(µ, V, T ) =
M∑

N=0

QN

N !
yN

其中

QN =

∫
· · ·
∫
V

e−
U

kBT dτ1dτ2 . . . τN

y =

(
2πmkBT

h2

) 3
2

e
µ

kBT

τi 是第 i 个分子的坐标，显然 U 是它们的函数，QN 实际上就是这 N 个分子所对应的正则

系综的配分函数；而 y 被称为系统的逸度 (fugacity)，其中 h ≈ 6.626× 10−34J · s为 Planck
常数，M 是容器 V 能够容纳的最大粒子数。可以看出，Ξ 对于三个自变量都是解析的。由

于巨配分函数与巨热力势之间的联系，巨热力势及其各阶偏导数对这三个变量也应该是解

析的，那自然不可能有不连续点出现，也就是说，按照统计物理的观点，这种气体似乎是不

可能发生相变的。但事实上，现实中单原子分子气体的相变并非不可发生，统计物理的理论

在这里与实验产生了冲突。

那么如何用统计物理来解释相变呢？在 20 世纪 50 年代以前，这个问题一直处在争论
之中。而 1952 年杨振宁与李政道二人的两篇文章则给出了一个严格的解释。

3 体积趋于无穷时的极限

通常情况下，实际的容器相对于分子来说都是非常巨大的；而即使是解析函数，在取极

限的情况下也经常出现奇异性5，因此李、杨二人对巨配分函数及其他相关物理量在体积趋

于无穷时的行为进行了研究。

对于上一部分给出的系统，气体的压强与密度可以表示为如下形式：

p

kBT
=

lnΞ

V

ρ =
∂

∂ ln y

lnΞ

V

要研究极限行为，首先当然要证明极限存在。李、杨二人首先证明了以下结果：

定理 3.1 在固定的温度下，对于正方体容器6和取正实值的 y， lim
V→∞

V −1 lnΞ 存在，且

为 y 的单调递增连续函数。

在证明这条定理前，先来证明两个引理。

引理 3.2 设 V 和 W 是两个正方体容器的体积，它们的边长分别为 L 和 L + b(b 是
分子间存在相互作用的最大距离)，则有

lim
L→∞

lnΞ(W,y)− lnΞ(V, y)

W
= 0

5指连续性、可导性变差
6原文中写的是只要容器表面积是 O(V

2
3 ) 的即可，且极限值与容器形状无关，但用他们的方法似乎并不能在这一条件下证

明结论。
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证明 首先，将容器 V 完全置于 W 内部。考虑巨配分函数的物理意义，可将 Ξ(W,y)

写成 A0 + A1 + · · · + Am 的形式，其中 Ai 是 W\V 中有 i 个分子这种情况对于巨配分函

数的贡献。

容易看出 A0 = Ξ(V, y)，而对于 A1，由于分子间作用范围有限，且分子有体积 (直径
为 a)，所以存在一个正整数 M，每个分子至多只和 M 个分子之间存在相互作用。那么对

应的微观状态数也有上限，于是存在正数 β，使得 A1 ⩽ β(W − V )Ξ(V, y)。

记 W − V = ∆，单个分子的体积为 α，由于分子之间是全同的，应有

Ai ⩽ βi∆(∆− α) · · · (∆− (i− 1)α)

i!
Ξ(V, y)

利用广义二项式定理，求和，可得 Ξ(W,y) ⩽ (1 + βα)
∆
α Ξ(V, y)，那么就有

0 < lnΞ(W,y)− lnΞ(V, y) ⩽ ∆

α
ln(1 + βα)

由于 ∆ ∼ L2，而 W ∼ L3，所以引理中的极限为 0，证毕。 □

引理 3.3 固定 L > 0，则对于边长为 2iL 的正方体容器 Wi，则极限

lim
i→∞

lnΞ(Wi, y)

Wi

= K(y)

存在。

证明 设 j > i > 0，将 Wj 分割成 8j−i 个 Wi，显然跨 Wi 边界发生作用的分子数量

应该至多正比于边界总面积，即 3 · 2j−i · (2jL)2，那么可设这样的分子数不超过 8j2−iL2γ，

γ 为常数，则应存在正数 β，使得

Ξ(Wj , y) ⩽ Ξ8j−i

(Wi, y) · β8j2−iL2γ

或

lnΞ(Wj , y) ⩽ 8j−i lnΞ(Wi, y) + 8j2−iL2γ lnβ

现在在每个 Wi 中以合适的方式放入边长为 2iL− b 的正方体 Vi，可以保证这 8j−i 个

Vi 中的分子只和自己内部的相互作用，则有

8j−i lnΞ(Vi, y) ⩽ lnΞ(Wj , y)

那么由 Wj = 8j−iWi 就有

lnΞ(Vi, y)

Wi

⩽ lnΞ(Wj , y)

Wj

⩽ lnΞ(Wi, y)

Wi

+
γ lnβ

2iL

令 j → ∞，可得

lnΞ(Vi, y)

Wi

⩽ lim
j→∞

lnΞ(Wi, y)

Wi

⩽ lim
j→∞

lnΞ(Wi, y)

Wi

⩽ lnΞ(Wi, y)

Wi

+
γ lnβ

2iL

由于 lim
i→∞

γ ln β
2iL

= 0，再利用引理 3.2的结论，即可知此引理中的极限存在。 □

定理的证明 沿用引理 3.3中记号，固定 y 并任给 ε > 0，存在一个足够大的正方体 Wi

使得 ∣∣∣∣ lnΞ(Wi, y)

Wi

−K(y)

∣∣∣∣ < ε
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任给一个边长不小于 2iL 的正方体 Ω0，则应存在正整数 n0，使得其边长在 n02
iL 到 (n0 +

1)2iL 之间。记边长为 n02
iL 的正方体为 Ω1，边长 (n0 + 1)2iL 的正方体为 Ω2，边长为

2iL− b 的正方体为 V。由引理 3.2结论，不妨设
∣∣∣∣ lnΞ(Wi, y)− lnΞ(Vi, y)

Wi

∣∣∣∣ < ε。

仿照引理 3.3中的讨论，有

lnΞ(Vi, y)

Wi

⩽ lnΞ(Ωj , y)

Ωj

⩽ lnΞ(Wi, y)

Wi

+
γ lnβ

2iL

其中 j = 1, 2。如果 i 取得足够大，满足
γ lnβ

2iL
< ε，则由此可得∣∣∣∣ lnΞ(Ωj , y)

Ωj

−K(y)

∣∣∣∣ < 2ε

最后，不妨设 ε < 1，如果 n0 也取得足够大，满足(
1 +

1

n0

)3

− 1 < 1−
(
1− 1

n0

)3

< ε

，那么我们有∣∣∣∣ lnΞ(Ω1, y)

Ω2

−K(y)

∣∣∣∣ ⩽ Ω1

Ω2

∣∣∣∣ lnΞ(Ω1, y)

Ω1

−K(y)

∣∣∣∣+ (1− Ω1

Ω2

)
|K(y)|

⩽ (|K(y)|+ 2)ε

和 ∣∣∣∣ lnΞ(Ω2, y)

Ω1

−K(y)

∣∣∣∣ ⩽ Ω2

Ω1

∣∣∣∣ lnΞ(Ω2, y)

Ω2

−K(y)

∣∣∣∣+ (Ω2

Ω1

− 1

)
|K(y)|

⩽ (|K(y)|+ 2)ε

注意到
lnΞ(Ω1, y)

Ω2

⩽ lnΞ(Ω0, y)

Ω0

⩽ lnΞ(Ω1, y)

Ω2

可知 ∣∣∣∣ lnΞ(Ω0, y)

Ω0

−K(y)

∣∣∣∣ < (|K(y)|+ 2)ε

由于 |K(y)| 是一个确定的有限值，再由 Ω0 和 ε 的任意性即可知，对于正方体容器 V，有

lim
V→∞

lnΞ(V, y)

V
= K(y)

至此，定理 3.1证毕7。 □

现在我们只是知道了
lnΞ(V, y)

V
在 V → ∞ 时的极限存在，并不清楚其性质，因此接

下来对其性质进行研究。首先注意到在 V 有限时，Ξ 是 y 的多项式，且系数均为正。设它

的 M 个零点分别为 y1, y2, . . . , yM，则有

Ξ(V, y) =
M∏
i=1

(
1− y

yi(V )

)
7当然，对于其他形状的容器，如球体等，我们应该也可以通过将其分割为正方体来近似的手段来证明它们收敛到同一极限，

但表面积是 O(V
2
3 ) 的这一条件是否足够，笔者暂时无法判断。
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显然这 M 个零点均不为非负实数，且对称分布在实轴两侧 (因为实系数多项式的复根总是
成对出现)。假设存在一个以 η ∈ C 为圆心，σ > 0 为半径的圆盘 C，对于充分大的 V，均

有 yi(V ) /∈ R，那么记 z = y − η, zi = yi − η，则有

Ξ(V, y) =
M∏
i=1

(
1− z

zi(V )

)(
zi(V )

yi(V )

)
于是

lnΞ(V, y)

V
=

1

V

(
M∑
i=1

ln
(
1− z

zi(V )

)
+

M∑
i=1

ln zi(V )

yi(V )

)

在圆盘 C 内恒有

∣∣∣∣ z

zi(V )

∣∣∣∣ < 1，于是可将所有 ln 展开成幂级数，得

lnΞ(V, y)

V
=

∞∑
n=0

bn(V )zn

其中

b0(V ) =
1

V

M∑
i=1

ln zi(V )

yi(V )

而对于 n ⩾ 1，则有

bn(V ) = − 1

nV

M∑
i=1

1

zni (V )

在圆盘 C 内恒有 |zi(V )| ⩾ σ，那么可以得到对 n ⩾ 1，均有

|bn(V )| ⩽ M

nV σn

注意到 M/V 是有上界的，它不超过分子体积的倒数，所以我们有

lim
n→∞

|bn(V )| 1
n ⩽ 1

σ

由 Cauchy-Hadamard 公式，对于任意的足够大的 V，
lnΞ(V, y)

V
对于 y 都是 C 中的解析

函数。如果代入 z = 0，则有
lnΞ(V, η)

V
= b0(V )

根据之前的结论， lim
V→∞

b0(V ) 存在，记此极限为 b0(∞)。类似的，通过求
lnΞ(V, y)

V
对 y 的

各阶偏导数，容易证明对所有自然数 n，bn(∞) 都是存在的。当然，由极限的性质易知它们

满足

|bn(∞)| ⩽ 1

nσn
sup
V >0

M

V
(n ⩾ 1)

所以幂级数
∑∞

n=0 bn(∞)zn 也在 C 内收敛。再由幂级数的内闭绝对一致收敛性知，求极限

的顺序可交换，即
∞∑

n=0

bn(∞)zn = lim
V→∞

∞∑
n=0

bn(V )zn = lim
V→∞

lnΞ(V, y)

V

也就是说， lim
V→∞

lnΞ(V, y)

V
在圆盘 C 内是 y 的解析函数。同时由 ln 的解析性，可知

∂

∂ ln y

lnΞ(V, y)

V
,

∂2

(∂ ln y)2
lnΞ(V, y)

V
,

∂3

(∂ ln y)3
lnΞ(V, y)

V
, . . .

在 V → ∞时的极限也都存在，且也都是 y 的解析函数。此结论很容易推广到任意开集，于

是我们得出结论
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定理 3.4 设 R 是复平面上一个开区域，且对于足够大的 V，Ξ(V, y) 在 R 中恒不为

0，则当 V → ∞ 时

lnΞ(V, y)

V
,

∂

∂ ln y

lnΞ(V, y)

V
,

∂2

(∂ ln y)2
lnΞ(V, y)

V
, . . .

的极限均存在且均为 y 的解析函数。

由此定理以及密度和压强的表达式，我们可以知道，在 V → ∞ 时

ρ =
∂

∂ ln y

p

kBT

也是成立的。

4 对相变的解释

定理 3.4告诉我们，对于复平面上始终不包含巨配分函数零点的区域，压强、密度等物
理量都是逸度的解析函数。实际情况下，逸度只能取正实数，那么我们可以分两种情况来考

虑：

(1) 若存在一个包含整个正实轴的区域 R，使得对于足够大的 V 和 y ∈ R，均有

Ξ(V, y) ̸= 0，则 V → ∞ 时，p, ρ 在实轴上仍是 y 的解析函数，此时不会有相变发生。

事实上，此时 p 和 ρ 都是 y 的单调递增函数，p 的单调性是显然的，因为 Ξ 就是 y 的单调

递增函数同时二人也给出了一个 ρ 的单调性的简单证明：

要证明 ρ 是 y 的单调递增函数，只要证明对于有限的 V，有

∂2 lnΞ(V, y)

(∂ ln y)2
> 0

成立即可。记 t = ln y，则此时有

Ξ =
M∑
i=0

aie
it

直接计算得

∂ lnΞ

∂t
=

M∑
i=0

iaie
it

Ξ

∂2 lnΞ

∂t2
=

M∑
i=0

i2aie
it

Ξ
−

(
M∑
i=0

iaie
it

Ξ

)2

考虑一个取值为 0, 1, . . . ,M 的随机变量，它取值为 i 的概率为
aie

it

Ξ
，则

∂ lnΞ

∂t
是其数学

期望，而
∂2 lnΞ

∂t2
是其方差，自然大于 0。所以 ρ 在 V → ∞ 时也是 y 的单调递增函数。

(2)若不存在 (1)中所说的区域，即无论 V0 取多大，对于 V > V0，Ξ(V, y)对于 y 的零

点总是在正实轴上有聚点，则此时，在聚点附近，定理 3.4就可能不成立，那么 lim
V→∞

lnΞ

V
对

ln y 的各阶导数就可能出现不连续性。如果一阶导数，也就是密度，出现了突变，那么就是一

级相变，日常生活中会遇到的相变基本都是这种相变；如果密度连续而
d2

(d ln y)2
lim

V→∞

lnΞ

V
不连续，则为二级相变，如两种液氦之间的转变。当然，依此类推，还可以有三级、四级相

变等，但对这些人们很少研究。
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由此可以看出，定理 3.4成功将相变问题与“巨配分函数在复平面上的零点分布”以一
种非常简单的方式联系了起来，这便是他们所做的开创性的工作。事实上，在李、杨之前，并

非没有人尝试用统计物理的理论去解释相变只是一直没能出现合理且令人信服的理论。比

如 Mayer 及其合作者在 1937、1938 年的一系列文章中就在尝试用统计物理解释相变，也
对李、杨产生了一些启发。但 Mayer 为了估算配分函数，引入了大量数学近似，其理论准
确性难以评估，也在解释液体的状态方程时出现了问题。在李、杨二人的第一篇文章的最后

一部分，就将他们的理论与 Mayer 理论进行了对比，并指出了其错误。

5 计算实例

李、杨二人的相变理论的思路很容易理解，但要验证其正确性却并不容易，因为这涉及

到巨配分函数的零点分布问题，而实际上巨配分函数的具体形式通常难以写出，计算其零点

分布并求出极限更是难上加难。但对于一些特定的较为简化的模型，计算巨配分函数并讨论

其零点分布却是有可能的。在李、杨二人随后发表的第二篇文章中，就对于“格气”(lattice
gas) 模型进行了研究，给出了其巨配分函数的表达式，并零点分布进行了研究。
首先来简要介绍格气模型。假设有一个共有 M 个格点的正方形点阵，在格点中填充有

分子，分子之间存在相互作用力，且填充在同一格点中的分子之间的势能为 +∞，这样的
物理模型叫格气模型。李、杨二人为了研究其巨配分函数，将其等价映射到了外加磁场的

Ising 模型上，至于是如何映射的，本文不作介绍，有兴趣的读者请自行查阅原文。总之，根
据映射的结果，他们给出了以下巨配分函数的表达式：

Ξ = e
MH
kBT

M∑
n=0

Pnz
n

其中 z 是一个与逸度 y 成正比的量，H 则是一个与映射到的 Ising 模型的外加磁场有关的
量。记 Γ = {1, 2, . . . ,M}，则

Pn =
∑∏

i∈A

∏
j∈Γ\A

aij

其中 A是 Γ的一个有 n个元素的子集，求和取遍 A的所有取法 (共
(
M

n

)
项)。aij = e

uij
kBT，

uij 是第 i 个格点和第 j 个格点中的分子之间的势能，显然 uij = uji，P0 = PM = 1。

李、杨二人给出了以下结论：

定理 5.1 在格气模型中，若对于 i ̸= j，均有 uij ⩽ 0，则巨配分函数作为 z 的函数，

其零点均在复平面中的单位圆上。

这个定理的条件相当宽泛，它对于点阵的大小、形状、维数，以及分子间作用的范围等都没

有限制。由于 e
MH
kBT ̸= 0，只要证明与它相乘的那个 z 的多项式的零点均在单位圆上即可。

我们有如下更为一般的定理：

定理 5.2 (李政道-杨振宁单位圆定理) 设 M ⩾ 2，aij ∈ [−1, 1]，1 ⩽ i, j ⩽ M 且

i ̸= j, aij = aji。记 ΓM = {1, 2, . . . ,M}，I 为 ΓM 的任意子集，记其中元素个数为 |I|，令
Pn =

∑
|I|=n

∏
i∈I

∏
j∈ΓM\I aij(n = 0, 1, 2, . . . ,M)，则多项式

P(z) =
M∑
n=0

Pnz
n

的零点均在复平面中的单位圆上。
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对于此定理中的多项式，我们注意到 Pn = PM−n，于是当 z ̸= 0 时，我们有

P(1/z) =
M∑
n=0

Pn
1

zn
=

1

zM

M∑
n=0

Pnz
n =

P(z)

zn

那么当 z0 是 P 的零点时，1/z 也是其零点，因此我们只需证明 P 的零点都在单位圆盘内
即可 (0 显然不是零点)。
为了证明此结论，李、杨二人引入了如下的 M 元多项式：

P(z1, z2, . . . , zM ) =
∑

I⊂ΓM

(∏
i∈I

zi ·
∏
i∈I

j∈ΓM\I

aij

)

容易看出，此式满足

P(z, z, . . . , z) = P(z)

z1z2 . . . zMP(z−1
1 , z−1

2 , . . . , z−1
M ) = P(z1, z2, . . . , zM )

为了证明定理，李、杨二人通过归纳法证明了以下引理：

引理 5.3 假设所有 aij 均不为 ±1 或 0，P(z1, z2, . . . , zM ) = 0 且 |zn| ⩾ 1, n =

1, 2, . . . ,M，则 |zn| = 1。

证明 记 M = m 时的多项式 P 为 Pm，此结论对 P1 显然成立，因为 P1 = 1 + z1。

对于 M = 2，有

P2(z1, z2) = 1 + a12(z1 + z2) + z1z2

当 P2 = 0 时，有

z1 = −1 + a12z2
z2 + a12

由于 |a12| < 1，由此可得当 |z2| > 1时，必有 |z1| < 1，那么要同时满足 |z1| ⩾ 1和 |z2| ⩾ 1，

就必有 |z1| = |z2| = 1。

现在进行归纳。假设引理的结论对于 M − 1,M − 2(M ⩾ 3) 成立，但对 M 不成立，则

存在一组 (α1, α2, . . . , αM )，使得 |αn| ⩾ 1(n = 1, 2, . . . ,M),PM (α1, α2, . . . , αM ) = 0，且存

在一个 n0 使得 |αn0
| > 1。通过交换所有的 an0j 和 aMj，我们总可以认为这个 n0 就是 M。

现在固定 (z1, z2, . . . , zM−2) 为 (α1, α2, . . . , αM−2)，令 PM (α1, . . . , αM−2, zM−1, zM ) =

0，将 zM−1 看作 zM 的函数 zM−1(zM )，则有 zM−1(αM ) = αM−1。

将 PM (α1, . . . , αM−2, zM−1, zM ) 写成 A + BzM−1 + CzM + DzM−1zM 的形式，其中

A,B,C,D 均与 zM−1, zM 无关，则有

zM−1 = −A+ CzM
B +DzM

若 D ̸= 0，则存在极限

zM−1 ≜ lim
|zM |→∞

zM−1 = −C

D
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接下来我们要证明 D ̸= 0, |zM−1| < 1。为此，先计算出 C +DzM−1，我们有

P(z1, z2, . . . , zM ) =
∑

I⊂ΓM

(∏
i∈I

zi ·
∏
i∈I

j∈ΓM\I

aij

)

=
∑

I⊂ΓM
M∈I

(∏
i∈I

zi ·
∏
i∈I

j∈ΓM\I

aij

)
+
∑

I⊂ΓM

M /∈I

(∏
i∈I

zi ·
∏
i∈I

j∈ΓM\I

aij

)

=
∑

I⊂ΓM−1

(
zM
∏
i∈I

zi ·
∏
i∈I

j∈ΓM−1\I

aij ·
∏

j∈ΓM−1\I

aMj +
∏
i∈I

zi ·
∏
i∈I

j∈ΓM\I

aij

)

=
∑

I⊂ΓM−1

(
z1z2 . . . zM

∏
j∈ΓM−1\I

aMj

zj
·

∏
i∈I

j∈ΓM−1\I

aij +
∏
i∈I

ziai,M ·
∏
i∈I

j∈ΓM\I

aij

)

= z1z2 . . . zMPM−1

(
a1M
z1

,
a2M
z2

, . . . ,
aM−1,M

zM−1

)
+PM−1(z1a1M , z2a2M , . . . , zM−1aM−1,M )

所以有

C +DzM−1 = α1α2 . . . αM−2zM−1PM−1

(
a1M
α1

, . . . ,
aM−2,M

αM−2

,
aM−1,M

zM−1

)
= a1Ma2M . . . aM−1,MPM−1

(
α1

a1M
, . . . ,

αM−2

aM−2,M

,
zM−1

aM−1,M

)
= α1α2 . . . αM−2zM−1PM−2

(
a1,M−1a1M

α1

,
a2,M−1a2M

α2

, . . . ,
aM−2,M−1aM−2,M

αM−2

)
+ a1Ma2M . . . aM−1,MPM−2

(
a1,M−1

a1M
α1,

a2,M−1

a2M
α2, . . . ,

aM−2,M−1

aM−2,M

αM−2

)
由此可以看出 D 的表达式，而 D = 0 等价于

PM−2

(
α1

a1,M−1a1M
,

α2

a2,M−1a2M
, . . . ,

αM−2

aM−2,M−1aM−2,M

)
= 0

由于 |αi| ⩾ 1, |aij | < 1，所以

∣∣∣∣ αi

ai,M−1ai,M

∣∣∣∣ > 1，这与归纳假设中，引理的结论对 M − 2 成

立矛盾，所以必有 D ̸= 0，那么 zM−1 存在且满足 C +DzM−1 = 0，这等价于

PM−1

(
α1

a1M
, . . . ,

αM−2

aM−2,M

,
zM−1

aM−1,M

)
= 0

利用 |αi| ⩾ 1, |aij | < 1，以及归纳假设中结论对 M − 1 成立，可知

∣∣∣∣ zM−1

aM−1,M

∣∣∣∣ < 1，

所以 |zM−1| < 1。那么由 zM−1(zM ) 的连续性，应存在一个 α′
M，满足 |α′

M | > 1，且

α′
M−1 ≜ zM−1(α

′
M ) 满足 |α′

M−1|。再对 z1, z2, . . . , zM−2 重复这样的讨论，可以得到一组

(β1, β2, . . . , βM )，满足 PM (β1, β2, . . . , βM ) = 0, |β1| = |β2| = · · · = |βM−1| = 1, |βM | > 1。

最后，将PM (β1, β2, . . . , βM )写成 βM 的线性函数的形式:PM (β1, β2, . . . , βM ) = A′βM+

B′ = 0，根据之前的结论，A′ = 0 等价于

PM−1

(
β1

a1M
, . . . ,

βM−2

aM−2,M

,
βM−1

aM−1,M

)
= 0
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由归纳假设，这不可能，所以 A′ ̸= 0，则满足 A′βM +B′ = 0 的 βM 应该是唯一的。另外，

对于 z ∈ C, |z| = 1，我们注意到 z = z̄−1，以及 PM 的系数均为实数，可得

PM (β1, β2, . . . , β̄
−1
M ) = PM (β̄−1

1 , β̄−1
2 , . . . , β̄−1

M )

= (β1β2 . . . βM )−1PM (β1, β2, . . . , βM ) = 0

即 A′β̄−1
M + B′ = 0，由于 |βM | > 1 所以 βM ̸= β̄−1

M ，这与之前得出的唯一性矛盾。所以引

理的结论对 M 也成立，至此，引理证毕。 □

引理 5.3结论结合 P(z, z, . . . , z) = P(z) 即可证得定理 5.2在 aij ∈ (−1, 0) ∪ (0, 1) 时的

情况。要证明一般情况，我们还需要另一个引理：

引理 5.4 设 G 是复平面上一个连通的开集，{fn} 是一列解析函数。若 {fn} 在 G 的

紧子集上一致收敛到解析函数 f，且 fn 均在 G 上没有零点，则 f 恒为 0 或 f 也在 G 上

没有零点。

证明 假设 f 不恒为 0，且存在零点，由解析函数的零点孤立性定理，存在 z0 ∈ G 和

r > 0，使得以 z0 为圆心，r 为半径的圆盘 D 满足 D ⊂ G, f(z0) = 0，且 ∀z ∈ D, z ̸=
z0, f(z) ̸= 0。

由 f 的解析性，可以取 δ > 0，使得 infz∈∂D |f(z)| ⩾ δ，那么存在 N ∈ N+，使得当

n ⩾ N 时，有 infz∈∂D |fn(z)| ⩾ δ/2。由 Weierstrass 定理，f ′
n 在 ∂D 上是一致收敛到 f ′

的，则 f ′
n/fn 也是一致收敛到 fn 的。设 f 在 z0 处的零点为 m 重，则由辐角原理

2πmi =
∫
∂D

f ′(z)

f(z)
dz = lim

n→∞

∫
∂D

f ′
n(z)

fn(z)
dz = 0

出现矛盾。所以若 f 不恒为 0，则在 G 上没有零点。 □

定理的证明 对于 aij 均不为 ±1, 0的情况，由引理 5.3结论，以及 P(z, z, . . . , z) = P(z)

立即可得。若存在等于 ±1或 0的 aij，可选取一列 {a(k)ij }，使得它们均在 (−1, 0)∪ (0, 1)上，

且 lim
k→∞

a
(k)
ij = aij。记由 a

(k)
ij , 1 ⩽ i, j ⩽ M 所生成的类似定理 5.2中那样的多项式为 P(k)，

则容易看出，在紧集上，P(k) 一致收敛于 P，且它们均在区域 |z| > 1 上没有零点。显然 P
不恒为零，于是由引理 5.4结论，P 也在 |z| > 1 上没有零点，再由 P(z−1) = z−MP(z) 知

其零点均在单位圆上。 □

李、杨给出的这个结果是相当惊人的，巨配分函数的零点数量通常来讲是个非常巨大的

数字，而这一结论告诉我们，格气模型中这么多的零点竟然全部分布在单位圆上。同时这个

漂亮的结果也告诉我们，格气模型只可能存在单一相变点，因为此时实轴上至多只有一个点

可能成为巨配分函数的零点的聚点。

除了单位圆定理，李、杨二人还在他们第二篇论文的第五部分对格气模型的巨配分函数

进行了更多的计算，这里就不再进行更多的介绍了，请有兴趣的读者自行查阅。
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Abstract
In this article, we are going to introduce the basic results of quantum com-
putation and the most famous and important algorithms for this quantum
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1 Introduction
In recent years, quantum computing has become a widely discussed topic.
The significance of studying quantum computing is that it may be more
powerful than classical models of computing, such as Turing machines. This
may allow quantum computing to be exponentially faster than normal Turing
machines. And, it’s very important that it is physically possible for quantum
computers to be realized. Next, we will show some basic results of quantum
computing step-by-step.

2 Quantum Superposition And Qubits
Ordinary computers operate with states built from a finite number of bits.
Each bit has two states, 0 or 1. For quantum computers, the analogical
objects are called qubits. Like bits, each qubit has two states denoted by 0

or 1 as well. However, the special feature of a qubit is that it can be in both
two basic states, denoted by 0 and 1, at the same time, while the normal bit
can only be one of these two states. As is customary in physics, we use Dirac
notation, |0〉 and |1〉, to denote the basic states. And a qubit is allowed to
be in any state of a vector on the unit ball of C2, written as

α0|0〉+ α1|1〉, where α0, α1 ∈ C, |α0|2 + |α1|2 = 1.

A state of this form is called a superposition of the basic states, and here
α0, α1 are called amplitudes. We can find that |0〉, |1〉 are actually the basis
vectors of C2. According to the principle of quantum mechanics, when iso-
lated from outside, a qubit can stay in the superposition, until it’s measured.
When measuring a qubit, the amplitude wave collapses, and we will get |0〉
with probability |α0|2, or |1〉 with probability |α1|2. Similarly, We give the
definition of the m-bit quantum register.

Definition 2.1. A m-bit quantum register is a system composed of m qubits,
whose state is a superposition of 2m basic states, namely a vector on the unit
ball of C2m, written as∑

xj∈{0,1}
j∈{1,...,n}

αx1,...,xn |x1, . . . , xn〉 , where
∑

xj∈{0,1}
j∈{1,...,n}

|αx1,...,xn |2 = 1.

1
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When measuring the register, we will obtain the value |x1, . . . , xn〉 with proba-
bility |αx1,...,xn |2, and collapse the state of the register to the vector |x1, . . . , xn〉.

Remark 2.2. Here C2m is actually (C2)⊗m, the tensor product of m spaces
of a single qubit C2.

Remark 2.3. For simplicity, we usually omit the normalization factor of
states. For example, |0〉 − |1〉 means 1√

2
|0〉 − 1√

2
|1〉.

3 Quantum Computation And BQP

3.1 Quantum Operations
According to the principle of quantum mechanics, the operations that we can
do on a quantum register are as follows:

Definition 3.1. A quantum operation for an m-qubit register is a unitary
transformation F : C2m → C2m. It maps a quantum register to another
register linearly.

Remark 3.2. Quantum operations are all reversible, since it’s a unitary
transformation and we can do the inverse operation.

Remark 3.3. Quantum operations can be identified with unitary matrix
when choosing a certain basis, such as the basis {|x〉|x ∈ {0, 1}m}.

Here are some important examples of quantum operations below.

Example 3.4 (Flipping qubits). Flipping the first qubit of an m-qubit regis-
ter means applying the NOT operation on the first qubit, which can be done
as a quantum operation mapping the state |b, x〉 to the state |1− b, x〉 for any
b ∈ {0, 1} and x ∈ {0, 1}m−1.

Example 3.5 (Reordering qubits). We can exchange the values of several
qubits by applying a permutation on basic states, which is a quantum opera-
tion since it can be expressed by a unitary matrix.

Example 3.6 (Copying qubits). Notice that copying one qubit to another
as a classical operation is not reversible. In quantum computing, we use the
operation |x, y〉 7→ |x, x⊕ y〉 instead, where the second qubit is often taken to
be 0.

2
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Example 3.7 (Rotation on single qubit). Regarding 1-bit qubit as a two-
dimensional vector. Rotation on a single qubit can be described by the matrix(
cos θ − sin θ

sin θ cos θ

)
. Notice that it becomes flipping when θ = π.

Example 3.8 (AND of two bits). Just like copying qubits, AND of two
bits as a classical operation is not reversible either. We can also use an
additional 0 qubit on z, and take the “ reversible AND” to be the operation
|x, y, z〉 7→ |x, y, z⊕(x∧y)〉. This operation is often known as the Toffoli gate.
Similarly, we can define a “ reversible OR” to be the operation |x, y, z〉 7→
|x, y, z ⊕ (x ∨ y)〉.

Example 3.9 (The Hadamard operation). The Hadamard operation is the
map |0〉 to |0〉 + |1〉 and |1〉 to |0〉 − |1〉. The corresponding matrix is 1√

2(
1 1

1 −1

)
. If we apply the Hadamard operation to every qubit of an m-qubit

register, and denote x � y to be the inner product of the space Fm
2 , then

|x〉 = |x1, x2, . . . , xm〉 is mapped to
∑

y∈{0,1}m
(−1)x⊙y|y〉. Especially, |0m〉 is

mapped to
∑

x∈{0,1}m
|x〉.

However, we still need to give a precise definition of quantum computing.
First, only local operations are possible to be physically implemented and
applied efficiently. This kind of operation is called an elementary quantum
operation or a quantum gate.

Definition 3.10. An elementary quantum operation, or a quantum gate is
a quantum operation that only acts on one or two qubits of the register.

Theorem 3.11. We can realize any arbitrary quantum operation with ele-
mentary quantum operations.

Proof. See A. Y. Kitaev, M. Vyalyi, and A. Shen. Classical and Quantum
Computation. AMS Press, 2002, Page 65.

Theorem 3.12 (Kitaev). For every D ≥ 3 and ϵ ≥ 0, there is an integer
l ≤ 100(D log 1/ϵ)3 such that the following is true:

3
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Every D ×D unitary matrix U can be approximated as a product of unitary
matrices U1, . . . , Ul such that

|Ui,j − (Ul · · ·U1)i,j| < ϵ forevery i, j ∈ {1, . . . , D}

and each Ui correspond to applying either the Hadamard gate, the Toffoli

gate, or the phase shift gate

(
1 0

0 i

)
, on at most three qubits.

Proof. See A. Y. Kitaev, M. Vyalyi, and A. Shen. Classical and Quantum
Computation. AMS Press, 2002, Page 77.

Remark 3.13. More generally, for a finitely generated subgroup of SU(D),
we can choose a sequence of generators no more than O((log(1/δ))3+ε), whose
products approximate a given operator with precision δ, by an algorithm of
O(poly(log(1/δ))) time. See the Solovay-Kitaev theorem.

3.2 Classical Computation
Before defining BQP, let’s give a brief explanation of classical computation.

Definition 3.14. A Turing machine M is a tuple (Γ, Q, δ) where:

• Γ called alphabet of M is a finite set of the symbols on M ’s tape.

• Q is a finite set of M ’s possible states.

• δ : Q× Γ → Q× Γ× {L,R, S} is the transition function of M .

Definition 3.15. For a nonempty finite set S, we define S∗ :=
⋃∞

n=0 S
n

Definition 3.16. f : {0, 1}∗ → {0, 1}∗ and T : N → N. We say a Turing
machine M computes f in T (n)-time if ∀x ∈ {0, 1}∗, when initialize M to
the start configuration on input x, M halts after at most T (|x|) steps with
f(x) on its tape.

Definition 3.17. T : N → N. A language L ⊆ {0, 1}∗ is in DTIME(T (n))

iff its characteristic function χL(x) =

0 x /∈ L

1 x ∈ L
is in DTIME(T (n)).

Definition 3.18. P:=
⋃

c⩾1DTIME(nc).

4
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Definition 3.19. A Boolean circuit is a DAG(directed acyclic graph) with
0-in-degree nodes denoting the inputs and 0-out-degree nodes denoting the
outputs, and other nodes labeled with OR, AND, or NOT called gates. The
size of a Boolean circuit C, denoted by |C|, is the number of its vertices.

Definition 3.20. T : N → N. A T (n)-size circuit family is {Cn}n∈N such
that Cn has n inputs and 1 output, and |Cn| ⩽ T (n).

Definition 3.21. T : N → N. Say a Boolean function f : {0, 1}∗ → {0, 1} ∈
SIZE(T (n)) if there is a T (n)-size circuit family {Cn}n∈N such that ∀x ∈
{0, 1}n, f(x) = Cn(x).

Definition 3.22. A circuit family {Cn}n∈N is P-uniform if there is a polynomial-
time Turing machine that on input 1n outputs the description of circuit Cn.

Theorem 3.23. A language L is computable by a P-uniform circuit family
iff L ∈P.

Proof. See Arora S, Barak B. Computational Complexity: A Modern Ap-
proach, Cambridge University Press, 2009, Page 111.

3.3 Quantum Time Complexity and BQP
Now, let’s give the definition of quantum computing and the complexity class
BQP (Bounded error, Quantum, Polynomial time).

Definition 3.24 (Quantum computing and time complexity). Let T : N →
N. We say a Boolean function f : {0, 1}∗ → {0, 1} is computable in
quantum T (n)-time if there is a polynomial-time classical Turing Machine
that ∀n ∈ N on input (1n, 1T (n)) outputs (F1, . . . , FT (n)) such that ∀x ∈ {0, 1}∗

we can obtain the correct value of f(x) with probability at least 2
3

by the
following process:

1. Initialize an m-qubit register to the state |x0m−n〉, where m ⩽ T (n).

2. Apply F1, . . . , FT (n) one by one to the register.

3. Measure the register and get a value Y .

4. Output Y1.

5
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Let f : {0, 1}∗ → {0, 1}l, f(x) = (f1(x), . . . , fl(x)), we say f is computable
in quantum T (n)-time if fj(x) is computable in quantum T (n)-time ∀j =

1, . . . , l.

Definition 3.25 (class BQP). A Boolean function f : {0, 1}∗ → {0, 1}l

is in BQP if there is a polynomial p : N → N such that f is computable
in quantum p(n)-time. We say a language L ⊆ {0, 1}∗ is in BQP iff its

characteristic function χL(x) =

0 x /∈ L

1 x ∈ L
is in BQP.

Remark 3.26. Another definition of quantum computing and BQP is quan-
tum circuit. A quantum circuit is a DAG(directed acyclic graph) with 0-in-
degree nodes denoting the inputs and 0-out-degree nodes denoting the outputs,
and other nodes denoting the quantum gates.

Definition 3.27. A language L ⊆ {0, 1}∗ is in BQP iff there exists a P-
uniform polynomial-size quantum circuit family {Cn}n∈N over some finite
universal gates and a polynomial q such that ∀n ∈ N, x ∈ {0, 1}n have:

• x ∈ L ⇒ Cn(|x〉|0〉⊗q(n) accepts with probability ⩾ 2
3

• x /∈ L ⇒ Cn(|x〉|0〉⊗q(n) accepts with probability ⩽ 1
3

Notice that some examples (flipping, reversible AND, reversible NOT)
of quantum operations listed above can take the place of the fundamental
classical operations (NOT, AND, OR). In fact, we can efficiently compute
any classical operation using quantum operations as long as we have sufficient
free qubits:

Lemma 3.28. If f : {0, 1}n → {0, 1}m is computable by a Boolean circuit of
size S, then there is a quantum circuit of size 2S+m computing the mapping
|x〉|02m+S〉 7→ |x〉|f(x)〉|0m+S〉.

Proof. Replacing the Boolean gates by their corresponding quantum opera-
tions, we get a map |x〉|02m+S〉 7→ |x〉|0m〉|f(x)〉|z〉, denoted φ. Next copy
f(x) to |0m〉 using copying operation m times. Then if we apply the reversing
operation φ−1, it will return to the original case except the copy of f(x), that
is, φ−1 : |x〉|f(x)〉|f(x)〉|z〉 7→ |x〉|f(x)〉|0m+S〉.

6
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Corollary 3.29. P⊆BPP⊆BQP.

Proof. By Theorem 3.23, Definition 3.27 and Lemma 3.28, we know that
P⊆BQP. Since we can simulate a coin toss using a Hadamard gate, we get
P⊆BPP⊆BQP.

4 Grover’s Search Algorithm
Theorem 4.1. There is a quantum algorithm such that, for every polynomial-
time computable function f : {0, 1}n → {0, 1}, we can find a string a ∈
{0, 1}n satisfying f(a) = 1 in poly(n)2

n
2 time (if such string a exists).

Proof. We use an n+1+m-qubit register, where m is large enough to compute
the transformation |xσ0m〉 7→ |x(σ ⊕ f(x))0m〉 by Lemma 3.28.
Initial state: |0n+1+m〉
Step 1. Apply Hadamard operation on first n qubits.
Do step 2. and step 3. for 2n/2 times as follows:
Step 2. Compute |xσ0m〉 7→ |x(σ ⊕ f(x))0m〉 ;
if σ = 1 multiply by −1;
compute |xσ0m〉 7→ |x(σ ⊕ f(x))0m〉 again.
Step 3. Apply Hadamard operation on first n qubits;
if first n-qubits are all zero, then flip n+ 1st qubit;
if the n+ 1st qubit is 1, then multiply by -1;
if the first n-qubits are all zero, then flip n+ 1st qubit;
apply Hadamard operation on first n qubits again.
Step 4. Measure register and let a′ be the obtained value of the first n qubits.
If f(a′) = 0, repeat Step 2. and Step 3. for 2n/2 times until f(a′) = 1.
Output: a′ such that f(a′) = 1 .
Notice that step 2 and step 3 reflects the vector around u = 1

2n/2

∑
x∈{0,1}n |x〉

and e =
∑

f(x)=0 |x〉, hence the vector rotates the angle 2〈e, u〉 towards |a〉
after one loop. Hence in O(1/θ) = O(2n/2) steps, it will be so close to
|a〉 that their inner product is larger than cos θ. If measuring now, we get
|a〉 with constant probability. Thus, this algorithm has time complexity of
O(poly(n)2n/2). □

7
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5 Simon’s Algorithm
Theorem 5.1. There is a polynimial-time quantum algorithm such that, for
a polynomial-size classical circuit of a function f : {0, 1}n → {0, 1}n, find
the string a ∈ {0, 1}n satisfying f(x) = f(x ⊕ a) for every x ∈ {0, 1}n (if
such a exists).

Remark 5.2. The problem to find such a “period” of f is often called Simon’s
problem.

Proof. We use an 2n + m-qubit register, where m is sufficiently large to
compute the transformation |xz0m〉 7→ |x(z ⊕ f(x))0m〉.
Initial state: |02n+m〉.
Step 2i-1. Apply Hadamard operation on first n qubits;
compute |xy0m〉 7→ |x(y ⊕ f(x))0m〉;
apply Hadamard operation on first n qubits again.
Step 2i. Measure first n qubits of register to obtain a value yi such that
yi � a = 0.
Repeat until we get yi enough to retrieve a.
In fact, when k ≥ 2n there will be n − 1 linearly independent yi with high
probability by the lemma below. □

Lemma 5.3. Choose n vectors uniformly at random from Fn
2 , then with

probability at least 1/5 the vectors are linearly independent.

Proof. p =
n−1∏
i=0

2n − 2i

2n
=

n∏
i=1

(1− 2−i) =
n∏

i=1

(1 +
1

2i − 1
)−1 >

3

8
e−1/2 >

1

5
. □

6 Shor’s Algorithm

6.1 Quantum Fourier transformation
Definition 6.1. For a vector f = (f(0), . . . , f(M − 1)) ∈ CM , the Fourier
transformation of f is a vector f̂ = (f̂(0), . . . , f̂(M − 1)) ∈ CM defined by:

f̂(x) =
1√
M

M−1∑
y=0

f(x)ωxy
M , x = 0, . . . ,M − 1 and ωM = e

2πi
M

8
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Remark 6.2. We know that the Fourier basis{
1√
M

(
1, ω−x

M , . . . , ω
−(M−1)x
M

)}
x=0,...,M−1

is an orthonormal basis. So the Fourier transform FTM : f 7→ f̂ is a unitary
operation.

Based on the divide-and-conquer idea, we have the quantum operation
that change the state of a quantum register to its Fourier transform.

Lemma 6.3. For any positive integer m, we can change the state of a quan-
tum register f =

∑2m−1
x=0 f(x)|x〉 to its Fourier transform f̂ =

∑2m−1
x=0 f̂(x)|x〉

using only O(m2) elementary quantum operations.

Proof. Let Wm = diag{ω0, . . . , ω2m−1} be a 2m × 2m diagonal matrix, H be
the Hadamard gate. Suppose we have run FT2m−1 on the first m− 1 qubits.
Apply W on the first m− 1 qubits on |x1, . . . , xm−1, 1〉, then apply H on the
last qubit, and move the last qubit to the first one. States are as follows:

FT2m−1f0|0〉+ FT2m−1f1|1〉
→FT2m−1f0|0〉+Wm−1 · FT2m−1f1|1〉 (m quantum gates)
→FT2m−1f0(|0〉+ |1〉) +Wm−1 · FT2m−1f1(|0〉 − |1〉) (1 quantum gate)

= (FT2m−1f0 +Wm−1 · FT2m−1f1)|0〉+ (FT2m−1f0 −Wm−1 · FT2m−1f1)|1〉
→|0〉(FT2m−1f0 +Wm−1 · FT2m−1f1) + |1〉(FT2m−1f0 −Wm−1 · FT2m−1f1)

= f̂ (1 quantum gate)

Let T (m) be the number of quantum gates used for FT2m . Then we know
that T (m) = T (m− 1) +O(m), so T (m) = O(m2).

6.2 Reducing Factoring to Order Finding
Lemma 6.4. If odd nonprime n is not a prime power, then the probability
that a uniformly random element x ∈ (Z/nZ)× has the property that ord(x) =
2r, r ∈ Z+ and {gcd(n, xr + 1), gcd(n, xr − 1)} ∩ {1, n} = ∅ is at least 1

4
.

Proof. Only prove when n = pq for primes p > q ⩾ 3. Let

φ : (Z/nZ)× → (Z/pZ)× × (Z/qZ)×

x 7→ (xp, xq)

9
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then ord(x) = lcm(ord(xp), ord(xq)) and φ(−1) = (−1,−1). Since all ele-
ments with odd order in (Z/pZ)× is a proper subgroup of (Z/pZ)×, it contains
at most half of the elements of (Z/pZ)×. So the probability that xp has even
order is at least 1

2
. Let

Gl = {x ∈ (Z/qZ)× | ord(x) = 2j ∗ c, c is odd and j ⩽ l},

then G0 ⩽ · · · ⩽ Gl−1 ⩽ Gl ⩽ · · · ⩽ (Z/qZ)×. Let

f : Gl → Gl−1

x 7→ x2 (mod q)

then ker(f) ⊇ {1,−1}, so #Gl−1 ⩾ #Gl/2. Let ord(xp) = 2spcp and
ord(xq) = 2sqcq, where cp and cq are odd. Then the probability that sp = sq
is at most 1

2
. So the probability that sp ⩾ 1 and sp 6= sq is at least 1

4
.

When sp ⩾ 1 and sp 6= sq, ord(x) = 2max(sp,sq) lcm(cp, cq) and r =

ord(x)/2. Since sp 6= sq, φ(xr) 6= (−1,−1), and xr 6≡ −1(modn). So
xr ± 1 6≡ 0 (modn) and (xr + 1)(xr − 1) = x2r − 1 ≡ 0 (modn). Thus we
have {gcd(n, xr + 1), gcd(n, xr − 1)} ∩ {1, n} = ∅.

6.3 Shor’s order-finding algorithm
Lemma 6.5. There is a polynomial-time quantum algorithm that on input
(a, n) outputs ordn(a).

Proof. Let m = d5 log(n)e. We use a m + poly(log(n))-qubit register. Since
x 7→ ax(modn) is computable in poly(log(n)) time, we can compute |x〉|y〉 7→
|x〉|y ⊕ (ax(modn))〉.

The algorithm is as follows:
Step 1. Run QFT to the first m qubits.
Step 2. Compute |x〉|y〉 7→ |x〉|y ⊕ (ax(modn))〉.
Step 3. Measure last n qubits and get y0.
Step 4. Run QFT to the first m qubits.
Step 5. Measure the first m qubits and get x.
Step 6. Find p

q
such that gcd(p, q) = 1 and

∣∣∣ x
2m

− p
q

∣∣∣ ⩽ 1
10·2m .

Step 7. If aq ≡ 1(modn), output q.
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States here are as follows:

1√
M

2m−1∑
x=0

|x〉|0n〉

→ 1√
M

2m−1∑
x=0

|x〉|ax(modn)〉

→ 1√
K

K−1∑
l=0

|x0 + lr〉|y0〉,

x0 is the smallest number s.t. ax0 ≡ y0(modn), K =

⌊
M − x0 − 1

r

⌋
→ 1√

M
√
K

(
2m−1∑
x=0

K−1∑
l=0

ω
(x0+lr)x
2m |x〉

)
|y0〉

Lemma 6.6. The number of x ∈ {0, . . . 2m−1} such that 0 ⩽ xr(mod 2m) <

r/10 and gcd(bxr/2mc , r) = 1 is at least Ω(r/ log r).

Lemma 6.7. If 0 ⩽ xr(mod 2m) < r/10, then before Step 5, the coefficient
of |x〉 is at least Ω( 1√

r
).

With these two lemmas, we know that with a probability of at least
Ω(1/ log r), the measured value x has the property mentioned in Lemma 6.6.
The property shows that, for c = bxr/2mc, we have |xr − c2m| < r/10, and∣∣∣ x

2m
− c

r

∣∣∣ < 1

10 · 2m
<

1

4n4

According to the theory of continued fraction, we know that in this condition
the algorithm will output r. So the algorithm have a probability of at least
Ω(1/ log r), and then Ω(1/ log n) to output r. Then we can repeatedly run
it several times and take the smallest output to increase the probability of
successfully getting ordn(a).

Finally, we come to the proof of the main theorem.

Theorem 6.8 (Shor). There is a quantum algorithm that on input n outputs
the prime factorization of n in poly(log(n)) time.

Proof. We only need to give an algorithm that on input n output a nontrivial
factor of n. Because we can run the algorithm recursively to get the prime
factorization of n.
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The algorithm is as follows:
Step 1. If n is even, return 2; else proceed to Step 2.
Step 2. For k = 2, . . . log n+ 1, if n = mk, return m; else proceed to Step 3.
Step 3. Choose an a ∈ {1, . . . , n − 1} uniformly randomly. Compute b =

gcd(a, n) with Euclid’s algorithm. If b > 1, return b; else proceed to Step 4.
Step 4. Compute r = ordn(a). If r is odd, return “n is prime”; else proceed
to Step 5.
Step 5. Compute d = gcd(ar/2 − 1, n). If d > 1, return d; else return “n is
prime”.

By lemmas above, we know that this quantum algorithm is polynomial-
time. And we can get an factor with a probability of at least 1

4
. Repeat it

several times then we can increase the probability of success to at least 2
3
.

7 Conclusion
So far, we have given the definition of classical and quantum computing,
and we know P⊆BPP⊆BQP. Grover’s search algorithm, Simon’s algorithm
and Shor’s algorithm show us that quantum computing may be strictly more
powerful than classical computing. Since we haven’t found a polynomial-time
probabilistic computation for integer factorization, and we believe there isn’t.
Shor’s algorithm makes us believe that BPP6=BQP, and shows us that many
encryption schemes such as RSA may be not safe after the quantum computer
is realized physically.
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On Symbolic-Numeric Methods of Integrating Rational
Functions

Chen Guanyi

May 31th, 2022

1. Introduction

Precise computation of integrals of rational functions turns out important in more advanced integrating algo-
rithms. Typical methods of rational integration are either numeric, which means aiming at an approximate output
(of an actual value), or symbolic, which means aiming at a precise formula output that exists theoretically.

Both kinds of methods have advantages and disadvantages: as for numerical ones, the output is usually accurate
enough especially for definite integration, yet on ill-conditioned integrals purely numerical methods are over-sensitive
to approximate processings, like integrating on intervals that nearly contain a root of denominator. For symbolic
ones, although precise algebraic expressions of indefinite integrals help further analysis of results (for example
asymptotic analysis), the formula is likely to be inaccessible when roots of denominator are complicated or even
impossible to be solved in radicals. However, proper hybrid methods that rely on both numeric and symbolic
processes may be able to combine their advantages and avoid their shortcomings.

Based on ideas of Article [1] and Book [2], we will first build basic definitions and theorems, together with some
fundamental algorithms; and then introduce two numeric-symbolic methods of rational integrations, called N-PFD
and N-LRT, give a posteriori computable bound of errors and compare their behaviours on typical examples to
decide which method seems better. Based on typical symbolic algorithms, numerical methods to approximate roots
are applied.

2. Basic Definitions, Theorems and Algorithms

2.1 Rational Integrals and Decomposition

Definition 2.1.1 A rational integral is the definite (or indefinite) integral of two polynomials with real
coefficients. (In wider range complex coefficients are considered, but not here.) Whether definite or indefinite, we
will use the notation

∫
f(x) = for one of the anti-derivatives of f(x).

According to Partial Fraction Theorem we’ve learned for rational functions, the following theorem is trivial:
Theorem 2.1.2 Suppose f(x) =

P (x)

Q(x)
is the rational function to be integrated, then there exists a unique de-

composition (in the sense of differing a constant) of
∫

f(x) =

∫
G(x)

H(x)
+

C(x)

D(x)
such that G,H,C,D are polynomials

of real coefficients and H has no repeated roots.
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Proof: According to Partial Fraction Theorem, the only concern is uniqueness. Suppose there is another
decomposition

∫
f(x) =

∫
G1(x)

H1(x)
+

C1(x)

D1(x)
, then

∫
(
G1(x)

H1(x)
− G(x)

H(x)
) is a nontrivial rational function, yet the

derivative of any nontrivial rational function has repeated factors on denominator, and G1(x)

H1(x)
− G(x)

H(x)
has none

since the denominator is the product of some non-repeating factors of Q(x). Contradiction. □
Definition 2.1.3 We call C(x)

D(x)
the rational part of the integral

∫
f(x), and

∫
G(x)

H(x)
the transcendental

part.
A symbolic algorithm for finding out the rational part is necessary, since two parts of integrals have different

terms: One is rational and the other consists of log and arctan terms, and the rational part is relatively easier to
deal with. To build an algorithm, we first need some basic methods for polynomials which are able to apply on
computers:

Algorithm 2.1.4(Extended Euclid Algorithm, EEA) Suppose f, g ∈ R[x](degf ≥ degg), then we can find
u = gcd(f, g) and s, t ∈ R[x] such that sf + tg = u and degs < degg, degt < degf unless the right hand side be zero,
by the following steps (regardless of multiplying a real constant in output):

Step 1: Let u = f, v = g,S = (1, 0),T = (0, 1)

Step 2: If v = 0 go to Step 4;
Step 3: Otherwise do Euclid Algorithm u = qv + r, let L = S − qT, u = v, v = r, S = T, T = L, and go back

to Step 2;
Step 4: print u = gcd(f, g), S = (s, t).
All the non-trivial u, v’s that generated in order, from f to gcd(f, g), is called the remainder sequence of f

and g.
Proof: It is obvious that when finishing any step, the formulas S ·(f, g) = u, T ·(f, g) = v, gcd(f, g) = gcd(u, v)

remain unchanged, and in the last step v = 0, so u = gcd(f, g). Besides the S in final output is the previous T, and
by induction the maximal degree of the second item of that T will not exceed

k∑
i=1

degqi =
k∑

i=1

(degui − degvi) < degf,

where the second equality won’t hold because if in the previous step before u, v are changed, degv = 0 already
holds, then v should be 0 afterwards and the S produced in the same step will be directly printed, which contradicts
the assumption. By degt < degf we find degs < degg by sf + tg = u unless degg+ degf ≤ degu, which means they
are both constants and s, t are therefore constants. □

Algorithm 2.1.5(Square-free Decomposition) Suppose f ∈ F[x] where charF = 0, then it’s easily seen

that f =
m∏
i=1

hi
i is unique (in the sense of multiplying a nonzero constant) where deghm > 0 and hi all in F[x]. We

can extract the hi’s by the following steps:
Step 1: Let u = gcd(f, f ′), v1 = f/u, w1 = f ′/u, i = 1;
Step 2: Let hi = gcd(vi, wi − v′i), vi+1 = vi/hi, wi+1 = (wi − v′i)/hi, i = i+ 1;
Step 3: If vi ̸= 1 do Step 2 again;
Step 4: Print all hi’s.
Proof: To prove the algorithm is valid, we consider if h1 is the product of distinct square-free prime factors of

f , and if v2 = u/gcd(u, u′) and w2 = u′/gcd(u, u′) hold. In fact, noticing that u equals f divided by the product of
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all its distinct prime factors, the algorithm will repeats extracting all prime factors of order i once it can be viewed
as replacing the initial f by u in the first iteration and repeating until finish.

By simple computation h1 = gcd(f/u, fu′/u2). For any pk||f(k ≥ 1), vp(h1) = 1 iff k = 1 is easily checked since
vp(u

′) ≥ 0 and vp(u) = k − 1 for k ≥ 1, and vp(u
′) = k − 2 for k ≥ 2; for v2 = u/(u2h1/f) and w2 = u′/(u2h1/f),

we only need to verify
gcd(u, u′) = u2h1/f,

where the factors of both sides will belong to f . For k = 1 both sides have zero order of p, and for k ≥ 2 both sides
have k − 2, which proves the validity. □

Algorithm 2.1.6(Partial Fraction Method) Suppose Q(x) =
m∏
i=1

qi(x) and degP < degQ where qi’s are

relatively prime. Then we can find f1, f2 s.t.

P

Q
=

f1
q1

+
f2

Q/q1
, degf1 < degq1, degf2 < deg(Q/q1).

Algorithm and Proof: Use Extended Euclid Algorithm for q1 = s and Q

q1
= v to find 1 = su + tv, then

P

Q
=

Pt

u
+

Ps

v
, so we can replace Pt and Ps by Pt(modu) and Ps(mod v), and the right hand side becomes P0

Q
where degP0 < degQ, yet Q|P0 − P , which means P0 = P .

Repeating the process above we can find fi’s s.t. degfi < degqi, and

P

Q
=

m∑
i=1

fi
qi
. □

Algorithm 2.1.7(Hermite Method) We consider the following steps to find the rational part symbolically
(Suppose degP < degQ):

Step 1: Apply Square-free Decomposition to Q and suppose Q(x) =
m∏
i=1

qi(x)
i. By applying Partial Fraction

Method we only need to consider the decomposition of
∫

fi(x)

qi(x)i
.

Step 2: For each i, notice that gcd(qi, q′i) = 1, we find polynomials a, b s.t. aqi+ bq′i = 1, and it is easily checked
that ∫

fi(x)

qi(x)i
=

∫
fia+ (fib)

′/(i− 1)

ri−1
i

− fib

(i− 1)ri−1
i

,

which means the order of the denominator left has decreased.
Step 3: Repeat Step 2 until all denominators are prime. In this way we extract the rational part successfully,

and with accurate form since the whole process is purely symbolic (given the context that coefficients are accurate,
such as when coefficients are in Q or wider structures like Q(

√
2) in definitions of computer algebra systems).

2.2 Transcendental Part

Compared with the rational part, the transcendental part is more difficult to handle especially when it becomes
unavoidable to take approximate roots of denominator.
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Algorithm 2.2.1(Partial Fraction Decomposition, PFD) We focus on C[x] we actually find that the

transcendental part G(x)

H(x)
is able to be written in the sum of ci

x− zi
’s, where ci is the residue of G

H
at zi. We have

∫
G(x)

H(x)
=

k∑
i=1

cilog(x− zi),

but in real form we must combine the items of complex roots. As G(x)

H(x)
has real coefficients, we push x̄ into

x and get ci = c̄j for zi = z̄j . By taking exponents, the following two formulas are trivial (in the corresponding
branch):

log(x− zi) + log(x− z̄i) = log(x2 − |zi|2),

i(log(x− zi)− log(x− z̄i)) = 2arctan(x− Re(zi)
−Im(zi)

),

so whenever we reach an expression of the partial fraction form we can express our result in real functions.
By simple complex analysis we know ck =

G(zk)

H ′(zk)
, and whenever we find roots (such as when we are able to

solve them out), we are able to give a symbolic anti-derivative.
The PFD Algorithm requires splitting H into irreducible factors, and in the context of precise calculation,

unnecessary algebraic numbers like
√
2 may be introduced for unnecessary problems like

∫
2x

x2 + 2
. However, if we

focus on residues and their different following sums, we may introduce a new algorithm. For the same c as a residue,
the sum of all corresponding items is

c
∑
i:ci=c

log(x− zi) = c log(
∏

z∈z′
is:G−cH′|z=0

(x− z)) = c log(gcd(H,G− cH ′)),

But we need certain tools to find ci’s and their following sums without computing the zi’s. Luckily, by the
concept and properties of the Rothstein-Trager Resultant, we are able to view ci’s as a root of a certain polynomial
and represent the logarithms again with respect to ci’s.

Definition 2.2.2 Define the resultant of two polynomials f, g by

Resx(f, g) = detϕf,g,

where ϕf,g : Pm × Pn → Pm+n,m = deg g, n = deg f is the linear transform defined by

ϕf,g(s, t) = sf + tg,

and Pk represents the k-dimensional linear space of all polynomials with degree below k.
For convenience of computation, we select the standard basis Bk = {1, x, . . . , xk−1} for every Pk, and represent

ϕf,g in the standard basis as a matrix S = S(f, g).
Definition 2.2.3 The matrix S(f, g) is called the Sylvester matrix of f and g.
Theorem 2.2.4 We reach the following directly from definition:
(1)gcd(f, g) = 1 iff ϕf,g has a trivial kernel, iff ϕf,g is bijective, iff Resx(f, g) = detS(f, g) ̸= 0. (2)S(f, g) is a

(m + n) × (m + n) matrix with coefficients fn, . . . , f0 beginning from (i, i) to (i + n, i) (1 ≤ i ≤ m) in the first m

columns, and gm, . . . , g0 beginning from (j −m, j) to (j, j) (m+ 1 ≤ j ≤ m+ n) in the last n columns, and 0 in all
other positions.

Now we will find if we consider ℜ(c) = Resx(H,G − cH ′) as a polynomial of c, called the Rothstein-Trager
resultant, we can find our residues by finding roots of ℜ.
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However, it’s not easy to compute resultants. Although we know the definitions properties of Res(f, g) for
polynomial f, g (n = deg f > deg g = m) it is still hard to be calculated quickly, especially as a determinant. Based
on special ’parallelogram’ structure of Sylvester matrix, a natural idea is transform and decompose the matrix
in smaller ones. Notice that we can link polynomial multiplication with matrix structure, we may do EEA to
decompose (f, g) and the Sylvester matrix at the same time. The following lemma is useful:

Lemma 2.2.5 Suppose f = qg + ρr where n = deg f ≥ deg g = m > deg r = d, f, g, r monic, ρ a constant.
Then

Resx(f, g) = (−1)mnρmResx(g, r).

Proof: We focus on the matrix structure. Denote f =
n∑

i=0

fix
i (fn = 1), and define gi, qi, ρi’s similarly.

In matrix form, the condition become

fn

fn−1

...

...

...
f0


−



gm

gm−1
. . .

... 1

g0
...

. . . ...
g0





qn−m

qn−m−1

...

...

...
q0


=



0
...
0

ρrd
...

ρr0


,

which means we can eliminate the first m columns in S(f, g) into coefficients of r by the last n columns, and
then switch the left and right parts to get

(−1)mn · det



gm

gm−1
. . . ρrd

... . . . gm
... . . .

g0 gm−1 ρr0 ρrd
. . . ... . . . ...

g0 ρr0


= (−1)mnρm detS∗ detS(g, r) = (−1)mnρm detS(g, r),

where S∗ is the top left part of this transformed matrix, upper-triangular with diagonals all 1. □
By extracting prime term coefficients, we directly lead to the following using Lemma 2.2.5 and induction:
Theorem 2.2.6 (Computability of Resultants) Suppose f = ρ0r0, g = ρ1r1 are the initial coprime

polynomials with ρ0, ρ1 ∈ F, r0, r1 monic, and apply Monic EEA to represent the remainder sequence with form
ρiri where ri monic and ρi ∈ F, deg ri = ni for i = 1, . . . , l. Then

Resx(f, g) = (−1)τρn1
0 (

l∏
j=1

ρ
nj−1

j )Resx(rl−1, rl = 1) = (−1)τρn1
0 (

l∏
j=1

ρ
nj−1

j ),

where τ =
l−1∑
j=1

nj−1nj .

Another important problem is computing gcd(H,G− cH ′) for residue c. We can actually find gcd(H,G− yH ′)

on field R(y) first, which can be done by EEA; Suppose the remainder sequence is R0(x, y), . . . , Rl(x, y). When
y is substituted by any specific value of y, the actual process of EEA won’t change in the beginning, since the

5 152 



decomposition into quotient and remainder is unique under restriction of degrees, and substitution gives a valid
decomposition, which means substitution into the corresponding Ri(x, y) leads to the same result of the algorithm
in R[x] in every step till finish. So the moment that substitution into the next polynomial equals zero, the previous
polynomial in remainder sequence gives gcd(H,G− cH ′) after substitution.

Now, If we know c repeats k times as a residue, then deg gcd(H,G − cH ′) = k and there exists a unique Ri

denoted by Ri(k) such that degx Ri = k. In this case

gcd(H,G− cH ′) = Ri(k)(x, c),

and computation is finished. So under this algorithm being able to find ci’s are not enough: We need to know
multiplicities of them when all roots of H are exhausted, since we need to know which degree to substitute into.
Luckily the multiplicity of residues and their corresponding roots are also contained in the resultant, in the following
means:

Theorem 2.2.7 ℜ(c) = M
∏

H(z)=0

(G(z)− cH ′(z))(M is a nonzero constant).

Proof: We use a quite special view in this equality: H is fixed and the theorem is a claim for any arbitrary
choose of coefficients of G for degG < degH. The non-zero constant M must be totally determined by H, because
the coefficient of cdeg H is equal when we only view c as variable in two sides, yet in the left side, any single monomial
with degree degH has coefficients all chosen on the first degH columns in the complete monomial expansion of the
corresponding Sylvester matrix; In the right side cdeg H has coefficient (−1)deg H . Hence in our special view M is a
constant once H is fixed.

As a statement for real-coefficient multi-variable polynomial identity we find it holds once it holds on a dense
subset of the whole space.

Since H has distinct roots z1, . . . , zk where k = degH, we consider the choose of G that makes G(zi)

H ′(zi)
’s all

distinct. Since M is fixed, both sides is of degree ≤ k for variable c and same non-repeating roots with a total
number of k exist and exhaust on both sides, we find it holds naturally, and meanwhile M ̸= 0(for any given H in
our condition) is proved.

Now we only need to proof the choose of G is dense. The linear map from coefficients of G as (g0, . . . , gk−1)

(Assume freely chosen in degree 0, . . . , k−1) to (G(z1), . . . , G(zk)) is bijective according to Vandermond Determinant

Theorem, so in any open ball in Rk a choose of (g0, . . . , gk−1) that makes G(zi)

H ′(zi)
’s all distinct exists, for H ′(zi)’s

are non-zero constants here. □
Corollary 2.2.8 The multiplicity of root c in ℜ(c) equals deg(gcd(H,G− cH ′)).
By Corollary 2.2.8, we are able to extract all residues and its multiplicities totally into roots and its multiplicities

of ℜ(c). We first compute ℜ(c) =
k∏

i=1

Ui(c)
i by Square-free Decomposition and for roots of Ui we know their

multiplicities are i. Notice that when computing the resultant on field R(y) by Monic EEA, we solve calculating
the log terms simultaneously.

One last problem is left: there may be complicated complex log terms that needs combination, and we may
first think the relation i(log(A+Bi

A−Bi
)) = 2 arctan(A

B
) suffice, as in PFD Method. However, this relationship holds

only in the same analytic branch and in this case singularities of B may make this fail. Suppose we want to

calculate
∫ 2

1

x4 − 3x2 + 6

x6 − 5x4 + 5x2 + 4
for example, the indefinite integral will be printed as arctan(x

3 − 3x

x2 − 2
), which is

first-type discontinuous at
√
2 and thus impossible. In order to avoid singularities we must introduce new methods

for combining log terms.
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Lemma 2.2.9 Suppose A,B,C,D ∈ R[x], A,B,C,D ̸= 0, BD −AC = G = gcd(A,B), then

d

dx
log(A+Bi

A−Bi
) =

d

dx
log(−B +Ai

−B −Ai
), i

d

dx
log(A+Bi

A−Bi
) = 2

d

dx
arctan(AD +BC

G
) + i

d

dx
log(D + Ci

D − Ci
).

Proof: Denote AD +BC

G
by P . Notice that

−−B +Ai

−B −Ai
=

A+Bi

A−Bi
= (

P + i

P − i
)(
D + Ci

D − Ci
), i

d

dx
(log(P + i

P − i
)) = 2

d

dx
arctanP,

the statement is trivial. □
from lemma and EEA we can develop a singularity removal method:
Algorithm 2.2.10 (Rioboo’s Method) We start from i

d

dx
log(A+Bi

A−Bi
), and according to Lemma 2.2.9 we

suppose degA ≥ degB > degG (if degB = degG, then this term can be directly transformed into a continuous
arctan term.)

By EEA, we find C,D s.t. BD−AC = G(and all ̸= 0 according to degA ≥ degB > degG), and max{degC, degD} <

max{degA, degB}. Again by Lemma 2.2.9 we only need to compute on

2 arctan(AD +BC

G
) + i

d

dx
log(D + Ci

D − Ci
),

and this process finishes in at most max{degA, degB}+ 1 steps.
Therefore we build a new algorithm only making use of Square-free Decomposition and EEA:
Algorithm 2.2.11 (Lazard-Rioboo-Trager, LRT) Compute

∫
G

H
in the following steps:

Step 1: Compute Rothstein-Trager resultant ℜ(c) in way of Theorem 2.2.6 and store all Ri(x, y)’s;

Step 2: Make Square-free Decomposition of ℜ(c) into
k∏

j=1

Uj(c)
j , find roots of Uj ’s and follow the following

formula: ∫
G

H
=

m∑
j=1

∑
c:Uj(c)=0

c log(Ri(j)(x, c));

Step 3: Similarly, by combining conjugate residues and log terms, and transforming to arctan terms for log(X+

iY ) term by Rioboo’s Method, we manage to express the final result.

3. Numeric-Symbolic Methods and Error Estimation

3.1 Introduction: Difficulties in Introducing Numerical Methods

Now that we have got the brief basic knowledge about symbolic algorithms like LRT and PFD Method, we find
that the procedure of the whole integration can be completely changed when numeric approximation of coefficients
and roots are introduced:

(1) For coefficients: In the context of rational coefficients or coefficients in fine algebraic express (Q(
√
2) for

example), Coefficients need no perturbation; while in more complex cases perturbing coefficients into floats may be
necessary. In this case the multiplicity of square-free decomposition results, as an ’isolated’, ’zero-measure’ property
in space of polynomials may be destroyed;

(2) For roots: Even in situations of integer coefficients roots may be unable to solve in radicals. PFD requires
rootfinding of the denominator which is likely to destruct conjugate structures for roots(less likely to happen) and
repeated residues. LRT require rootfinding of resultant which may result in destroying multiplicities too.
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To solve Difficulty 1, a possible method is introducing approximated symbolic algorithms, such as finding
an approximate GCD by an approximate EEA, or doing approximate Square-free Decomposition in order to detect
nearby problems in increased structure. (The increase in multiplicity means the non-commonness of the problem also
increased, together with the efficiency of algorithms.) This also avoids ill-conditioning roots (within a distance too
small) caused by perturbing singular inputs to a nearby float-coefficient input, and is a kind of Singular-Problem
Detection in its nature. We may also apply this in the way which we introduce later, yet this means the actual
integration solves the singular problem instead of the input itself.

Let’s analyze this in detail. Approximate algorithms are only able to apply in parts possible to be viewed
’singular’, so it is applied in approximately but not square-free parts, assumed in denominators of the original
function, which leads the Hermite part in approximated sense. Suppose the input and the singular problem are

f =
C

D
+

∫
G

H
and [f ] = [

C

D
] + [

∫
G

H
],

then we computed the rational part as [C
D
] and we must respectively replace the denominator of f into approximated

result to simplify the computed part left, which actually turns f into [f ]. So the rest part we operate on is in fact
[

∫
G

H
] instead of

∫
G

H
. Therefore all the steps left will work on the singular problem; when two numeric-symbolic

methods on the following transcendental step has any error, the error is in fact between the singular one and the
computed one, instead of the input and the computed one!

In this way, the nearby most singular problem is successfully detected and assuming we aim at getting closer
to this singular problem, we only need to analyze the error as in accurate-input situations, and suppose the rational
part is exact. we change the nearly-square parts of the factorization of ill-conditioned denominator into square parts,
and the Hermite algorithm actually printed can be seen as the exact rational part for a nearby singular problem
.Hence the difficulties of inaccurate coefficients (in the sense of inaccuracy to possible singular problems) are solved.

On the contrary, even when no singular problems are near, inaccurate input may be inevitable, yet we can still
control its influence. Besides, difficulty 2 seems also inevitable especially in more complicated situations of given
denominators. Although the error may be unavoidable in complicated situations, we still allow its appearance since
in realistic models complicated rational integrals are approximations to actual systems as well. Once we manage to
control error in integration sufficiently, it can be made relatively smaller than model approximation error.

On this thesis we immediately find two methods available: First, we can also assume the initial input to be
f(x) ∈ Q(x) since this is viewed as another approximation of complicated possible coefficients that able to be in
any demanded precision. We may always assume this: when no singular problems are near, we assume the initial
input in Q(x) is already exact for convenience in error analysis, and in this context purely symbolic algorithms
besides numerical rootfinding is available on computers. Difficulty 1 is totally solved in this assumption. Second,
we may develop formulas to make the error computable by the results and variables produced in numreic-symbolic
algorithms. By controlling error by computing it and decreasing the initial tolerance when it fails to reach our
expectation, we solve difficulty 2 as well.

Both the distance to the original problem, and the precision we’ve given our final result is important enough.
Now suppose the initial input is f(x) ∈ Q(x), and due to algorithms we actually compute the integral of f̂ . We will
provide two kinds of error analysis(where ∆f = f − f̂ ):

(1) Backward Error: Defined by BE(f) = ||∆f ||∞ = max
[a,b]

|∆f |, representing the distance between what we
actually compute to the original problem; A computable backward error means we can control it to be smaller than
the error of approximation of model.

8 155 



(2) Forward Error: Defined by FE(f) = |
∫ b

a

∆f |, representing the difference in actual result of a definite
integral, and [a, b] should be chosen sufficiently far away from roots of denominator H. A computable forward error
means we can control the result of definite integral as precise as besides distance to the original problem,

In the following subsections we will show both of them are computable and approach 0 by O(ϵ), which means
precisely controlling error by decreasing tolerance ϵ is possible. Then we can add the procedure of Error Compu-
tation. We have a powerful tool in MAPLE computer algebra system to find roots in any demanded error tolerance
ϵ, so the error can be made small enough as well if we decrease our initial tolerance.

Generally, by Singular-Problem Detection and Error Computation, we are able to maximize our efficiency.

3.2 Procedures of N-PFD and N-LRT

Now we introduce symbolic-numeric methods based on classical symbolic methods (PFD and LRT), denoted
by N-PFD and N-LRT:

Algorithm 3.2.1 An N-PFD procedure is based on a PFD procedure, but different in:
(1)Use numerical rootfinding and residue-computation instead of symbolical;
(2)Detect conjugate pairs and identical residues (may be used to combine terms) by a user-supplied tolerance

ec, in order to revive structure.
Algorithm 3.2.2 An N-LRT procedure is based on a LRT procedure, but different in:
(1)Use numerical rootfinding towards all Ui’s;
(2)Detect identical residues and conjugate pairs (may be used to combine terms) by a user-supplied tolerance

ec, in order to revive structure before using Rioboo’s Method.
In both procedures, the input is a rational function f(x) =

P (x)

Q(x)
(over Q), together with necessary tolerance

settings, for example a tolerance ϵ for relative error in rootfinding. and in the end we actually output an expression
of a nearby integrand: ∫

f̂(x)dx =
C

D
+
∑

vi log(Vi) +
∑

wj arctan(Wj),

along with an (linear) error estimation.

3.3 Error Estimations and Linear Error Computations

We consider the backward and forward errors based on N-LRT and N-PFD.
Theorem 3.3.1(Computable Backward Error) Suppose the input tolerance is ϵ (relatively, which means

for any root r, |∆r| ≤ ϵ|r|). Then

BE(f) = maxx|
∑
k

Re(M(x, rk))|+O(ϵ2),

where the principle term is O(ϵ) and rk range in the evaluated roots (of different polynomials in different
algorithms), and M is computable. The bound is finite on any closed bounded interval without any root of Q(x).

Proof for N-PFD: Since the rational part is computed exactly we need only consider the transcendental

part.(This also happens in the rest error analysis.) Suppose G(x)

H(x)
=

deg H∑
i=1

ci
x− γi

, then we actually approximated ci
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and γi to ĉi and γ̂i. Notice that

ci
x− γi

− ĉi
x− γ̂i

=
∆ci(x− γ̂i) + ĉi∆γi
(x− γi)(x− γ̂i)

+O(∆γ2
i )

=
c′(γi)∆γi

x− γ̂i −∆γi
+

ĉi∆γi
(x− γ̂i)(x− γ̂i −∆γi)

+O(∆γ2
i )

=
c′(γi)∆γi
x− γ̂i

+
ĉi∆γi

(x− γ̂i)2
+O(∆γ2

i ),

0 = H(γi) = H(γ̂i) +H ′(γ̂i)∆γi +O(∆γ2
i )

=⇒ ∆γi = −H(γ̂i)

H ′(γ̂i)
, and |∆γi| ≤ ϵ|γi|, 1 ≤ i ≤ degH,

We have the obvious estimation M(x, r) = (
c′(r)

x− r
+

c(r)

(x− r)2
)
H(r)

H ′(r)
as an O(ϵ) term. □

Proof for N-LRT: Since
∫

G

H
=

m∑
j=1

∑
c:Uj(c)=0

c log(Ri(j)(x, c)) =⇒
G

H
=

m∑
j=1

∑
c:Uj(c)=0

c

∂Ri(j)

∂x
(x, c)

Ri(j)(x, c)
and cj,k(1 ≤

j ≤ m, 1 ≤ k ≤ degUj)’s are perturbed, suppose into ˆcj,k. Given that by partial derivatives of cj,k we know

∆f(x, c1,1, . . . , cm,deg Um
) =

m∑
j=1

(

deg Uj∑
k=1

(

∂Ri(j)

∂x
(x, c)

Ri(j)(x, c)
+ c(

∂2Ri(j)

∂x∂c
(x, c)

Ri(j)(x, c)
−

∂Ri(j)

∂x
(x, c)

∂Ri(j)

∂c
(x, c)

Ri(j)(x, c)2
))|c= ˆcj,k∆cj,k) +O(||∆c||2)

△
=

m∑
j=1

(

deg Uj∑
k=1

(ξi(j)( ˆcj,k, x)∆cj,k)) +O(||∆c||2),

and similarly noticing ∆cj,k = −Uj( ˆcj,k)

U ′
j( ˆcj,k)

and ∆cj,k ≤ ϵ| ˆcj,k|, we have the obvious estimation M(x, r) =

ξi(j)(x, r)
Uj(r)

U ′
j(r)

(j determined by r = cj,k) as an O(ϵ) term. (In both algorithms the bounded statement is trivial.)□

Theorem 3.3.2(Computable Forward Error) Suppose the input tolerance is ϵ (relatively, which means for
any root r, |∆r| ≤ ϵ|r|). Then

FE(f) = maxx|
∑
k

M(rk, sk, x)|+O(ϵ2),

where the principle term is O(ϵ) and rk + isk (rk, sk ∈ R) range in the evaluated roots (of different polynomials
in different algorithms), and M is computable. The bound is finite on any closed bounded interval without any root
of Q(x).

Proof for N-LRT: Notice that when any function g has a primitive g∗, we have |
∫ b

a

g(x)dx| ≤ |g∗(a)|+|g∗(b)|,
so we only need to bound a primitive of the error function in the form of our theorem. Suppose ck = ak+ibk (ak, bk ∈
R, 1 ≤ k ≤ m) is a subsequence of all residues that only contain one of each conjugate pair, and Rj(j = j(k)) is the
corresponding subresultant of ck. We are able to rewrite the transcendental part as∫

G

H
=

m∑
k=1

(ak log(Vk) + 2bk arctan W1k

W2k

),

where W1k = Re(Rj(ck, x)), W2k = Im(Rj(ck, x)) and Vk = W 2
1k + W 2

2k for complex roots (for real roots we
have Vk = W1k, since their conjugate are themselves), which means they together with their partial derivatives of
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ak and bk are computable. In this case we can estimate the error by linear approximation:∫
∆fdx =

m∑
k=1

(log(Vk)∆ak + (
∂Vk

∂ak
∆ak +

∂Vk

∂bk
∆bk)

âk +∆ak
Vk

+ ((W2k
∂W1k

∂ak
−W1k

∂W2k

∂ak
)∆ak + (W2k

∂W1k

∂bk
−W1k

∂W2k

∂bk
)∆bk)

2(b̂k +∆bk)

W 2
1k +W 2

2k

)

+O(||∆c||2),

and by −Uj(ĉk)

U ′
j(ĉk)

= ∆ck = ∆ak+ i∆bk we can change the âk +∆ak
Vk

and 2(b̂k +∆bk)

W 2
1k +W 2

2k

terms into âk
Vk

and 2b̂k
W 2

1k +W 2
2k

terms first to extract the O(||∆c||2) terms, and then replace the ∆ak’s and ∆bk’s in linear terms. Therefore the
functions M(rk, sk, x) of size O(ϵ) are computable. □

Proof for N-PFD: Suppose γk = αk + iβk (αk, βk ∈ R, 1 ≤ k ≤ m) is a subsequence of all roots of H that
only contain one of each conjugate pair, and c(γk) = ck = ak + ibk (ak, bk ∈ R, 1 ≤ k ≤ m). Following the notations
above we let W1k = x− αk, W2k = −βk, and Vk = W 2

1k +W 2
2k for complex roots (for real roots we have Vk = W1k,

since their conjugate are themselves), which means they together with their partial derivatives of αk and βk are
computable. Again we estimate the error by linear approximation:∫

∆fdx =
m∑

k=1

(log(Vk)(
∂ak
∂αk

∆αk +
∂ak
∂βk

∆βk) + (
∂Vk

∂αk

∆αk +
∂Vk

∂βk

∆βk)
ak
Vk

+
2βkbk(∆αk +∆βk)

(αk − x)2 + β2
k

+ 2(
∂bk
∂αk

∆αk +
∂bk
∂βk

∆βk) arctan(αk − x, βk))

+O(||∆c||2),

since linear estimations multiplied by ∆αk or ∆βk we can replace the ck, αk, βk’s appeared by their approxi-
mation ĉk, α̂k, β̂k’s, and notice −H(γ̂k)

H ′(γ̂k)
= ∆γk = ∆αk + i∆βk, we similarly replace ∆αk’s and ∆βk’s and find the

result M(rk, sk, x) of size O(ϵ) computable. □
By proof of Theorem 3.3.2 we directly get the corollary:
Corollary 3.3.3 The error term M in Theorem 3.3.2 can be decomposed into M1 and M2 corresponding to

log and arctan terms respectively by the form given in proof; and both of them are O(ϵ).

4. Experiments and Comparison: Which One is Better?

4.1 Analysis and Experiment Settings

To decide which one generally performs better, we have many dimensions in consideration, like efficiency,
stability towards singularities or precise ill-conditioned problems and so on.

Intuitively, The runtime and instability of N-PFD is generally decided by the degree of the denominator and
heights of the coefficients in polynomial; Yet the runtime and instability of N-LRT can be different exponentially
under the same degree and heights due to instablity of determinants. So N-PFD may actually be more likely to
perform better.

In order to test the actual performance of two algorithms, we select 5 experiments to compare their behaviour,
with the assumption that input is precise enough that approximate GCD don’t work. They test two algorithms in
different senses.
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Experiment 4.1.1 f1(x) =
1

xn − 2
;

Experiment 4.1.1’ f1(x) =
1

xn + 2
;

Experiment 4.1.2 f2(x) =
1

xn + x− 2
;

Experiment 4.1.3 f3(x) = [n, n]Ei(x)(x), where [m,n]u(x) denotes the Padé approximation of order [m/n] of
u, and Ei(x) =

ex

x
;

Experiment 4.1.4 f4(x) =
2x

x2 − (1 + t)2
(t −→ 0);

Experiment 4.1.5 f5(x) =
2x

x2 + t2
(t −→ 0);

The first two experiments serve as a basic comparison of their runtime and stability in same size of denominator;
The third experiment tests their stability of performance towards large coefficients (for moderate n the coefficients
are already large); The fourth experiment tests when singularities are just outside [−1, 1], how near can we get the
interval bounds near singularities before the error exceeds a fixed tolerance radius(like 0.01). We assume the fixed
radius as its original meaning because this is not clearly illustrated in the context of the article: once we assume
the tolerance is some multiple of ϵ, when ϵ sufficiently small the tolerated interval would be somehow fixed since the
error term is O(ϵ) and the constants multiplied is determined by x (in the sense of ignoring the o(ϵ) differences);
this problems remains even when we assume the error to be relative. The last experiment tests how two algorithms
perform when the integrated function has nearly real singularities on the imaginary axis.

We also note that the interval of integration may be set to R, since the error analysis only requires finding the
maximum value of an error function on the integration zone, which is accessible.

4.2 Comparison of Runtime

For Experiment 4.1.1 and 4.1.2, we select n from 40 logarithmically spaced values from 8 to 377, and we find
the following results:

(1)The runtime (when error analysis is open) of two algorithms are shown in the figures below.
We see that in the same size of denominator, the N-LRT Method behaves considerably poorer in Experiment

4.1.2. In Experiment 4.1.1, the performance in runtime of two algorithms are near, but in Experiment 4.1.2 N-PFD
is clearly the winner with a runtime nearly identical to Experiment 4.1.1. This means the coefficients of resultant
truly get considerably larger as the problem are perturbed a bit, and the N-LRT can be really slowed down in
experiments because of this.

Also we find that N-LRT has a more unpredictable efficiency in error analysis, because when we turn off the
error analysis the runtime of N-PFD don’t change apparently while for N-LRT it changed apparently in Experiment
4.1.1 (not in 4.1.2). Given that error is usually several magnitudes smaller than tolerance, when we turn off the
error analysis N-LRT can win in Experiment 4.1.1, which means there are certain problems for N-LRT to behave
better. But this also show that error analysis bring more and unpredictable influence in runtime in N-LRT.

And for Experiment 4.1.3 the N-PFD Algorithm completely win in speed, which is shown in the following table:
which means, considering the robustness of efficiency towards high-coefficient problems, N-PFD performs better

as well.
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Fig. 1: Different Performances of Different Algorithms (Left: f1, Right: f2; Red: N-PFD, Blue: N-LRT)

Runtimes N-PFD N-LRT
n=8 0.01s 0.04s
n=13 0.02s 0.18s
n=21 0.04s 2.5s

Tab. 1: Runtime For Two Algorithms in Different Cases

4.3 Comparison of Precision and Singularity-Stability

For problems free from singularities, we set the integrating interval as R and compute the forward and backward
errors. Take n = 128 as an example in Experiment 4.1.1’, as we reduce the tolerance we get the following results,
showing both algorithms perform strongly although N-LRT performs better in several magnitudes.

ϵ FE of N-LRT BE of N-LRT FE of N-PFD BE of N-PFD
2−34 8 · 10−16 1 · 10−15 2 · 10−15 2 · 10−12

2−55 3 · 10−55 2 · 10−53 1 · 10−39 1 · 10−38

2−89 1 · 10−75 2 · 10−73 9 · 10−59 8 · 10−58

2−144 6 · 10−95 7 · 10−93 3 · 10−77 2 · 10−76

Tab. 2: Forward and Backward Errors For Two Algorithms in Experiment 4.1.1’, n = 128

As for singularity problems like Experiment 4.1.3 (when n = 8, a singularity at 10.949), we test the minimum
possible width of a symmetric interval around the singularity before the error exceeds the fixed tolerance. The
results in article is follows:

this shows that even though N-LRT performs better on ϵ sufficiently small, the decreasing of width for N-LRT is
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ϵ FEW of N-LRT BEW of N-LRT FEW of N-PFD BEW of N-PFD
2−34 4 · 10−3 6 · 10−2 1 · 10−14 6 · 10−7

2−55 7 · 10−23 9 · 10−12 8 · 10−20 3 · 10−10

2−89 4 · 10−32 2 · 10−16 2 · 10−28 1 · 10−14

2−144 2 · 10−34 1 · 10−17 3 · 10−31 6 · 10−16

Tab. 3: Widths For Acceptable Forward and Backward Errors For Two Algorithms in Experiment 4.1.3, n = 8

not as stable and predictable as N-PFD, and both algorithms perform well with only slight differences. Furthermore
in the case with a singularity the error difference is smaller. Also, the singularity-stability for both algorithms are
already enough: The tolerated width can be made sufficiently small as ϵ decreases, and when really so close to the
singularity as the magnitude shown, the Padé approximation of Ei(x) is no longer a good one, threrfore this width
is not a true concern in application.

Therefore, although N-LRT may perform better in numerical precision of the result, no significant advantage
is exhibited towards N-PFD.

Two additional tests in Experiment 4.1.4 and 4.1.5 also show the excellent precision and singularity-stability
with little difference. With sufficiently small ϵ in Experiment 4.1.4, the tolerated width is even smaller than 2ϵ (ϵ in
single side), which means even wih t = ϵ the definite integral on [1, 1] is able to be computed. Also in Experiment
4.1.5, with the same input tolerances (The fixed radius default, and the ϵ is 2−53(also a default value)), the forward
error bound of two algorithms are 1.9 · 10−57 for t = 0.1 and only increased to 1.7 · 10−42 for t = 10−16. And also
two algorithms behave in little difference in two examples on numerical precision and singular stability.

4.4 Conclusion

In general N-PFD has more efficient and more predictable behaviour than N-LRT and therefore better.
In particular problems where exact integrals are needed N-LRT may be suitable, but as for precision there is little
advantage for N-LRT compared with N-PFD.

5. Future Works

Although two algorithms are already well enough, there are still particular special problems to be solved. One
example is taking better identical residue detection, such as when the detection tolerance is ϵ = ϵd, several choices
of coalescing occur in integration of

g(x) =
4∑

i=1

1 + (i− 5
2
)ϵ

x− αi

,

where coalescing all residues and two groups of residues give two different expressions that may behave differently
near singularities. So a proper method to decide the way of coalescing according to implementation may be developed
in future works.
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An Introduction to Fast Fourier Transform

Weitao Wang

Abstract

The report will introduce the concept of Discrete Fourier Transform (DFT) and several appli-
cations. Next, we will focus on Fast Fourier Transform (FFT), an effieicent algorithm to compute
DFT. We will give detailed description of the algorithm and analysis of its complexity. It will be
shown that the complexity to calculate the DFT of an N-array is N logN with this algorithm,
compared to N2 by direct calculation. Results of numerical experiment will be provided.

1 Introduction to DFT

As FFT is an algorithm to compute DFT, we introduce the concept, properties and applications of
DFT at first, so that we can learn the motivation to develop the algorithm.

1.1 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)is a discrete version of continuous Fourier Transform. Given the
function f defined on finite points: 0, 1, 2, ..., N−1, the DFT of f is also a function on {0, 1, 2, ..., N−1},
which is defined as:

f̂(j) =

N−1∑
0

f(k)ω−jk

, whereω is the principal N th root of unity

ω = e
2πi
N

We can observe that DFT is an approximation to continuous Fourier Transform to some extent,
actually, let g a complex-valued function defined on R and has support on [0, 1], and

f = g on 0, 1, 2, ..., N − 1

, then when N is large enough, we have:

f̂continuous(j) =

∫ 1

0

e−2πixjf(x) dx

≈ 1

N

∑
k=0

N − 1e
−2πikj

N

=
1

N
f̂DFT (j)

Therefore it’s not hard to believe that the DFT and its calculation is of some significance in many
fields across science and engineering. For the discrete nature of computer, we have to use DFT when
we need numerical results of Fourier Transform.

1.2 Properties of DFT

1.2.1 Inverse Transform (IDFT)

f(n) =
1

N

N−1∑
k=0

f̂(k)ei
2πk
N n

The proof is omitted.

1 163 



1.2.2 Parseval Theorem

N−1∑
n=0

fng
∗
n =

1

N

N−1∑
k=0

f̄nḡ
∗
n

The proof is omitted.

1.3 Applications of DFT

1.3.1 Signal Processing

In the field of signal processing, though continuous signals are often studied, in the real world we often
deal with digital signals, which are naturally discrete. For Fourier Transform is often applied in signal
processing, DFT also plays an import role. Besides, DFT can be considered as a sampling of Discrete
Time Fourier Transform (DTFT), which is actually a continuous signal.Oppenheim et al., 1997

1.3.2 In Number Theory

Amazingly, DFT has an application in number theory. The discrete version of Fourier Inversion formula
is a key step in the proof of Dirichlet’s theorem Stein and Shakarchi, 2011, which states that if q and
l are positive integers wit no common factor, then the progression

l, l + q, l + 2q, · · · , l + kq, · · ·

contains infinite prime numbers.

2 Fast Fourier Transform

2.1 Description of the Algorithm

By taking advantage of the periodicity of {1, ω, ω2, ..., ωN−1, we can get an algorithm to compute
DFT of f(x) defined on {0, 1, 2, ..., N − 1} with complexity of N logN , compared with N2 by direct
calculation. Below we describe the algorithm.
As we showed before, DFT could be considered as an approximation to continuous Fourier Transform,
or a sampling of DTFT in signal processing. It is reasonable to argue that as long as we can get N large
enough, we can choose whatever form of N we like. It means, N could be chosen as a prime number, as
well as the form of rm. We will see that there is real gain to choose N as a highly composite number.
For simplicity, we suppose

N = r1r2

to describe the algorithm, where r1 and r2 is not required to be prime number. We will see that the
result and procedure where

N = r1r2...rm

is intrinsically the same when we learn the case that N = r1r2.
Recalling the formula for DFT:

f̂(j) =

N−1∑
0

f(k)ω−jk

As N = r1r2, we can re-index as follows

j = j1r1 + j0, j0 = 0, 1, · · · , r1 − 1, j1 = 0, 1, · · · , r2 − 1

k = k1r2 + k0, k0 = 0, 1, · · · , r2 − 1, k1 = 0, 1, · · · , r1 − 1

Then, we can write:

f̂(j) =
∑
k0

∑
k1

f(k1r2 + k0)ω
jk1r2ωjk0 (1)

since we have by periodicity of ω:

ωjk1r2 = ω(j0+j1r1)(k1r2) = ωj0k1r2
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we can write 1 as:
f̂(j) =

∑
k0

ωjk0

∑
k1

f(k1r2 + k0)ω
j0k1r2 (2)

And in 2 the inner sum
∑

k1
f(k1r2 + k0)ω

j0k1r2 depends only on j0 and k0. Therefore we can define
f1 as:

f1(j0, k0) =
∑
k1

f(k1r2 + k0)ω
j0k1r2 (3)

Then we can write:
f̂(j1, j0) =

∑
k0

f1(j0, k0)ω
j1r1+j0k0 (4)

We can see from 3 that it needs r2 operations (An operation means a complex multiplication followed
by a complex addition, so as the following.) to get f1(j0, k0). And after that, from 4 we can see that

it needs r1 operations to compute f̂(j1, j0). For there are N points in total where we need to compute

the value of f̂ , this two-step algorithm described above needs

T = N(r1 + r2)

operations in total.
After learning the case when N = r1r2, we consider the case that

N = r1r2 · · · rm
Expressing the indices as follows:

j = j0 + j1r2 · · · rm + · · ·+ jm−1rm

k = k0 + k1rm−1 · · · r1 + · · ·+ km−1r1

Thus we have
f̂(j0, j1, · · · , jm−1) =

∑
k0

∑
k1

· · ·
∑
km−1

f(k0, k1, · · · , km−1)ω
jk (5)

And we can separate 5 into m inner sums, as in 2, thus giving an m step algorithm, each step needing
ri operations respectively. Therefore the m-step algorithm requires

T = N(r1 + r2 + · · ·+ rm)

operations.

2.2 Analysis of Complexity

As be shown above, we have the theorem about operations needed by FFT algorithm to compute an
N-point DFT. That is,

Theorem 2.1. Suppose N = r1r2 · · · rm, to compute the DFT of f, which is defined on {0, 1, 2, · · · , N−
1}, with FFT algorithm, requires

T = N(r1 + r2 + · · ·+ rm)

operations.

With the theorem, we immediately have the corollary: Suppose N = rm, the operations required
T (r) is:

T (r) = N logr N

Proof. By the theorem above, in this case, the total number of operations is

T = Nmr

And obviously
m = logr N

Thus we have
T (r) = rN logr N
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r r
log2 r

2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
7 2.49
8 2.67
9 2.82
10 3.01

Table 1: r and E(r)

Sampling Rate (N) Time of DFT Time of FFT
2048 0.28 0.02
4096 1.63 0.05
8192 4.47 0.10
16384 22.23 0.30

Table 2: Comparison between direct computation and FFT

Corollary 2.2. Suppose N = rm, the complexity of FFT is O(N logN).

Proof. By 2.2, operations required is rN logr N , hence we know the complexity is O(N logN)

The case thatN = rm is important because such indices enable a simple realization of the algorithm.
Now we consider the efficiency with different choices of r.
To compare the efficiency of different choice of r, we define the quantity E:

Definition 2.3.

E(r) =
T (r)

N log2 N

where T (r) is normalized by N log2 N , thus representing the operations required for the same
number of N.
By 2.2, we have:

T (r) =
rN logr N

N log2 N
(6)

=
r

log2 r
(7)

The value E(r) for different r is listed below: (figures from Cooley and Tukey, 1965) It can be seen
that among the integers, r = 3 is the most efficient. However, the gain is not significant (about 6%)
compared to r = 2 and r = 4, and r = 2 or r = 4 offers important advantages for computation
because of the binary arithmetic of computers. It is more efficient both in locating in the storage and
in multiplication. Besides, even choosing r = 10 increases the computation no more than 50%, hence
it’s not absolutely unacceptable.

2.3 Results of Numerical Experiments

With a python program, we compare the time consumption of direct computation of DFT and FFT.
To do this, we generate a simple 1-D signal and observe the time consumption to calculate its DFT
with both methods while changing the sample rate (which is the N we discussed before). The code
can be found in the appendix, whose functions are taken from Kong et al., 2020. And the results are
in Table 2.
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Appendix

The code for the numerical experiments is:

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import timeit

4

5

6 def DFT(x):

7 """

8 Function to calculate the

9 discrete Fourier Transform

10 of a 1D real -valued signal x

11 """

12

13 N = len(x)

14 n = np.arange(N)

15 k = n.reshape ((N, 1))

16 e = np.exp(-2j * np.pi * k * n / N)

17

18 X = np.dot(e, x)

19

20 return X

21

22

23 def FFT(x):

24 """

25 A recursive implementation of

26 the 1D Cooley -Tukey FFT , the

27 input should have a length of

28 power of 2.

29 """

30 N = len(x)

31

32 if N == 1:

33 return x

34 else:

35 X_even = FFT(x[::2])

36 X_odd = FFT(x[1::2])

37 factor = \

38 np.exp(-2j * np.pi * np.arange(N) / N)

39

40 X = np.concatenate(

41 [X_even + factor [:int(N / 2)] * X_odd ,

42 X_even + factor[int(N / 2):] * X_odd])

43 return X

44 def gen_sig(sr):

45 ’’’

46 function to generate

47 a simple 1D signal with

48 different sampling rate

49 ’’’

50 ts = 1.0/sr

51 t = np.arange(0,1,ts)

52

53 freq = 1.

54 x = 3*np.sin (2*np.pi*freq*t)

55 return x

56

57 # sampling rate

58 bei=2

59 sr = 2048* bei

60 print(sr)

61 array=gen_sig(sr)

62 print(timeit.timeit(’DFT(array)’,"from __main__ import DFT , array",number =1))

63 print(timeit.timeit(’FFT(array)’,"from __main__ import FFT , array",number =1))

Listing 1: Code for Numerical Experiments
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Abstract

This article is an introduction to the integral transformation in signal processing.Including

Discrete Fourier Transform(DFT),Fast Fourier Transform(FFT) and Hilbert Transform(HT).

1 Introduction

Begin with a real-valued continuous-time signal x (t) ,in the mathematical sense we can use

continuous − time Fourier transform and convert it from the time domain to the frequency do-

main.And the signal defined in the frequency domain is complex symmetric. Thus, the negative

frequency half of the signal spectrum contains redundant information with respect to the positive

frequency half.So the analytic signal was created to remove this spectral redundacy by deleting the

negative frequency half of the signal transform.The analytic signal has been demonstrated have

lots of advantages compared with the original real-valued signal.So how to form analytic signal is

very important.

1.1 Basic Definition

Definition 1.1 (continous-time signal). We said x(t) a continous-time signal while x(t) is a con-

tinuous function from R→ R

Definition 1.2 (Sample rate). Suppose we want to collect samples from a continuous signal,we

choose an interval T and sampling at time interval T .Then we have a discrete-time signal x(nT ) =

x(n) and we called 1
T the sample rate.

Definition 1.3 (Phase Factor). We defined the phase factor as WN = e−i
2π
N and W k

N = e−i
2π
N k

1
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1.2 Integral Transformation

Definition 1.4 (continuous − timeFouriertransform). Suppose x (t) is a continuous-time signal

and f is frequency,we define Fourier transform as following

X(f) =

∫ +∞

−∞
x(t)e−iftdt (1.1)

Definition 1.5 (inverseFouriertransform). The inverse Fourier transform is defined as following

x(t) =
1

2π

∫ +∞

−∞
X(f)eiftdf (1.2)

Definition 1.6 (discrete − timeFouriertransform). Suppose we have a N-point discrete-time signal

{x(n)},its DFT is defined as following

X(k) =

N−1∑
n=0

x(n)W kn
N , k = 0, 1, · · ·, N − 1 (1.3)

Definition 1.7 (inversediscrete − timeFouriertransform). The inverse transform of DFT is defined

as following

x(n) =
1

N

N−1∑
k=0

X(k)W kn
N , n = 0, 1, ··, N − 1 (1.4)

Definition 1.8 (continuous − timeHilberttransform). Suppose x (t) is a continuous-time signal,its

Hilbert transform is defined as following

ˆx (t) =
1

π

∫ +∞

−∞

x(τ)

t− τ
dτ (1.5)

2 Algorithm Optimization

Let’s review the DFT algorithm,if we have a real-valued N-point discrete-time signal,We

assume that N = 2v without losing generality.So we have DFT algorithm as following.

X(k) =

N−1∑
n=0

x(n)W kn
N , k = 0, 1, · · ·, N − 1 (2.1)

From (2.1) We can see that if we want to get X(k),we need

X(k) =

N−1∑
n=0

• (2.2)

2
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N − 1 times addition,and

x(0)e−i
2π
N 0k + x(1)e−i

2π
N 1k + · · ·+ x(N − 1)e−i

2π
N (N−1)k (2.3)

N times multiplication,that’s mean if we want to get {X(k)}(k = 0 ∼ N − 1),we need N2 times

multiplication and N(N−1) times addition,so if we compute the DFT directly, the time complexity

of the algorithm will be O(N2)

The algorithm with time complexity of O(N2) are not suitable for larger data sizes,so we need an

effective algorithm.We begin with the property of W kn
N .

Property 2.1 (Periodicity). W
n(N−K)
N = W−nkN ,W

k(N−n)
N = W−nkN

Proof.

W
n(N−k)
N = e−i

2π
N (N−k)n = e−i

2π
N nNei

2π
N nk = e−i2πnW−nkN = W−nkN (2.4)

W
k(N−n)
N = e−i

2π
N (N−n)k = e−i

2π
N kNei

2π
N nk = e−i2πkW−nkN = W−nkN (2.5)

Corollary 2.1. Wnk
N = W r

N where r satisfies r ≡ (nk) mod N

Proof. Assume that nk = Nq + r(q ∈ Z),we have

W r
N = Wnk−Nq

N = Wnk
N W−NqN = Wnk

N e2πiq = Wnk
N (2.6)

Property 2.2 (Symmetry). W
nk+N

2

N = −Wnk
N

Proof. W
nk+N

2

N = e−i
2π
N nke−i

2π
N
N
2 = −e−i 2πN nk = −Wnk

N

Use these two properties,decompose the expression of DFT into two parts.

X(k) =

N−1∑
n=0

x(n)W kn
N k = 0, 1, · · ·, N − 1

=

N
2 −1∑
m=0

x(2m)W 2mk
N +

N
2 −1∑
m=0

x(2m+ 1)W
k(2m+1)
N

=

N
2 −1∑
m=0

x(2m)Wmk
N/2 +W k

N

N
2 −1∑
m=0

x(2m+ 1)W km
N/2

Define G(k) =
∑N

2 −1
m=0 x(2m)Wmk

N/2 and H(k) =
∑N

2 −1
m=0 x(2m+ 1)W km

N/2

3
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Property 2.3. G(k) and H(k) satisfies G(k + N
2 ) = G(k) and H(k + N

2 ) = H(k)

Proof. G(k + N
2 ) =

∑N
2 −1
m=0 x(2m)W

r(k+N/2)
N/2 =

∑N
2 −1
m=0 x(2m)W rk

N/2 = G(k)

Similarly, it can be shown that H(k) is periodic,so we have

X(k) =


G(k) +W k

NH(k), k ≤ N

2
− 1;

G(k − N

2
)−W k−N2

N H(k − N

2
), k ≥ N

2

(2.7)

So if we obtained G(k) and H(k) for k ∈ {0, 1, · · N2 − 1},to get X(k),we need to compute

W k
NH(k),G(k) + W k

NH(k) and G(k) − W k
NH(k) for k ∈ {0, 1, · · N2 − 1}.So we need N

2 times

multiplication and N times addition.

We defined N
2 -points discrete-time signal f1(m) = x(2m) and f2(m) = x(2m + 1) for m ∈

{0, 1, ··, N2 − 1},we have

G(k) =

N
2 −1∑
m=0

f1(m)WN/2km (2.8)

H(k) =

N
2 −1∑
m=0

f2(m)WN/2km (2.9)

So G(k) and H(k) for k ∈ {0, 1, · · N2 − 1} is the DFT of {f1(m)} and {f2(m)},so we can use same

method on {f1(m)} and {f2(m)} for m ∈ {0, 1, · · N2 − 1}.As we assumed that N = 2v,this method

can be used for v times.

For v = 3,the process of the fast Fourier algorithm can be represented by the following butterfly

diagram.

Consider the time complexity of FFT,dividing the algorithm into v steps,at each step we initially

have a sequence of length N ,and we need N times additions and N
2 times multiplications to

obtain a new sequence as the initial sequence for the next step.So the time complexity of FFT is

O(N log2N).

4
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3 Applications

3.1 Analytic Signal

Definition 3.1. Suppose we have a continuous-time real-valued signal x (t) and if a complex-

valued signal z (t) satisfy Re{z(t)} = x(t) and Z(f) = 0 when the frequency f < 0,we call z (t) is

continuous-time analytic signal corresponding to x (t)

Let zr(t) = Re{z(t)} and zi(t) = Im{z(t)},we introduce the orthogonality between the real and

imaginary components of the analytic signal.

Property 3.1. Suppose zr(t) = Re{z(t)} and zi(t) = Im{z(t)},we have

∫ +∞

−∞
zr(t)zi(t)dt = 0 (3.1)

To prove this property,we first introduce two approaches to creat analytic signal z (t).

3.1.1 Creat Analytic Signal from Time domain

Suppose x(t) is a continuous-time real-valued signal,we will prove that z(t) = x(t) + i ˆx(t) is the

analytic signal corresponding to x (t).

Proof.

Lemma 3.1 (Dirichlet integral).
∫ +∞
−∞

sin(ft)
t dt = πsgn(f)

We just need to show for f < 0,
∫
−∞+∞x(t)e−ift + i ˆx(t)e−iftdt = 0

F(z(t)) =

∫ +∞

−∞
x(t)e−ift + i ˆx(t)e−iftdt

=

∫ +∞

−∞
x(t) cos(ft)− ix(t) sin(ft)dt+

i

π

∫ +∞

−∞

∫ +∞

−∞

x(τ)

t− τ
e−iftdτdt

=

∫ +∞

−∞
x(t) cos(ft)− ix(t) sin(ft)dt+

i

π

∫ +∞

−∞

∫ +∞

−∞

x(τ)

t− τ
e−iftdtdτ

=

∫ +∞

−∞
x(t) cos(ft)− ix(t) sin(ft)dt+

i

π

∫ +∞

−∞
πx(τ)ei(

π
2−fτ)dτ

= 0

By this method we can also obtain that the Fourier transform of the imaginary part is a

conjugate odd function.

5
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Property 3.2. Suppose Zi(f) = F(izi(t)),we have

Zi(f) =


X(f), f > 0

0, f = 0

−X̄(−f), f < 0

(3.2)

3.1.2 Creat Analytic Signal from Frequency domain

Suppose X(f) defined over the frequency interval −∞ < f < +∞, then we defined

Z(f) =


2X(f), f > 0

X(0), f = 0

0, f < 0

(3.3)

Use inverse Fourier transform to obtained z(t),we prove z(t) is analytic signal.

Proof. We just need to show Re{z(t)} = x(t)

Re{z(t)} =
1

2
(z(t) + ¯z(t)) =

1

2π

∫ +∞

0

(X(f) + ¯X(f))eiftdf

Notice that ¯X(f) = X(−f) and 1
2π

∫ +∞
−∞ X(f)eiftdf = x(t),we completed the proof

Now,we prove the orthogonality between the real and imaginary components of the analytic

signal.

Proof. Notice that zr(t) = x(t) and zi(t) = ˆx(t) = 1
π

∫ +∞
−∞

x(τ)
t−τ dτ∫ +∞

−∞
zr(t)zi(t)dt =

1

π

∫ +∞

−∞
x(t)

∫ +∞

−∞

x(τ)

t− τ
dτdt

=
1

π

∫ ∫
x(t)x(τ)

t− τ
dτdt

By symmetry,we obtained that
∫ ∫ x(t)x(τ)

t−τ dτdt = 0.

3.2 Discrete-Time ”Analytic” Signal

Now,let’s consider the discrete-time situation,suppose we have a N-points discrete-time signal

{x(n)} obtained by sampling a bandlimited real-valued continuous-time signal x(nT ) = x(n)

at periodic time intervals of T seconds.There are two properties we wish to satisfy in order for

z(n) = zr(n) + izi(n) to be an analytic-like discrete-time signal.

6

174 



Property 3.3. The real part of z(n) must exactly yield the original discrete-time sequence.

zr(n) = x(n) ∀n ∈ {0, 1, ··, N − 1} (3.4)

Property 3.4. The real and imaginary components must be orthogonal over the finite interval.

N−1∑
n=0

zr(n)zi(n) = 0 (3.5)

Consider three cases of the analytic-like discrete-time signal that differ in their sample rates.Suppose

X(k) is the DFT of x(n)

3.2.1 Computing Standard Discrete-Time ”Analytic” Signal

We use same method as the continous-time situation.We defined

Z(k) =



X(0), k = 0

2X(k), 1 ≤ k ≤ N

2

0,
N

2
+ 1 ≤ k ≤ N − 1

(3.6)

And we use inverse transform to obtain z(n).However,this method is not suitable for the discrete

case.Consider the data vector as following.

x(n) = [4, 2,−2,−1, 3, 1,−3, 1]

Use (3.6) we get z(n) as following.

z(n) = [3.875−0.396i, 2.125+3i,−2.125+1.811i,−0.875−2.293i, 2.875−1.104i, 1.125+3i,−3.125−0.311i, 1.125−3.707i]

We notice that the real part is not equal to the original data.The problem arises at the boundary

point.Processing the boundary points, we obtain the following correction formula.

Z(k) =



X(0), k = 0

2X(k), 1 ≤ k ≤ N

2
− 1

X(
N

2
), k =

N

2

0,
N

2
+ 1 ≤ k ≤ N − 1

(3.7)

Now,we prove that (3.7) satisfy Property3.3 and 3.4

7
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Proof. We prove Property3.3 at first.Notice that

z(n) =
1

N

N
2∑

k=0

Z(k)W−nkN (3.8)

=
1

N
(X(0) +

N
2 −1∑
k=1

2X(k)Wnk
N + X(

N

2
) cos(nπ)) (3.9)

And

X(k) =

N−1∑
n=0

x(n)W kn
N (3.10)

We calculate the factor of each x(m),while m ∈ {0, 1, ··, N − 1},let it be Am
n

Am
n =

1

N
(1 + 2

N
2 −1∑
k=1

W
k(m−n)
N + cos(nπ) cos(mπ)) (3.11)

So if m = n,apparently that An
n = 1,and if m 6= n,let q = Wm−n

N ,we have

Am
n =

(1− cos(mπ) cos(nπ))(1 + q)

(1− q)
(3.12)

Notice that q̄ = 1
q ,we get that Am

n + Ām
n = 0. So we get that Re(z(n)) = x(n)

Next we prove Property3.4.Notice that

zi(n) =
1

2i
(z(n)− z̄(n)) =

1

i
(
∑
m 6=n

x(m)Am
n ) (3.13)

So we just need to prove that.

N−1∑
n=0

x(n)
∑
m 6=n

x(m)Am
n = 0 (3.14)

Notice that Am
n + An

m = 0.We completed the proof.

3.2.2 Computing Decimated Discrete-Time ”Analytic” Signal

It is usually desirable in digital hardware implementations of digital signal processing operations to

use the lowest sample rate consistent with preservation of the signal information without aliasing.So

sometimes we need reduce sampling rate.The following equation shows that the N
2 -points analytic

signal can be generated directly from the N-points analytic signal.

Z(k) =


X(0) + X(

N

2
), k = 0

2X(k), 1 ≤ k ≤ N

2
− 1

(3.15)

8
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Use inverse DFT and scale by factor 1
2 to obtain decimated discrete-time “analytic” signal z(n) of

half the original sample rate.

Proof. We proof that Re{z(n)} = x(2n)

z(n) =
1

2

2

N

N
2 −1∑
k=0

Z(k)W−nkN/2

=
1

N
(

N
2 −1∑
k=1

2X(k)W−nkN/2 + (X(0) +X(
N

2
)))

Notice that

X(k) =

N−1∑
n=0

x(n)Wnk
N (3.16)

Use the same notation as in the previous section.

Am
n =

1

N
(1 + cos(mπ) + 2

N
2 −1∑
k=1

W
k(m−2n)
N ) (3.17)

So if m = 2n,we have A2n
n = 1 and if m 6= 2n,we have Am

n + Ām
n = 0.The orthogonality can be

proved in a similar way to the previous section.So we complete the proof.

3.2.3 Computing Interpolated Sample Rate Discrete-Time ”Analytic” Signal

In some cases we need a more accurate reconstruction of the signal, so encrypted sampling is

performed.

Y(k) =



X(k), 0 ≤ k ≤ N

2
− 1

1

2
X(
N

2
), k =

N

2

0,
N

2
+ 1 ≤ k ≤ NM − N

2
− 1

1

2
X(
N

2
), k = NM − N

2

X(k), NM − N

2
+ 1 ≤ k ≤ NM − 1

(3.18)

Compute the NM-points inverse DFT and scale by M,we obtained NM-points discrete-time signal

y(n).We prove that.

y(n) =

x(
n

M
), n = pM p ∈ {0, 1, ··, N − 1}

0, else

(3.19)

9
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Proof. We assume that n = pM ,then we have

y(n) =M
1

NM
(

N
2 −1∑
k=0

X(k)W−nkNM +
1

2
X(
N

2
)W
−nN2
NM +

1

2
X(
N

2
)W
−n(NM−N2 )

NM +

N−1∑
k=N

2 +1

X(k)W
−n(k+NM−N)
NM )

=
1

N
(

N−1∑
m=0

x(m)(

N
2 −1∑
k=0

W
k(m−p)
N + cos(mπ) cos(pπ) +

N−1∑
k=N

2 +1

W
k(m−p)
N )

Use same method as (3.11) we have y(pM) = x(p),and for n 6= pM we have y(n) = 0

We called y(n) a trigonometrically interpolated discrete-time signal from x(n). The following

algorithm tell us how to form the analytic-like signal of y(n) by N-points discrete-time signal x(n).

Z(k) =



X(0), k = 0

2X(k), 1 ≤ k ≤ N

2
− 1

X(
N

2
), k =

N

2

0,
N

2
+ 1 ≤ k ≤ NM − 1

(3.20)

Use same method as 3.2.1 and 3.2.2,we can easily verify that it satisfies the properties 3.3 and 3.4.
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Interpolation and Corona Problem
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1 Introduction

Let B denote the Banach algebra of bounded analytic functions in |z| < 1 under the maximal norm.
(We’ll prove B is a Banach algebra in section 2)

For f1, ..., fn ∈ B, consider I = I(f1, ..., fn) the ideal generated by f1, ..., fn.
If I = B, then there exist g1, ..., gn ∈ B such that

f1g1 + f2g2 + ...+ fngn = 1

⇒ |f1(z)|+ ...+ |fn(z)| ⩾
1

max1⩽i⩽n ||gi||
> 0

Corona Problem says if f1, ..., fn satisfies

|f1|+ ...+ |fn| ⩾ δ > 0

then I = B.
This is the main motivation of this paper. We’ll prove it in section 9.
The relationships between section 2 to section 9 are as follows:

Section 7 Section 6

Section 2 Section 8

Section 3 Section 4 Proposition 4.1 Section 4 Proposition 4.2

Section 4 Theorem 4.1

Section 5 Section 9

Section 4 Theorem 4.1 and section 5 study the secondary motivation: interpolation.
Interpolation studies what conditions on a1, a2, ... ∈ {z : |z| < 1} and w1, w2, ... ∈ C does there

exist f ∈ B such that
f(aν) = wν , ν = 1, 2, ...

We will use the notation A1, A2, ... for numerical constants.

1
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2 Hardy Space

Definition 2.1 (Hardy Space). Denote Hp (1 ⩽ p ⩽ +∞) the norm space of functions G analytic
in |z| < 1 under the norm

∥G∥p = lim
r→1

(
1

2π

∫ π

−π

|G(reiθ)|pdθ
) 1

p

(2.1)

The lemma below shows that the limit in (2.1) exists, maybe infinity.

Lemma 2.1. For every analytic function f on |z| < 1 , ( 1
2π

∫ 2π

0
|f(reiθ)|p)

1
p grows when r grows

(0 < r < 1).

Proof. For 0 < r < R < 1,

f(reiθ) =
1

2π

∫ 2π

0

f(Reiθ)Re(
Reiϕ + reiθ

Reiϕ + reiθ
)dϕ

=
1

2π

∫ 2π

0

f(Reiθ)
1− ( r

R )2

1− 2 r
R cos(ϕ− θ) + ( r

R )2
dϕ

|f(reiθ)| ≤
∫ 2π

0

1

2π

1− ( r
R )2

1− 2 r
R cos(ϕ− θ) + ( r

R )2
|f(Reiϕ|dϕ

≤ (

∫ 2π

0

1

2π

1− ( r
R )2

1− 2 r
R cos(ϕ− θ) + ( r

R )2
|f(Reiϕ|pdϕ)

1
p

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p ≤ (

1

2π

∫ 2π

0

dθ

∫ 2π

0

1

2π

1− ( r
R )2

1− 2 r
R cos(ϕ− θ) + ( r

R )2
|f(Reiϕ|pdϕ)

1
p

= (
1

2π

∫ 2π

0

|f(Reiϕ|pdϕ)
1
p

Theorem 2.1. Hp is a Banach Space

Proof. We only prove the completeness.
Let G1, G2, . . . , Gn, . . . be a Cauchy sequence in Hp.
∀0 < r < 1 , choose R such that r < R < 1.
∀ϵ ∈ R, choose N such that ∀n > m > N, ∥Gn −Gm∥p < ϵ. Then ∀z ∈ Dr = {a ∈ C : |z| < r},

|Gn(z)−Gm(z)| =

∣∣∣∣∣ 1

2πi

∫
|ξ|=R

Gn(ξ)−Gm(ξ)

ξ − z
dξ

∣∣∣∣∣
⩽

R

2π

∫ 2π

0

|Gn(Re
iθ)−Gm(Reiθ)|
|Reiθ − z|

dθ ⩽
R

R− r

∫ 2π

0

1

2π
|Gn(Re

iθ)−Gm(Reiθ)|dθ

⩽
R

R− r
(

∫ 2π

0

1

2π
|Gn(Re

iθ)−Gm(Reiθ)|pdθ)
1
p ⩽

R

R− r
||Gn −Gm||p

⩽
R

R− r
ϵ

2
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So Gn uniformly converges on Dr as n→ ∞. Since r is arbitrary, we conclude that Gn uniformly
converges to G on any compact subset of |z| < 1 where G analytic on |z| < 1.

For 0 < r < 1, since Gn converges uniformly to G in Dr as n→ ∞,

1

2π

∫ π

−π

|Gn(re
iθ)|pdθ → 1

2π

∫ π

−π

|G(reiθ)|pdθ (n→ ∞)

⇒
(

1

2π

∫ π

−π

|G(reiθ)|pdθ
) 1

p

= lim
n→+∞

(
1

2π

∫ π

−π

|Gn(re
iθ)|pdθ

) 1
p

⩽ lim
n→+∞

∥Gn∥p (by Lemma 2.1)

⇒ G ∈ Hp

And it’s easy to prove
||Gn −G||p → 0, n→ +∞

In the case p = +∞ , H∞ consists of all bounded analytic functions in |z| < 1 , with norm
||f ||∞ = sup{|f(z)|, |z| < 1}. Denote B = H∞. In the remaining contexts, || · || refers to || · ||∞

Proposition 2.1. 1 ⩽ p ⩽ q ⩽ +∞, if f ∈ Hq, then f ∈ Hp and ||f ||p ⩽ ||f ||q

Proof. For any 0 < r < 1,

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p ⩽ (

1

2π

∫ 2π

0

|f(reiθ)|qdθ)
1
q

⇒ ||f ||p ⩽ ||f ||q

Now enumerate some properties of Hardy space in [2] p.96-p.100 without proofs:

Proposition 2.2. Let f ∈ Hp, 1 ⩽ p ⩽ +∞ and denote its zeros in |z| < 1 by ζ1, ζ2, ... with
multiplicity. Then

∑
(1− |ζj |) < +∞

Proposition 2.3. Let f ∈ Hp, 1 ⩽ p ⩽ +∞ , then ∃f̃ ∈ Lp[0, 2π] such that

f(reiθ) → f̃(θ), a.e. and L1, as r → 1−

and ||f ||p = ( 1
2π

∫ 2π

0
|f̃(θ)|pdθ)1/p

Denote f(eiθ) = f̃(θ). Moreover,

f(reiθ) =
1

2π

∫ 2π

0

1− r2

1 + r2 − 2rcos(θ − ϕ)
f(eiϕ)dϕ, ∀r ∈ [0, 1), θ ∈ R

Proposition 2.4. p ⩾ 1 , f is a Lp function on the unit circle. Then ∃g ∈ Hp such that g(eiθ) =

f(eiθ) if and only if
∫ 2π

0
f(eiθ)einθdθ = 0 for all n > 0.

3
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3 A Useful Theorem

Theorem 3.1. Let σν be a sequence of open subintervals of (0, 1). Denote by σ′
ν the interval

obtained from σν by adjoining to σν equally long intervals on both sides, and let the length of σν be
lν . Then the conditions ∑

σj⊂σ′
i

lj ≤ Cli (3.1)

for all i and a fixed constant C > 2, imply

∞∑
ν=1

(
1

lν
)(

∫
σν

f(x)dx)2 ≤ AC

∫ 1

0

f(x)2dx (3.2)

for all square integrable function f.

Proof. We first reduce the theorem to the case that all σν have the form ( k
2n ,

k+1
2n ), where k, n ∈ Z+.

As we know, every σν is included in the union of at most four equally long intervals of the form
( k
2n ,

k+1
2n ), where 1

2n ≤ lν
2 . We can get it by this. First, σν ⊂ (0, 1), then divide [0, 1] through

the half to [0, 12 ], [
1
2 , 1]. Second, divide the interval which intersect σν . Continue until one interval

[ k
2n ,

k+1
2n ] ⊂ σν . Let ωi be the intervals obtained as above and let mi be the length of ωi. (3.1)

imply that ∑
ωj⊂ωi

mj =
∑

σj⊂σ′
i

mj ≤
∑

σj⊂σ′
i

lj
2

≤ Cli
2

≤ 2Cmi = cmi (3.3)

so it is sufficient to prove it by assume σν = [ k
2n ,

k+1
2n ].

Let Xν(x) be the characteristic function of ων and introduce the kernel

K(x, y) =

∞∑
ν=1

Xν(x)Xν(y)/mν

∞∑
ν=0

1

mν
(

∫
ων

f(x)dx)2 =

∫ 1

0

f(x)dx

∫ 1

0

K(x, y)f(y)dy

≤
{∫ 1

0

f(x)2dx

} 1
2
{∫ 1

0

dx(

∫ 1

0

K(x, y)f(y)dy)2
}

We write mij = m(ωi ∩ ωj), and

F =
∑
i,j

mij√
mi

√
mj

xixj (3.4)

where xi =
1√
mi

∫
ωi
f(x)dx. If we can prove F ≤ AC

∑∞
ν=1 x

2
i , then

∞∑
ν=0

1

mν
(

∫
ων

f(x)dx)2 ≤
{∫ 1

0

f(x)2dx

} 1
2

AC

∞∑
ν=1

x2i = AC

{∫ 1

0

f(x)2dx

} 1
2

{ ∞∑
ν=0

1

mν
(

∫
ων

f(x)dx)2

} 1
2

To discussion F . First, we pay attention to a fact that ωi ⊂ ωj or ωj ⊂ ωi or ωi ∩ ωj = ∅. Denote
G = {i : ωi}. Let G1 be set of i where ωi is not contained in any larger interval ωj . Let G2 be the

4
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set of all i ∈ G − G1 where ωi is not contained in any larger interval ωj . Denote G3 the same, so
as Gk. Denote i ∈ Gk,let Giν be the set of j where ωj ⊂ ωi and j ∈ Gν+k, ν = 0, 1, . . . .

For i ∈ G,denote aν =
∑

j∈Giν
mj ,and we have

∞∑
ν=n

aν ≤ can n = 0, 1, . . . (3.5)

a0 ≥ a1 ≥ a2 ≥ · · · ≥ 0 (3.6)

We claim that under the condition (3.5) and (3.6), we have

an ≤ 4(1− 1

c
)na0

We can assume a0 = 1.Let N > c Take {bν} , b0 = 1; bn = 0 when n > N , and satisfy

N∑
ν=n

bν = cbn, n ≤ N − c

we have bn = (1− 1
c )

n. Hence,

aN−c ≤ bN−c = (1− 1

c
)N−c

which is our assertion.

F 2 ≤


∞∑
i=1

xi
mi

∞∑
ν=0

∑
j∈Giν

√
mjxj +

∞∑
j=1

xj
mj

∞∑
ν=0

∑
i∈Gjν

√
mixi


1
2

≤ 4

∞∑
i=1

x2i ·
∞∑
i=1

1

mi
(

∞∑
ν=0

∑
j∈Giν

√
mjxj)

2

We define k > 0 by k2 = 1− 1
c

∞∑
i=1

1

mi
(

∞∑
ν=0

∑
j∈Giν

√
mjxj)

2

≤
∞∑
i=1

1

mi

∞∑
ν=0

k−ν(
∑

j∈Giν

√
mjxj)

2 ·
∞∑
ν=0

kν

≤ 1

1− k

∞∑
i=1

1

mi

∞∑
ν=0

k−ν
∑

j∈Giν

mj ·
∑

j∈Giν

x2j

≤ 4

1− k

∞∑
µ=1

∑
i∈Gµ

∞∑
ν=0

kν
∑

j∈Giν

x2j =
4

1− k

∞∑
ν=0

∞∑
ν=0

kν
∑

j∈Gµ+ν

x2j

≤ 4

1− k

∞∑
j=1

x2j

∞∑
ν=0

kν =
4

(1− k)2

∞∑
i=1

x2i

5
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Theorem 3.2. Let µ(z) be a non-negative measure in |z| < 1 and assume that

µ(S) ≤ Cl (3.7)

holds for all sets S of the form

S =
{
reiθ : r ⩾ 1− l, θ0 ≤ θ ≤ θ0 + l

}
, l ≤ 1 (3.8)

Then there is an absolute constant A16 so that∫
D

|G(z)|pdµ(z) ≤ A16C∥G∥pp (3.9)

for all G ∈ Hp, p ⩾ 1.Conversely, if (3.9) holds for a certain constant C , µ(S) satisfies (3.7) with
C independent of S.

Proof. Let us first assume (3.9) holds for some constant C and consider S as (3.8).
Let

G(z) =

(
1− |a|2

(1− zā)2

) 1
p

where a = (1− l)eiθ0+( 1
2 )l, then

∥G∥pp =
1

2π

∫ 2π

0

1− (1− l)2

|1− eiθ(1−l)|2
=

1

2π

∫ 2π

0

1− (1− l)2

1− 2(1− l) cos θ + (1− l)2
= 1

|G(z)|p =
1− (1− l)2

|1− zā|2
=

2l − l2

| a
1−l − z(1− l)|2

⩾
2l − l2

l2
⩾

1

2l

By (3.9), µ(S) ≤ 2Cl.
Now we prove the converse. Denote

rνn =

{
z : 2−1−n < 1− |z| ≤ 2−n,

ν · 2π
2n+1

≤ arg z <
(ν + 1) · 2π

2n+1

}
(3.10)

where n = 0, 1, · · · ; v = 0, 1, · · · , 2n+1 − 1.

Let zνn = (1− 2−n)e
ν+1

2
2n+1 2πi,and ωνn be the range of arg z for z in rνn,where n = 0, 1, · · · ; v =

0, 1, · · · , 2n+1 − 1. We first assume G ̸= 0, since otherwise by Proposition 2.2 and [1] Chapter 5
Problem 2, assume A is the Blaschke product constructed by the zeros of G, and replace G by G

A ,
the left side of (3.9) increases because A(z) < 1 , but the norm of G doesn’t change.

If we replace G by G
2
p , we change the situation to p = 2 . It’s sufficient to prove there exists

a absolute constant A1 such that for any harmonic function u with boundary value f ∈ L2(0, 2π),
we have ∫

D

u(z)2dµ(z) ≤ A1C

∫ 2π

0

f(θ)2dθ (3.11)

because, assume (3.11),for ∀G ∈ Hp, G = u+ iv , where u, v are hormonic functions, and∫
Dr

|G(z)|2dµ(z) =
∫
Dr

|u(z)|2 + |v(z)|2dµ(z) ≤ A1C

∫
∂Dr

|u(z)|2 + |v(z)|2dµ(z) → ∥G∥22

6
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Back to the proof, we have∫
D

u(z)2dµ(z) ≤
∑

n∈Z,0≤ν≤2n+1−1

µ(rνn)u(zνn)
2 (3.12)

where zνn is the max point of u in rνn, and 1 − 2−n ≤ |z| ≤ 1 − 2−n−1. For zνn, we denote ω0
j

be the arc ωij , j ≤ n which arg(zνn) belongs,and denote ω1
j = arc ωi+1,j , ω

−1
j = arc ωi−1,j . By

Proposition 2.3

u(zνn)
2 = (

1

2π

∫ 2π

0

1− r2

1 + r2 − 2rcos(θ − ϕ)
f(ϕ)dϕ)2 ≤ (

n∑
j=0

1

2π

∫
ω

kj
j

1− r2

1 + r2 − 2r cos(θ − ϕ)
f(ϕ)dϕ)2

where z = reiθ. The kj ∈ {−1, 0, 1} is chosen so that ω
kj

j is disjoint with ω
kj+1

j+1 . When on

ω
kj

j , |ϕ− θ| ∈ [ π
2(j+1) ,

π
2 ], j < n, when j = n, |ϕ− θ| can be zero. We have

u(zνn)
2 ≤ (

n∑
j=0

1

2π

∫
ω

kj
j

1− r2

(r − 1)2 + 2r(1− cos(θ − ϕ)
f(ϕ)dϕ)2

= (

n∑
j=0

1

2π

∫
ω

kj
j

1− r2

(r − 1)2 + 4r(sin( θ−ϕ
2 ))2

f(ϕ)dϕ)2

≤ (

n∑
j=0

1

2π

∫
ω

kj
j

1− r2

(r − 1)2 + 4
π r(θ − ϕ)2

f(ϕ)dϕ)2 (sinθ ≤ 2

π
θ)

≤ (

n∑
j=0

1

2π

∫
ω

kj
j

1− r2

(r − 1)2 + 4
π2 r(

π
2j+1 )2

f(ϕ)dϕ)2

≤ (

n∑
j=0

1

2π

∫
ω

kj
j

1− (1− 2−n−1)2

1
22n+2 + 4(1− 2−n−1) 1

22j+2

f(ϕ)dϕ)2

≤ (

n∑
j=0

1

2π

∫
ω

kj
j

22j−n−1f(ϕ)dϕ)2 ≤
n∑

j=0

1

16π2
23j−2n(

∫
ω

kj
j

f(ϕ)dϕ)2
n∑

j=0

2j

= A3

n∑
j=0

23j−n(

∫
ω

kj
j

f(ϕ)dϕ)2 ≤ A3

1∑
k=−1

n∑
j=0

23j−n(

∫
ω

kj
j

f(ϕ)dϕ)2

7
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with (3.12), we get∫
D

u(z)2dµ(z) ≤
∑

n∈Z,0≤ν≤2n+1−1

µ(rνn)u(zνn)
2 (3.13)

≤ A3

∑
n∈Z,0≤ν≤2n+1−1

µ(rνn)2
2n

1∑
k=−1

n∑
j=0

23(j−n)(

∫
ωk

j

f(ϕ)dϕ)2 (3.14)

= A3π
2

∞∑
j=0

2j+1−1∑
i=0

(
2j+1

2π

∫
ωij

f(ϕ)dϕ)2
∑
n⩾j

2j−nµ(rνn) (3.15)

= A3π
2

∞∑
j=0

2j+1−1∑
i=0

λij(
2j+1

2π

∫
ωij

f(ϕ)dϕ)2 (3.16)

where ν is that argzνn ∈ ωi−1,j

⋃
ωi,j

⋃
ωi+1,j . We denote λij =

∑
n⩾j 2

j−nµ(rνn).

For every k,m, let Sνn =
{
reiθ : r ⩾ 1− 1

2n ,
ν�2π
2n+1 ≤ θ < (ν+1)�2π

2n+1

}
∑

ωij⊂ωkm

λij =
∑

rνn⊂ωkm

µ(rνn)
∑
j≤n

2−j =
∑

Sνn⊂ωkm

2m−nµ(Sνn) (3.17)

≤
∑

Sνn⊂ωkm

2m−nC2−n ≤ C
∑
n⩾m

2n−m2m−n2−n ≤ A5C2
−m (3.18)

Now given f, we modify λij . If λi1 ⩾ 1
2 we do not change λi1. If λi1 <

1
2 , we add λi1 to λ2i,2 or

λ2i+1,2 and replace λi1 by zero. This can be done so the right hand side of (3.16) increase, since
the corresponding two integrals for j = 2 have the integral for j = 1 as their mean-value. We do

this for all λi1 and obtain coefficients λ
(1)
ij . We now treat λ

(1)
i2 in the same manner adding λ

(1)
i2 to a

suitable λ
(1)
k3 if λ

(1)
i2 < 2−2. Continuing in this way obtain coefficients λ∗ij which satisfy (3.17) with

A5C replace by (A5 + 2). (3.17) imply that

2−m ≤ λ∗im
2π

<
1

2π
(A5 + 2)C2−m (3.19)

(3.17) imply that ∑
ω∗

ij⊂ωkm

2−j ≤
∑

ω∗
ij⊂ωkm

λ∗ij
2π

≤ (A5 + 2)C2−m

where ω∗
ij denote the ωij where λ∗ij ̸= 0. By Theorem3.1.

∞∑
j=1

∑
0≤i≤2j+1−1;

λ∗
ij

̸=0

2j(

∫
ω∗

ij

f(ϕ)dϕ)2 ≤ 1

2π
A(A5 + 2)C

∫ 2π

0

f(x)2dx

8
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(3.19) imply that

A3π
2

∞∑
j=0

2j+1−1∑
i=0

λij(
2j+1

2π

∫
ωij

f(ϕ)dϕ)2

≤A3π
2

∞∑
j=0

2j+1−1∑
i=0

λ∗ij(
2j+1

2π

∫
ω∗

ij

f(ϕ)dϕ)2

≤A3π
2

∞∑
j=0

∑
0≤i≤2j+1−1;

λ∗
ij

̸=0

C(A5 + 2)2−j(
2j+1

2π

∫
ω∗

ij

f(ϕ)dϕ)2

=A∗
5

∞∑
j=0

∑
0≤i≤2j+1−1;

λ∗
ij

̸=0

2j(

∫
ω∗

ij

f(ϕ)dϕ)2

≤ 1

2π
A∗

5A(A5 + 2)C

∫ 2π

0

f(x)2dx

4 0-1 interpolations

Theorem 4.1. bν , cν ∈ C mutually different, |bν | < 1, |cν | < 1, ν = 1, 2, ...
∞∑
ν=1

(1 − bν) <

+∞,
∞∑
ν=1

(1 − cν) < +∞, B(z) =
∞∏
ν=1

bν−z

1−bνz

|bν |
bν
, C(z) =

∞∏
ν=1

cν−z
1−cνz

|cν |
cν

([1] p.157 Problem2 shows

that B(z) is holomorphic in |z| < 1 with zeros exactly at bν , and similar for C(z))
Then ∃f ∈ B such that

f(bν) = 0, f(cν) = 1, ν = 1, 2, ... (4.1)

if and only if ∃δ > 0 such that

|B(z)|+ |C(z)| ⩾ δ, ∀|z| < 1 (4.2)

If (4.2) holds, (4.1) can be solved with ||f || ⩽ δ−A11 , δ < 1/2

Proof. Assume f ∈ B satisfies (4.1), then

f = Bg, f − 1 = hC, ||g|| = ||f ||, ||h|| = ||f − 1|| ⩽ ||f ||+ 1

⇒ Bg − Ch = 1

⇒ 1 ⩽ ||g|| |B(z)|+ ||h|| |C(z)| ⩽ (||f ||+ 1)(|B(z)|+ |C(z)|)

⇒ |B(z)|+ |C(z)| ⩾ (||f ||+ 1)−1

For the converse, we need two propositions:

9
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Proposition 4.1. a1, ..., as, w1, ..., ws ∈ C, |aν | < 1, ν = 1, 2, ..., s, a1, ..., as mutually different,

A(z) =
s∏

ν=1

aν−z
1−aνz

|aν |
aν

, then

1.

inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s} = sup{|
s∑

ν=1

G(aν)wν

A′(aν)
|, G ∈ H1, ||G||1 = 1}

(4.3)

2. ∃f0 ∈ B such that f0(aν) = wν , ν = 1, 2, ..., s , and

||f0|| = inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s}

Proposition 4.2 (Carleson’s lemma). a1, ..., as ∈ C mutually different, |aν | < 1, ν = 1, ..., s, A(z) =
s∏

ν=1

aν−z
1−aνz

|aν |
aν
, 0 < ϵ ⩽ 1/4, 0 < κ < A14 (A14 is an absolute constant less than 1/8 we’ll determine

later)
Then there exist a finite number of disjoint regions Ω1, ...,Ωp in |z| < 1 with rectifiable boundaries

Γ = ∪p
j=1∂Ωj satisfies

1. a1, ..., as ∈
⋃p

j=1 Ωj

2. ∀z ∈ Γ, ϵ ⩽ |A(z)| ⩽ ϵκ

3. Let µ be the measure on |z| < 1 defined by µ(E) = arc length of E ∩ Γ (E is a Borel subset
of {z, |z| < 1}) ,then ∀l ∈ (0, 1], θ0 ∈ R,

µ({reiθ | 1− l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0 + l}) ⩽ A15ϵ
−2l (4.4)

Now assume (4.2) holds with δ < 1/2
for s ∈ N , define

Bs(z) =

s∏
ν=1

bν − z

1− bνz

|bν |
bν

, Cs(z) =

s∏
ν=1

cν − z

1− cνz

|cν |
cν

Choose ϵ ∈ (0, 1/4], κ ∈ (0, A14) so that ϵκ = δ/2 and let Γ be the curves in Proposition4.2 with
respect to c1, ..., cs, ϵ, κ , then for z ∈ ∪Ωj ,

ϵ < |Cs(z)| ⩽ sup{|Cs(z)|, z ∈ Γ} ⩽ ϵκ ⩽
δ

2
(4.5)

⇒ |Bs(z)| ⩾ δ − |Cs(z)| ⩾
δ

2
> 0 (4.6)

For G ∈ H1

1

2πi

∫
Γ

G(z)

Bs(z)Cs(z)
dz =

s∑
ν=1

G(cν)

Bs(cν)C ′
s(cν)

=

s∑
ν=1

G(cν)
d
dz (Bs(z)Cs(z))|z=cν
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By Proposition4.1, suppose fs in B such that fs(bν) = 0, fs(cν) = 1, ν = 1, 2, ..., s , and

||fs|| = inf{||f ||, f(bν) = 0, f(cν) = 1, ν = 1, 2, ..., s}

= sup{|
s∑

ν=1

G(cν)
d
dz (Bs(z)Cs(z))|z=cν

|, G ∈ H1, ||G||1 = 1}

= sup{| 1

2πi

∫
Γ

G(z)

Bs(z)Cs(z)
dz|, G ∈ H1, ||G||1 = 1}

⩽ (
δ

2
)−1ϵ−1 1

2π
sup{|

∫
Γ

|G(z)| |dz|, G ∈ H1, ||G||1 = 1} (by (4.5), (4.6))

⩽ (
δ

2
)−1ϵ−1 1

2π
A16A15ϵ

−2||G||1 (by Proposition4.2 3, Theorem3.2)

=
A15A16

2π
(
δ

2
)−1−3/κ

Notice that fs is independent of the choice of ϵ and κ, so let κ = A14/2, ϵ = (δ/2)κ
−1

||fs|| ⩽
A15A16

2π
(
δ

2
)−1−6/A14 ⩽ δ−A11

By [1]p.225 Theorem 3.3 and Arzela-Ascoli theorem, a subsequence of {fs}+∞
s=1 convergent to

f ∈ B, then ||f || ⩽ δ−A11 , f(bν) = lim
s→+∞

fs(bν) = 0, f(cν) = lim
s→+∞

fs(cν) = 1

Proof of Proposition 4.1. For f ∈ B satisfying f(aν) = wν , ν = 1, 2, ..., s and G ∈ H1, ||G||1 = 1,

||f || = || f
A
|| = 1

2π

∫ 2π

0

|G(eiθ)| || f
A
||dθ

⩾
1

2π
|
∫ 2π

0

G(eiθ)f(eiθ)

A(eiθ)
ieiθdθ|

= | 1

2πi

∫
|z|=1

G(z)f(z)

A(z)
dz|

= |
s∑

ν=1

G(aν)f(aν)

A′(aν)
| = |

s∑
ν=1

G(aν)wν

A′(aν)
|

∴ inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s} ⩾ sup{|
∑s

ν=1
G(aν)wν

A′(aν)
|, G ∈ H1, ||G||1 = 1}

For the remaining proof, we need two lemmas:

Lemma 4.1. 1 ⩽ q ⩽ +∞, gn ∈ Hq, n = 1, 2, ... . If gn converges uniformly to f on any compact
subset of |z| < 1, then ||f ||q ⩽ lim inf

n→∞
||gn||q

Proof. For any 0 < r < 1, because gn converges uniformly to f on |z| = r,

(
1

2π

∫ 2π

0

|fq(reiθ)|qdθ)1/q = lim inf
n→∞

(
1

2π

∫ 2π

0

|gn(reiθ)|qdθ)1/q ⩽ lim inf
n→∞

||gn||q

⇒ ||f ||q ⩽ lim inf
n→∞

||gn||q
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Lemma 4.2. 1 ⩽ q ⩽ +∞, gn ∈ Hq, ||gn||q ⩽ M, n = 1, 2, ... . Then there exists a sequence
of positive integers {nk} such that gnk

converges uniformly to a holomorphic function f on any
compact subset of |z| < 1

Proof. For any 0 < r < 1, by Proposition 2.3

gn(re
iθ) =

1

2π

∫ 2π

0

1− r2

1 + r2 − 2rcos(θ − ϕ)
gn(e

iϕ)dϕ

⇒ |gn(reiθ)| ⩽
1

2π

∫ 2π

0

1− r2

1 + r2 − 2r
|gn(eiϕ)|dϕ

⩽
1 + r

1− r
(
1

2π

∫ 2π

0

|gn(eiϕ)|q)1/q =
1 + r

1− r
||gn||q ⩽

1 + r

1− r
M

⇒ sup{|gn(z)|, |z| ⩽ r} = sup{|gn(reiθ)|, θ ∈ R} ⩽
1 + r

1− r
M

Therefore {gn} uniformly bounded on |z| ⩽ r.
By [1] p.225 Theorem 3.3 and Arzela-Ascoli Theorem, there exists a subsequence of {gn} con-

verging uniformly on any compact subset of |z| < 1 to a holomorphic function f .

For 1 ⩽ q ⩽ +∞ , denote mp = inf{||f ||q, f ∈ Hq, f(aν) = wν , ν = 1, 2, ..., s}
Choose g1, g2, ... ∈ Hq such that gn(aν) = wν , ν = 1, 2, ..., s, n = 1, 2, ... and ||gn||q decreases

and tends to mq as n tends to infinity.
By Lemma 4.2, we can assume gn ⇒ fq on any compact subset of |z| < 1. Then fq(aν) =

wν , ν = 1, 2, ..., s, and by Lemma 4.1,

||fq||q ⩽ mq = inf{||f ||q, f ∈ Hq, f(aν) = wν , ν = 1, 2, ..., s}

⇒ ||fq|| = mq

Now let 3 ⩽ q < +∞.
For η, ϕ ∈ R, g ∈ Hq, f̃(z) = fq(z) + ηeiϕA(z)g(z) satisfies f̃ ∈ Hq and f̃(aν) = wν , ν =

1, 2, ..., s. Therefore

||fq||q ⩽ ||fq + ηeiϕAg||q (4.7)

|fq(eiθ) + ηeiϕA(eiθ)g(eiθ)|q = ((fq + ηeiϕAg)(fq + ηe−iϕAg))q/2

= (|fq|2 + η(fqAge
−iϕ + fqAge

iϕ) + η2|g|2)q/2

⇒ d|fq + ηeiϕAg|q

dη
=
q

2
|fq + ηeiϕAg|q−2(fqAge

−iϕ + fqAge
iϕ + 2η|g|2)

By mean value theorem,

d||fq + ηeiϕAg||qq
dη

∣∣∣∣∣
η=0

= lim
η→0

∫
|z|=1

(|fq + ηeiϕAg|q − |fq|q)dθ
2πη

= lim
η→0

∫
|z|=1

q

4π
|fq + ϵηeiϕAg|q−2(fqAge

−iϕ + fqAge
iϕ + 2ϵη|g|2)dθ
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where ϵ ∈ (0, 1) relevant to η and θ.

|fq + ϵηeiϕAg|q−2|fqAge−iϕ + fqAge
iϕ + 2ϵη|g|2|

⩽ (|fq|+ η|g|)q−2(2|fq| |g|+ 2η|g|2)
⩽ 2q−2(|fq|q−2 + ηq−2|g|q−2)(|fq| |g|+ η|g|2)
= 2q−2(|fq|q−1|g|+ ηq−1|g|q + η|fq|q−2|g|2 + ηq−2|fq| |g|q−1)

⩽ 2q−2(
(q − 1)|fq|q + |g|q

q
+ η

(q − 2)|fq|q + 2|g|q

q
+ ηq−2 |fq|q + (q − 1)|g|q

q
+ ηq−1|g|q)

⩽ C(|fq|q + |g|q)

where C is independent of η.
The boundary function of fq and g is Lq, so by bounded convergence theorem,

d||fq + ηeiϕAg||qq
dη

∣∣∣∣∣
η=0

= lim
η→0

∫
|z|=1

q

4π
|fq + ϵηeiϕAg|q−2(fqAge

−iϕ + fqAge
iϕ + 2ϵη|g|2)dθ

=

∫
|z|=1

q

4π
|fq|q−2(fqAge

−iϕ + fqAge
iϕ)dθ

By (4.7), ∫
|z|=1

|fq|q−2(fqAge
−iϕ + fqAge

iϕ)dθ = 0, ∀ϕ ∈ R

Let ϕ = 0, π2 , we get ∫
|z|=1

|fq|q−2(fqAg + fqAg)dθ = 0 (4.8)∫
|z|=1

|fq|q−2(−ifqAg + ifqAg)dθ = 0

⇒
∫
|z|=1

|fq|q−2(−fqAg + fqAg)dθ = 0 (4.9)

Add up (4.8) and (4.9), ∫
|z|=1

|fq|q−2fqAgdθ = 0, ∀g ∈ Hq

Let g(z) = zn, n = 0, 1, ...,∫ 2π

0

|fq(eiθ)|q−2fq(e
iθ)A(eiθ)einθdθ = 0, n = 0, 1, ...

Notice that |fq(eiθ)|q−2fq(e
iθ)A(eiθ)e−iθ is L1 on θ ∈ [0, 2π]. By Proposition 2.4, There is a

function Fq ∈ H1 such that Fq = m1−q
q z−1|fq|q−2fqA on |z| = 1. We have

||Fq||1 =
1

2π

∫ 2π

0

m1−q
q |fq(eiθ)|q−1dθ ⩽ m1−q

q (
1

2π

∫ 2π

0

|fq(eiθ)|qdθ)
q−1
q = m1−q

q mq−1
q = 1
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mq = m1−q
q

1

2π

∫ 2π

0

|fq(eiθ)|qdθ =
1

2π

∫ 2π

0

eiθFq(e
iθ)fq(e

iθ)

A(eiθ)
dθ

=
1

2πi

∫
|z|=1

Fq(z)fq(z)

A(z)
dz =

s∑
ν=1

Fq(aν)wν

A′(aν)

(4.10)

By Proposition 2.1, for any 1 ⩽ q1 ⩽ q2 ⩽ +∞,

mq2 = ||fq2 ||q2 ⩾ ||fq2 ||q1 ⩾ mq1

⇒ lim
q→+∞

mq exists and m∞ ⩾ lim
q→+∞

mq

By Proposition 2.1,

||fq||1 ⩽ ||fq||q = mq ⩽ m∞, ∀ 3 ⩽ q < +∞

By Lemma 4.2, there exists an increasing sequence {qk} of positive real numbers greater than 3
such that qk tends to infinity and fqk converges uniformly to f0 on any compact subset of |z| < 1.
Then f0(aν) = wν , ν = 1, 2, ..., s

By Lemma 4.1,

||f0||p ⩽ lim
k→+∞

||fqk ||p ⩽ lim
k→+∞

||fqk ||qk = lim
k→+∞

mqk = lim
q→+∞

mq ∀1 ⩽ p < +∞

⇒ m∞ ⩽ ||f0||∞ = lim
p→+∞

||f0||p ⩽ lim
q→+∞

mq ⩽ m∞

⇒ ||f0|| = m∞ = lim
q→+∞

mq (4.11)

Notice that ||Fqk ||1 ⩽ 1, k = 1, 2, ... , by Lemma 4.2, we can assume Fqk converges uniformly to
F0 on any compact subset of |z| < 1. By Lemma 4.1, ||F0||1 ⩽ 1

Replace q in (4.10) with qk and let k tends to infinity, and by (4.11), we get

m∞ =

s∑
ν=1

F0(aν)wν

A′(aν)

⇒ inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s}

= m∞ =

s∑
ν=1

F0(aν)wν

A′(aν)
⩽ sup{|

s∑
ν=1

G(aν)wν

A′(aν)
|, G ∈ H1, ||G||1 = 1}

∴ inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s} = sup{|
∑s

ν=1
G(aν)wν

A′(aν)
|, G ∈ H1, ||G||1 = 1}

And f0 satisfies
f0(aν) = wν , ν = 1, 2, ..., s

||f0|| = m∞ = inf{||f ||, f ∈ B, f(aν) = wν , ν = 1, 2, ..., s}
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5 A General Interpolation Theorem

Theorem 5.1. Let {zν}∞1 be a sequence of mutually different complex numbers in |z| < 1 such that∏
ν∈N, ν ̸=µ

∣∣∣∣ zν − zµ
1− zνzµ

∣∣∣∣ ⩾ δ1 > 0, µ = 1, 2, ... (5.1)

Then for any sequence {wν} of complex numbers in |z| ⩽ 1, there is a function f ∈ B such that
f(zν) = wν

Remark 5.1. (5.1) implies
∞∑
ν=0

(1− |zν |) < +∞

Remark 5.2. [3] proved that for any bounded complex number sequence {wν}, there is a function
f ∈ B such that f(zν) = wν if and only if (5.1) holds.

Denote ρ(z, w) = | z−w
1−zw | (|z| < 1, |w| < 1)

Lemma 5.1. ([1] p.251 Exercise 13) If f is an automorphism of {z, |z| < 1}, then ρ(f(z), f(w)) =
ρ(z, w) for all |z| < 1, |w| < 1

Lemma 5.2. For |z1|, z2|, |w| < 1,∣∣∣ρ(z1, w)− ρ(z2, w)
∣∣∣

1− ρ(z1, w) ρ(z2, w)
⩽ ρ(z1, z2) ⩽

ρ(z1, w) + ρ(z2, w)

1− ρ(z1, w) ρ(z2, w)

Proof. By Lemma 5.1, we can assume w = 0. It’s sufficient to prove that∣∣∣|z| − |w|
∣∣∣

1− |z| |w|
⩽ ρ(z, w) ⩽

|z|+ |w|
1− |z| |w|

, ∀ |z| < 1, |w| < 1

Denote C(z0, r) = {z ∈ C, |z − z0| = r}, z0 ∈ C, r ∈ R+

Fix w and |z| = r < 1. Let z range on C(z0, r). Write ρ(z, w) in a form of Mobiüs transformation:

ρ(z, w) =

∣∣∣∣ z − w

1− zw

∣∣∣∣ = ∣∣∣∣ 1
w − w

1− zw
− 1

w

∣∣∣∣
z ∈ C(z0, r) ⇒ 1− zw ∈ C(1, r|w|)

⇒ 1

1− zw
∈ C

(
1

2
(

1

1− r|w|
+

1

1 + r|w|
),
1

2
(

1

1− r|w|
− 1

1 + r|w|
)

)
= C

(
1

1− r2|w|2
,

r|w|
1− r2|w|2

)
⇒

1
w − w

1− zw
− 1

w
∈ C

(
1− |w|2

w

1

1− r2|w|2
− 1

w
,
1− |w|2

|w|
r|w|

1− r2|w|2

)
= C

(
(r2 − 1)|w|2

w(1− r2|w|2)
,
r(1− |w|2)
1− r2|w|2

)

15

193 



⇒ |ρ(z, w)| ⩾

∣∣∣∣∣
∣∣∣∣ (r2 − 1)|w|2

w(1− r2|w|2)

∣∣∣∣− r(1− |w|2)
1− r2|w|2

∣∣∣∣∣
=

∣∣∣∣ (1 + r|w|)(r − |w|)
1− r2|w|2

∣∣∣∣ =
∣∣∣|z| − |w|

∣∣∣
1− |z| |w|

|ρ(z, w)| ⩽
∣∣∣∣ (r2 − 1)|w|2

w(1− r2|w|2)

∣∣∣∣+ r(1− |w|2)
1− r2|w|2

=
|z|+ |w|
1− |z| |w|

Proof of Theorem 5.1. Consider an arbitrary decomposition of {zν , ν = 1, 2, ..., s} into disjoint sets
IB and IC . Let

B(z) =
∏

zν∈IB

zν − z

1− zνz
, C(z) =

∏
zν∈IC

zν − z

1− zνz

Denote

Dν = {z ∈ C, |z| < 1, ρ(z, zν) <
δ1
3
}, ν = 1, 2, ..., s

VB = {z ∈ C, |z| ⩽ 1}\

( ⋃
zν∈IB

Dν

)

VC = {z ∈ C, |z| ⩽ 1}\

( ⋃
zν∈IC

Dν

)
(5.1) implies that

δ1 < 1, ρ(zν , zµ) ⩾ δ1, ∀ ν ̸= µ (5.2)

Suppose ∃ ν ̸= µ such that Dν ∩Dµ ̸= ∅, choose z ∈ Dν ∩Dµ, then

ρ(z, zν) <
δ1
3
, ρ(z, zµ) <

δ1
3

By Lemma 5.2,

ρ(zµ, zν) ⩽
ρ(z, zν) + ρ(zµ, z)

1− ρ(z, zν) ρ(zµ, z)
⩽

δ1
3 + δ1

3

1− 1
3 × 1

3

=
3

4
δ1 < δ1

contradiction to (5.2).
Therefore Dν are mutually disjoint, hence

VB ∪ VC = {z ∈ C, |z| ⩽ 1} (5.3)

By definition of VB , B(z) has no zeros in VB . So

min
z∈VB

|B(z)| = min
z∈∂VB

|B(z)| (5.4)

Since

∂VB = {z ∈ C, |z| = 1} ∪

( ⋃
zν∈IB

{z ∈ C, |z| < 1, ρ(z, zν) =
δ1
3
}

)

16

194 



Now calculate |B(z)| on each item above. First, |B(z)| = 1 if |z| = 1. Now suppose ρ(z, zν) =
δ1
3 , zν ∈ IB . By Lemma 5.2 and (5.2), for any µ ̸= ν,

ρ(z, zµ) ⩾
ρ(zν , zµ)− ρ(zν , z)

1− ρ(zν , zµ) ρ(zν , z)

=

(
1− ρ(zν , zµ)

)(
ρ(zν , zµ)− ρ(zν , z)(1 + ρ(zν , zµ) + ρ(zν , zµ)

2)
)

1− ρ(zν , zµ) ρ(zν , z)
+ ρ(zν , zµ)

2

⩾

(
1− ρ(zν , zµ)

) (
ρ(zν , zµ)− δ1

3 · 3
)

1− ρ(zν , zµ) ρ(zν , z)
+ ρ(zν , zµ)

2

⩾ ρ(zν , zµ)
2

⇒ |B(z)| = ρ(z, zν)
∏

zµ∈IB , µ ̸=ν

ρ(z, zµ)

⩾
δ1
3

∏
µ̸=ν

ρ(z, zµ) ⩾
δ1
3

∏
µ̸=ν

ρ(zν , zµ)
2 ⩾

δ31
3

By (5.4),

|B(z)| ⩾ δ31
3
, ∀ z ∈ VB (5.5)

Same for C(z), we have

|C(z)| ⩾ δ31
3
, ∀ z ∈ VC (5.6)

By (5.3), (5.5), (5.6),

|B(z)|+ |C(z)| ⩾ δ31
3
, ∀ |z| ⩽ 1 (5.7)

Now, let wν = uν + ivν . We arrange {zν}s1 so that u1 ⩽ u2 ⩽ ... ⩽ us and define u0 = 0. By
Theorem 4.1 and (5.7), choose fν ∈ B, ν = 1, ..., s such that fν(zi) = 1, 1 ⩽ i ⩽ ν, fν(zi) =

0, ν < i ⩽ s and ||fν || ⩽ (
δ31
3 )

−A11 . Then

g(z) =

s∑
ν=1

(uν − uν−1)fν(z)

satisfies g(zν) = uν , ν = 1, 2, ..., s , and

||g|| ⩽
s∑

ν=1

|uν − uν−1| ||fν || ⩽ (
δ31
3
)−A11

(
|u1|+

s∑
ν=2

(uν − uν−1)

)
⩽ 3(

δ31
3
)−A11

Similarly, there exists h ∈ B such that h(zν) = vν , ν = 1, 2, ..., s and ||h|| ⩽ 3(
δ31
3 )

−A11

Then g + ih satisfies g(zν) + ih(zν) = wν , ν = 1, 2, ..., s and ||g + ih|| ⩽ 6(
δ31
3 )

−A11 . Let s→ ∞
and choose a convergent sequence.
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6 Construction of Γ

In section 6,7 and 8, our aim is to prove Proposition 4.2 rewritten below:

Proposition 4.2 a1, ..., as ∈ C mutually different, |aν | < 1, ν = 1, ..., s, A(z) =
s∏

ν=1

aν−z
1−aνz

|aν |
aν

,

0 < ϵ ⩽ 1/4, 0 < κ < A14 (A14 is an absolute constant less than 1/8 we’ll determine later)
Then there exist a finite number of disjoint regions Ω1, ...,Ωp in |z| < 1 with rectifiable bound-

aries Γ = ∪p
j=1∂Ωj satisfies

1. a1, ..., as ∈
⋃p

j=1 Ωj

2. ∀z ∈ Γ, ϵ ⩽ |A(z)| ⩽ ϵκ

3. Let µ be the measure on |z| < 1 defined by µ(E) = arc length of E ∩ Γ (E is a Borel subset
of {z, |z| < 1}) ,then ∀l ∈ (0, 1], θ0 ∈ R,

µ({reiθ | 1− l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0 + l}) ⩽ A15ϵ
−2l (6.1)

We will follow the notation from Proposition 4.2 in section 6 and 8.
Recall

rνn =

{
z :

1

2n+1
< 1− |z| ⩽ 1

2n
,
ν · 2π
2n+1

⩽ arg z <
(ν + 1) · 2π

2n+1

}
Choose N ∈ Z+ such that

ϵ

2(2π + 1)
⩽ 2−N <

ϵ

2π + 1
(6.2)

Divide rνn into 22N regions:{
z :

1 + k
2N

2n+1
< 1− |z| ⩽

1 + k+1
2N

2n+1
,
2π(ν + l

2N
)

2n+1
⩽ arg z <

2π(ν + l+1
2N

)

2n+1

}
, k, l = 0, 1, ..., 2N − 1

Denote the 22N regions above by rνn(i), i = 1, 2, ..., 22N

For 0 < δ < 1, define
a(δ) = {z : |z| < 1, |A(z)| < ϵ}

b(δ) = {z : |z| ⩽ 1, |A(z)| > ϵ}

By [1] p.251 Exercise 13 (b), A′(z) ⩽ 1
1−|z|2 ⩽ 1

1−|z| for |z| < 1. Therefore for z1, z2 ∈ rνn(i), by

mean value inequality and (6.2)

|A(z1)−A(z2)| ⩽ (
1

2n+1+N
+

2π

2n+1+N
) sup
z∈rνn(i)

|A′(z)|

⩽
1 + 2π

2n+1+N

1

2−n−1
< (1 + 2π)

ϵ

2π + 1
= ϵ

(6.3)

Define
α =

⋃
rνn(i)∩a(ϵ)̸=∅

rνn(i)
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By (6.3),
a(ϵ) ⊂ α ⊂ a(2ϵ) (6.4)

Denote β = b(ϵκ), then α ∩ β = ∅ because 2ϵ < ϵκ

We first construct a subset of |z| < 1, called P , consisting of some boundaries of rνn(i) and
separating α and β. Then choose a subset of P , called Γ such that Γ is the boundary of

⋃
∂Ωj and

α ⊂
⋃
∂Ωj and (

⋃
∂Ωj) ∩ β = ∅

Assume P = ∅ first and add lines into P by the laws below:

1. Add all boundaries of rν0(i), v = 0, 1, i = 1, 2, ..., 22N and the circle |z| = 1 into P .

2. (a) If r01 intersects β

Add the arc |z| = 1/2, 0 ⩽ arg(z) ⩽ π/2 and the segments 1/2 ⩽ |z| ⩽ 1, arg(z) = 0, π/2
into P . Say {z : 1/2 ⩽ |z| ⩽ 1, 0 ⩽ arg(z) ⩽ π/2} is a t-set.

For every r1 = r01(i) ⊂ α, suppose r1 = {z : c1 ⩽ |z| ⩽ d1, u1 ⩽ arg(z) ⩽ v1}. Add the
arc |z| = c1, u1 ⩽ arg(z) ⩽ v1 and the segments c1 ⩽ |z| ⩽ 1, arg(z) = u1, v1 into P .
These lines together with |z| = 1, u1 ⩽ arg(z) ⩽ v1 enclose a domain called h(r1). Add
into P all boundary lines those rνn(i) ⊂ h(r1) for which n ⩽ N + 1.

Next we consider those r2 = rν2(i) ⊂ α ∩ {z : 0 ⩽ arg(z) ⩽ π/2} which aren’t contained
in any h(r1) appeared above. We do a construction similar to r1 and add into P the
corresponding arcs, segments and boundary lines of those rνn(i) ⊂ h(r2) for which
n ⩽ N + 2

Next we consider those r3 = rν3(i) ⊂ α ∩ {z : 0 ⩽ arg(z) ⩽ π/2} which aren’t contained
in any h(r1) and h(r2) appeared above and do the same things as r1 and r2. This process
ends when no rνn(i) with the required properties remains.

The process will surely come to an end because α ⊂ a(2ϵ) and |A(z)| = 1 on |z| = 1

(b) If r01 doesn’t intersects β

Proceed r20 and r21 separately according to the same rules in (a) and (b). If r20 intersects
β, then say {z : 3/4 ⩽ |z| ⩽ 1, 0 ⩽ arg(z) ⩽ π/4} is a t-set. Similarly, if r21 intersects
β, then say {z : 3/4 ⩽ |z| ⩽ 1, π/4 ⩽ arg(z) ⩽ π/2} is a t-set.

This process is continued until n large enough such that rνn ⊂ β for all ν.

3. r11, r21, r31 are proceeded in the same way as r01. Call r01 ∪ r11 = {z : 1/2 ⩽ |z| ⩽ 1, 0 ⩽
arg(z) ⩽ π} and r21 ∪ r31 = {z : 1/2 ⩽ |z| ⩽ 1, π ⩽ arg(z) ⩽ 2π} the s-sets of the zeroth
generation. Call all t-sets appeared above belongs to the zeroth generation.

4. In the construction 1. 2. 3. described above, we have obtained a number of disjoint sets h(rl).
If the range of arguments of numbers in rl is [2πt2−k, 2π(t + 1)2−k], we have included in P
all boundary lines of rνn(i) inside h(rl) except those in sets s ⊂ h(rl) :

s =

{
z : 1− 2−k ⩽ |z| ⩽ 1,

2πt

2k
⩽ arg(z) ⩽

2π(t+ 1)

2k

}
(6.5)

For different s’s, the ranges of arg(z) have no interior points in common. We say that these
s-sets belong to the first generation. We now proceeds 2 for r2t,k and r2t+1,k ⊂ s and add lines
into P according to the roles given. This construction gives new t-sets, of the first generation,
and s-sets, of the second generation. The process ends when no new s-sets arises (i.e. until
s-sets don’t intersect α).
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Figure 1: s-set and t-set

It is easy to see that P separates α and β in the sense: if γ is a continuous curve joining α and
β, then γ has to intersect P .

P divides the unit disk into finitely many regions, and each region couldn’t intersect α and
β simultaneously. If a region intersects α, call it α-region, otherwise call it β-region. Then β is
contained in the union of all closure of β-regions. Let Ω be the closure the union of all α-regions.
and Ω1, ...,Ωp are all connected components of Ω. Let Γ = ∂Ω ⊂ P , then

α ⊂ Ω ⇒ a1, ..., as ∈ Ω

α ∩ ∂Ω = ∅, β ∩ ∂Ω = ∅ ⇒ ∀z ∈ Γ, ϵ ⩽ |A(z)| ⩽ ϵκ

Now we have seen that Γ satisfies 1,2 in Proposition 4.2. To prove Γ satisfies (6.1) in Proposition
4.2, notice that Γ ⊂ P , so it’s enough to prove

µ′({reiθ | 1− l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0 + l}) ⩽ A15ϵ
−2l ∀l ∈ (0, 1], θ0 ∈ R (6.6)

where µ′(E) = arc length of E ∩ P for E ⊂ {z : |z| < 1}
We’ll prove (6.6) in section 8.

7 Harmonic Measure

Definition 7.1 (Harmonic measure). [5] Let D be an connected open subset of C ∪ {∞} whose
boundary is disjoint union of some simple rectifiable curves.

Any continuous function f : ∂D → R determines a unique continuous function Hf : D → R
such that Hf harmonic in D and Hf |∂D = f .
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For each x ∈ D, there is a unique probability measure ω(x,D) on ∂D such that for any contin-
uous function f : ∂D → R, we have

Hf (x) =

∫
∂D

f(y)dω(x,D)(y)

The measure ω(x,D) is called the harmonic measure with respect to D and x ∈ D.

Lemma 7.1 (Maximal principle). ω(x, y) be the harmonic measure with respect to D, then any
harmonic function get its maximal value in ∂D.

Lemma 7.2 (Hall’s Lemma). H = {z : Re(z) > 0}, E is a closed subset of H, D = H − E,
E∗ = {i|z| : z ∈ E}.

Denote ω(z) = ω(z,H\E)(∂E), z ∈ D. Then ω(z) is the bounded harmonic function on D for
which ω(iy) = 0(−∞ < y < +∞) and ω(z) = 1 for z ∈ ∂E. Let ω∗(z) = ω(z,H)(E∗), then

ω∗(z) =
1

π

∫
E∗

xdt

x2 + (y − t)2
(7.1)

For x+ iy ∈ D,

ω(x+ iy) ⩾
2

3
ω∗(x− i|y|) (7.2)

Proof. Suppose first that E consists of finite number of radical segments{
reiθk : ak < r < bk

}
, k = 1, 2 . . . , n; |θk| <

π

2

with the intervals (ak, bk) disjoint. Let

G(z, ζ) = ln |z + ζ̄

z − ζ
|

denote the Green function of H, and consider the funtion

U(z) =
1

2π

∫
E

1

ξ
G(z, ζ)ds, ζ = ξ + iη,

where ds is the element of arclength on E. We claim that

ω(x) ≤ U(x), x > 0 (7.3)

and

U(z) <
3

2
, Re(z) > 0. (7.4)

For |ζ| = ρ,Re(ζ) ⩾ 0, the function 1
ξG(x, ζ) attains its minimum for ξ = 0; hence

1

ξ
G(x, ζ) ⩾

2x

x2 + ρ2
, |ζ| = ρ

which gives

U(x) ⩾
1

π

∫
E∗

x

x2 + ρ2
dρ = ω∗(x)
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which prove (7.3). Fix z = x+ iy, and let M(ρ) be the maximum of 1
ζG(z, ζ) over the part of the

circle |ζ − z| = ρ where Re(ζ) ⩾ 0. Since pn this circle

1

ζ
G(z, ζ) =

1

2ζ
ln(1 +

4xξ

ρ2
)

is decreasing function of ξ,

M(ρ) =

{ 1
x−ρ ln(

2x
ρ − 1), x > ρ

2x
ρ2 x ≤ ρ

Now let ϕ(ρ) denote the total length of the part of E which lies in the disk |ζ − z| < ρ. Since
ϕ(ρ) ≤ 2ρ and M(ρ) is a decreasing function, we have

U(z) ≤ 1

2π

∫ ∞

0

M(ρ)dϕ(ρ) = − 1

2π

∫ ∞

0

ϕ(ρ)dM(ρ)

≤ − 1

π

∫ ∞

0

ρdM(ρ) =
1

π

∫ ∞

0

M(ρ)dρ =
π

2
+

2

π
<

3

2

Thus (7.4) is proved. Then we have 3
2ω(z) − U(z) ⩾ 0 on ∂D, so by the maximum principle, the

same is true in D. Thus the function

φ(z) =
3

2
ω(z)− ω∗(z)

is non-negative on positive real axis; while φ(iy) = 0fory ∈ R, and φ(z) ⩾ 1
2 for z ∈ E. By

maximum principle, then ,

ω(x+ iy) ⩾
2

3
ω∗(x+ iy), x > 0, y < 0.

By symmetry,

ω(x+ iy) ⩾
2

3
ω∗(x− iy), x > 0, y > 0.

For general compact set E, choose ϵ > 0 and consider

Sϵ = {z : ω(z) > 1− ϵ}

Clearly, ∂E ⊂ Sϵ. Choose a set Ẽ which consists of a finite number of radical segments with
nonoverlapping projections, for which Ẽ∗ = E∗, let ω̃(z) be the harmonic measure of Ẽ. By what
just proved,

ω̃(x+ iy) ⩾
2

3
ω∗(x− i|y|)

since Ẽ∗ = E∗. The function ω(z) − ω̃(z) vanishes on the imaginary axis, is ⩾ 0 on ∂E, and is

⩾ −ϵ whenever it is defined on Ẽ. Thus by the maximum principle,

ω(x+ iy) + ϵ ⩾ ω̃(x+ iy) ⩾
2

3
ω∗(x− i|y|)

for (x+ iy) ∈ D. Now let ϵ→ 0, and the lemma is proved for campact sets E.

22

200 



Finally, suppose E is closed but unbounded. Let Er be the intersection of E with disk |z| ≤ r,
let E∗

r be its circular projection, and let ωr(z) and ω
∗
r (z) denote the respective harmonic measures.

Then

ω(x+ iy) ⩾ ωr(x+ iy) ⩾
2

3
ω∗
r (x− i|y|) (7.5)

for each point x + iy ∈ D, and we have the ω∗
r (z) → ω∗(z) pointwise as r → ∞. This completes

the proof.

Corollary 7.1. H = {z : Im(z) > 0}, E is a closed subset of H, D = H −E, E∗ = {|z| : z ∈ E}.
Denote ω(z) = ω(z,H\E)(∂E) is the bounded harmonic function in D for which ω(y) =

0(−∞ < y < +∞) and ω(z) = 1 for z ∈ ∂E (ω(z) is also called harmonic measure of E re-
spect to H − E). Finally, let

ω∗(z) =
1

π

∫
E∗

ydt

y2 + (x− t)2
(7.6)

be the harmonic measure of E∗ with respect to H.
For (x+ iy) ∈ D,

ω(x+ iy) ⩾
2

3
ω∗(−|x|+ iy) (7.7)

Let R be the annulus ρ < |z| < 1, and let E1 be a closed subset of R which does not divide the
plane. Let ω1(z) be the harmonic measure of E1 with respect to R− E1 and let

E∗
1 =

{
eiθ : reiθ ∈ E1

}
(7.8)

be the radial projection of E1 onto the outer boundary of R. For fixed β < π/| ln ρ|, let F ∗
1 be the

part of E∗
1 such that |θ| ≤ β| ln ρ|.

Lemma 7.3. If ρ
1
3 /∈ E1,

|F ∗
1 | ≤

√
3| ln ρ|(eπβ + e−πβ + 1)ω1(ρ

1
3 ) (7.9)

Proof. The mapping ψ
ζ = ξ + iη = ziπ/ ln ρ = riπ/ ln ρe−πθ/ ln ρ (7.10)

maps R to H, and denote φ be the inverse of ψ. Define set E = {ζ ∈ H : φ(ζ) ∈ E1} , E∗ =
{ξ ∈ H : φ(ξ) ∈ E∗

1} , ω(ζ) be the harmonic measure of E respect to H − E, ω∗ be the harmonic
measure of E∗ respect to H. Since

u(x) =

∫
∂E

u(y)ω(x, y)dy

u1(w) =

∫
∂E1

u1(z)ω1(w, z)dz

Let z = φ(y), w = φ(x), u = u1 ◦ φ, then

u(x) =

∫
∂E

u(y)ω1(φ(x), φ(y))dφ(y)
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so
ω(x, y)dy = ω1(φ(x), φ(y))dφ(y)

then

ω(x) =

∫
∂E

ω(x, y)dy =

∫
∂E1

ω1(φ(x), φ(y))dφ(y) = ω1(φ(x))

the same,
ω∗(x) = ω∗

1(φ(x))

when |z| ≤ √
ρ, ζ = ξ + iη = ψ(z), and ξ < 0, so by Corollary7.1

ω1(ρ
1
3 ) = ω(e

iπ
3 ) ≥ 2

3
ω∗(e

2πi
3 ) =

2

3
ω∗
1(ρ

2
3 )

Let F ∗ denote the image of F ∗
1 under ψ.

ω∗
1(ρ

2
3 ) = ω∗(ei2π/3) ≥ 1

π

∫
F∗

√
3
2 dξ

3
4 + (− 1

2 − ξ)2

=

√
3

2| ln ρ|

∫
F∗

1

e−
πθ
ln ρ

e−2 πθ
ln ρ + e−

πθ
ln ρ + 1

dθ ≥
√
3

2| ln ρ|
|F ∗

1 |
eπβ + e−πβ + 1

In the end,
|F ∗

1 | ≤
√
3| ln ρ|(eπβ + e−πβ + 1)ω1(ρ

1
3 )

8 Discussion of P

This section is to prove (6.6), which is rewritten below:

µ′({reiθ | 1− l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0 + l}) ⩽ A15ϵ
−2l ∀l ∈ (0, 1], θ0 ∈ R (8.1)

where µ′(E) = arc length of E ∩ P for E ⊂ {z : |z| < 1}.
We’ll simplify it.
First, it’s enough to prove (8.1) for l ⩽ 1/2, because for 1/2 < l ⩽ 1, from the first construction

law of P ,

µ′({reiθ | 1− l ⩽ r < 1− 1

2
, θ0 ⩽ θ ⩽ θ0 + l})

⩽ µ′({reiθ | 1− l ⩽ r ⩽ 1− 1

2
)

⩽ 2N+1(l − 1

2
) +

[
l − 1

2

2−N−1

]
· 2π ⩽ 2N+1(2π + 1)(l − 1

2
)

⩽ 2× 2(2π + 1)ϵ−1(2π + 1)(l − 1

2
) (by (6.2))

⩽ 4(2π + 1)2ϵ−2(l − 1

2
)
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Denote

sνn =

{
z : 0 ⩽ 1− |z| ⩽ 1

2n
,
ν · 2π
2n

⩽ arg z <
(ν + 1) · 2π

2n

}
, n ∈ N+, ν = 0, 1, ..., 2n − 1

tνn =

{
z : 0 ⩽ 1− |z| ⩽ 1

2n
,
ν · 2π
2n+1

⩽ arg z <
(ν + 1) · 2π

2n+1

}
, n ∈ N+, ν = 0, 1, ..., 2n+1 − 1

It’s easy to see that any set of the form {reiθ | 1−l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0+l}, l ∈ (0, 1/2], θ0 ∈ R
is contained in sνn ∪ sν+1,n for some ν and n such that l ⩽ 1/2n < 2l.

If we have proved

µ′(sνn) ⩽ A18ϵ
−2 1

2n
, ∀n, ν (8.2)

Then

µ′({reiθ | 1− l ⩽ r ⩽ 1, θ0 ⩽ θ ⩽ θ0 + l}) ⩽ µ′(sνn) + µ′(sν+1,n) ⩽ 2A18ϵ
−2 1

2n
⩽ 4A18ϵ

−2l

which implies (8.1). So it’s enough to prove (8.2).
Notice that all t-sets (we have defined t-sets in section 6 the second law of construction of P )

are of the form tνn. Denote T = {tνn : tνn is t-set }. The equation below is the final simplification
of (8.1):

µ′(tνn) ⩽ A19ϵ
−2 1

2n
, ∀tνn ∈ T (8.3)

Lemma 8.1. (8.3) ⇒ (8.2).

Proof. Suppose (8.3) holds. For any sνn, choose the smallest s-set S (maybe of zeroth generation)
containing it.

Notice that a t-set either disjoint with sνn, or containing sνn, or contained in sνn. The t-sets
in S of the same generation as S are disjoint. So sνn either contains some t-sets in S of the same
generation as S, or is contained in a t-set in S of the same generation as S.

For the former case, P ∩ sνn ⊂ ∂sνn ∪ (
⋃
P ∩ tν′n′) where tν′n′ takes all t-sets in sνn of the

same generation as S. These tν′n′ ’s argument range (i.e. [ ν
′π

2n′ ,
(ν′+1)π

2n′ ) ) are disjoint, therefore
2π
2n ⩾

∑
π
2n′ , hence (8.3) ⇒ (8.2).

For the latter case, sνn is contained in a t-set t0. Let h1, h2, ..., hp be all h(rl) contained in t0 in
the law 2(a) of construction of P , and the s-sets at the bottom of these hk are denoted s1, s2, ..., sp.

Each sk is of the form sν′n′ , either disjoint with sνn, or containing sνn, or contained in sνn. sk
containing sνn is impossible because S is the smallest s-set containing sνn. So sk either disjoint
with or contained in sνn.

By construction of P ,

P ∩ t0 = ∂t0 ∪

(
p⋃

k=1

(
P ∩ (hk\sk)

))
∪

(
p⋃

k=1

(
P ∩ sk

))

⇒ P ∩ sνn ⊂ ∂sνn ∪

( ⋃
sk⊂sνn

(
P ∩ (hk\sk)

))
∪

( ⋃
sk⊂sνn

(
P ∩ sk

))
(8.4)

Denote lk the length of argument range of hk, then
∑

sk⊂sνn

lk ⩽ 2π
2n . Now estimate the length of

three parts on the right side of (8.4):
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• Length of ∂sνn ⩽ 4π+2
2n .

• By construction of P , it’s easy to show that

length P ∩ (hk\sk) ⩽ 2(N + 1)2N lk ⩽ 22N+1lk

⩽ 8(2π + 1)2ϵ−2lk (by (6.2))

⇒ length
⋃

sk⊂sνn

(
P ∩ (hk\sk)

)
⩽

∑
sk⊂sνn

length P ∩ (hk\sk)

⩽
∑

sk⊂sνn

8(2π + 1)2ϵ−2lk ⩽ 16π(2π + 1)2ϵ−2 1

2n

• Same as the former case, it’s easy to show that (8.2) holds s-sets. So

length
⋃

sk⊂sνn

(
P ∩ sk

)
⩽

∑
sk⊂sνn

length (P ∩ sk) ⩽
∑

sk⊂sνn

A18

2π
ϵ−2lk ⩽ A18ϵ

−2 1

2n

Add the three parts, we get (8.2).

So it’s enough to prove (8.3).

Proof of (8.3). Choose an arbitrary tνn ∈ T, n ∈ N. Recall

tνn =

{
z : 0 ⩽ 1− |z| ⩽ 1

2n
,
ν · 2π
2n+1

⩽ arg z <
(ν + 1) · 2π

2n+1

}

rνn =

{
z :

1

2n+1
< 1− |z| ⩽ 1

2n
,
ν · 2π
2n+1

⩽ arg z <
(ν + 1) · 2π

2n+1

}
By definition of t-sets, rνn ∩ β ̸= ∅.
Choose z0 ∈ rνn ∩ β, let ρ = |z0|3, z0 = ρ1/3eiθ0 , E1 = α ∩ rνn. Then z0 /∈ E1.

1− 1

2n
⩽ |z0| ⩽ 1− 1

2n+1
⇒ (1− 1

2n
)3 ⩽ ρ ⩽ (1− 1

2n+1
)3 < 1− 1

2n

⇒ E1 ⊂ rνn ⊂ R = {z : ρ < |z| < 1}

Let E∗
1 =

{
eiθ : reiθ ∈ E1

}
, F ∗

1 be part of E∗
1 such that |θ − θ0| ≤ π| ln ρ|

Notice ∀ reiθ ∈ E1 ⊂ rνn,

|θ − θ0| ⩽
π

2n
⩽ (−3π) ln(1− 1

2n+1
) = −π ln(1− 1

2n+1
)3 ⩽ −π ln ρ = π| ln ρ|

which implies E∗
1 = F ∗

1 .
By Lemma 7.3,

|E∗
1 | = |F ∗

1 | ⩽
√
3| ln ρ|(eπ

2

+ e−π2

+ 1)ω1(ρ
1
3 eiθ0) ⩽ A102

−nω1(ρ
1
3 eiθ0) (8.5)

here ω1(z) = ω(z,R\E1)(∂E1).
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Denote D = {z : |z| < 1}. ω(z,D\E1)(∂E1) is a harmonic function on D\E1 with boundary
value 0 on ∂D and 1 on ∂E1.By maximal principal, 0 ⩽ ω(z,D\E1)(∂E1) ⩽ 1. Let

f1 : ∂(R\E1) → R : f1(z) =


0 , z ∈ ∂D

1 , z ∈ ∂E1

ω(z,D\E1)(∂E1) , |z| = ρ

Then ω(z,D\E1)(∂E1)|R\E1
is the harmonic function with boundary value f1.

⇒ ω(z,D\E1)(∂E1) =

∫
∂(R\E1)

f1(y)dω(z,R\E1)(y)

=

∫
∂E1

dω(z,R\E1)(y) +

∫
|z|=ρ

ω(z,D\E1)(∂E1)dω(z,R\E1)(y)

⩾
∫
∂E1

dω(z,R\E1)(y) = ω(z,R\E1)(∂E1) = ω1(z), z ∈ R\E1

(8.6)

By (6.4), E1 ⊂ α ⊂ a(2ϵ) ⊂ D. Let

f2 : ∂(D\a(2ϵ)) → R : f2(z) =

{
0 , z ∈ ∂D

ω(z,D\E1)(∂E1) , z ∈ ∂a(2ϵ)

Then ω(z,D\E1)(∂E1)|D\a(2ϵ) is the harmonic function with boundary value f2.

⇒ ω(z,D\E1)(∂E1) =

∫
∂(D\a(2ϵ))

f2(y)dω(z,D\a(2ϵ))(y)

=

∫
∂a(2ϵ)

ω(z,D\E1)(∂E1)dω(z,D\a(2ϵ))(y)

⩽
∫
∂a(2ϵ)

dω(z,D\a(2ϵ))(y) = ω(z,D\a(2ϵ))(∂a(2ϵ)), z ∈ D\a(2ϵ)

(8.7)

Notice that (log|A(z)|)
∣∣∣
D\a(2ϵ)

is a harmonic function on D\a(2ϵ) with boundary value 0 on ∂D

and log(2ϵ) on ∂a(2ϵ).

⇒ log|A(z)| =
∫
∂a(2ϵ)

log(2ϵ)dω(z,D\a(2ϵ))(y) = log(2ϵ) · ω(z,D\a(2ϵ))(∂a(2ϵ)), z ∈ D\a(2ϵ)

Let z = z0 ∈ β ⊂ D\a(2ϵ), by |A(z0)| ⩾ ϵκ and 0 < ϵ ⩽ 1
4 ,

ω(z0, D\a(2ϵ))(∂a(2ϵ)) = log|A(z0)|
log(2ϵ)

⩽
log(ϵκ)

log(2ϵ)
= κ

|log(ϵ)|
|log(ϵ)| − log2

⩽ 2κ (8.8)

By (8.6), (8.7) and (8.8),
ω1(z0) ⩽ 2κ (8.9)

By (8.5) and (8.9),
|E∗

1 | ⩽ A102
−n+1κ (8.10)
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Suppose tνn belongs to the j-th generation. Let Lg be the total length of argument range of
all t-sets contained in tνn and of generation g, g = j, j + 1, ... . Suppose l1, ..., lσ are lengths of
argument range of each t-set contained in tνn and of generation j + 1 respectively. Then by the
construction of P ,

Lj+1 =

σ∑
i=1

li ⩽ |E∗
1 | (8.11)

By (8.10) and (8.11),

Lj+1 ⩽ A102κ · 2−n =
A102κ

π
Lj

Recall that in Proposition 4.2, we required 0 < κ < A14 and said A14 would be determined
later. Now it’s time: let 0 < A14 < 1/8 and 2A10A14

π ⩽ 1/2. Then

Lj+1 ⩽
1

2
Lj (8.12)

If we replace tνn by any t-set contained in tνn and of generation j + 1, a correspondent (8.12)
still holds. Add these correspondent (8.12)s, we get

Lj+2 ⩽
1

2
Lj+1

Similarly,

Lg+1 ⩽
1

2
Lg, g = j, j + 1, ...

⇒
∞∑
g=j

Lg ⩽
∞∑
g=0

1

2g
Lj = 2Lj (8.13)

For a t-set t0 with length of argument range l0, denote s1, ..., sp all s-sets of the next generation
contained in t0. Suppose lengths of argument range of s1, ..., sp are l1, ..., lp respectively. Denote
t1, ..., tq all t-sets of the next generation contained in t0. Then

P ∩

(
t0\(

q⋃
i=1

ti)

)
=

⋃
1⩽i⩽p, h(rk)∗̃si

(
∂si ∪

(
P ∩

(
h(rk)\si

)))

where h(rk)∗̃si means si lies at the bottom of h(rk).
Recall T = {tνn : tνn is t-set }.
For each 1 ⩽ i ⩽ p and h(rk)∗̃si,

length ∂si ⩽ 4li

length P ∩
(
h(rk)\si

)
⩽ 2(N + 1)2N li

⇒ length P ∩

(
t0\(

q⋃
i=1

ti)

)
⩽

p∑
i=1

(4 + 2(N + 1)2N )li ⩽ 22N+2

p∑
i=1

li ⩽ 16(2π + 1)2ϵ−2l0
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⇒ µ′(tνn) = length P ∩ tνn =
∑

t0⊂tνn, t0∈T

length P ∩

(
t0\(

q⋃
i=1

ti)

)
⩽

∑
t0⊂tνn, t0∈T

16(2π + 1)2ϵ−2l0

= 16(2π + 1)2ϵ−2
∞∑
g=j

Lg ⩽ 32(2π + 1)2ϵ−2Lj (by (8.13))

= 32(2π + 1)2ϵ−2 π

2n
= A19ϵ

−2 1

2n

9 Corona Problem

Under Theorem 4.1, we want to get a more powerful Theorem, and that’s the Corona Problem.

Theorem 9.1. Let f1(z), f2(z), · · · , fn(z) be given functions in B such that

|f1(z)|+ |f2(z)|+ · · ·+ |fn(z)| ⩾ δ > 0 (9.1)

for some δ. Then I(f1, f2, · · · , fn) = B. Furthermore, if ∥fν∥ ≤ 1, ν = 1, 2, · · · , n, and δ ≤ 1
2 ,

there exists pν(z) ∈ B,and absolute value A13 > 1 +A12 so that

n∑
ν=1

pνfν = 1 ∥pν∥ ≤ n!2nA13δ−A13n (9.2)

Before prove the theorem, we need the following theorem.

Theorem 9.2. Let A(z) be the finite Blaschke product and assume that the set z = {z : |A(z)| < δ} , δ <
1
2 , has the (simply connected) components D1, D2, . . . , Dq. Let Fi(z) be holomorphic in Di and as-
sume |Fi(z)| < 1 there. Then the interpolation problem

f(aν) = Fi(aν) aν ∈ Di, f ∈ B (9.3)

has a solution f with ∥f∥ < δ−A12 .

Proof. Choose a ϵ so that ϵκ = ϵ and construct Γ relatively A(z) and ϵ, and define F (z) = Fi(z), z ∈
Di. By Proposition 4.1 there exist f0 satisfied (9.3), such that

∥f0∥ = sup
∥G∥1=1

|
s∑

ν=1

G(aν)Fi(aν)

A′(aν)
| = sup

∥G∥1=1

| 1

2πi

∫
Γ

F (z)G(z)

A(z)
dz|

≤ ϵ−1 1

2π

∫
Γ

|G(z)|dz ≤ δ−A12

Lemma 9.1. Let f(z) be an analytic in the open unit disk D and continuous in D̄. Suppose
0 < |f(z)| ≤ 1 on |z| = 1 and let E is nonempty. Then there exists a sequence {Bn(z)} of finite
Blaschke products with simple zeros, such that |Bn(z)| → |f(z)| uniformly in each closed subset of
(D̄ − Ē), and Bn(z) → f(z) uniformly in each closed subset D.
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Proof. Let S be an arbitrary closed subset of (D̄ − Ē). Because f(z) ̸= 0, |z| = 1 ,therefore has at
most a finite number of zeros in D. Then, since it’s clear that a finite Blaschke product can be
approximated by one with simple zeros, uniformly in D̄, it’s enough to suppose f does not vanish
in D̄. We can assume f(0) > 0, and we have,

f(z) = exp

{
1

2π

∫ 2π

0

eit + z

eit − z
ln |f(eit)|dt

}
Now let ωk = e2πik/n, and let

fn(z) = exp

{
1

n

n∑
k=1

ωk + z

ωk − z
ln |f(ωk)|

}
Then fn(z) → f(z) uniformly in S. Let

ϵk = − 1

n
ln |f(ωk)|

so that

0 ≤ ϵk ≤ − 1

n
lnµ = δn (9.4)

where µ is the minimum of |f(z)| on |z| = 1. Choosing n so large that δn <
1
2 , let

1− ρ2k = 2ϵk ak = ρkωk

and define

Bn(z) =

n∏
k=1

āk
|ak|

ak − z

1− ākz

Note that |ak| = 1 if ϵk = 0, so that the corresponding factor in Bn(z) is trivial. A calculation gives

2 ln |Bn(z)| =
n∑

k=1

ln
|ak − z|2

|1− ākz|2
=

n∑
k=1

(
|ak − z|2

|1− ākz|2
− 1) +

n∑
k=1

O(
|ak − z|2

|1− ākz|2
− 1)2

=

n∑
k=1

(
|ak − z|2 − |1− ākz|2

|1− ākz|2
) +

n∑
k=1

O(
|ak − z|2 − |1− ākz|2

|1− ākz|2
)2

=

n∑
k=1

(
(|z|2 − 1)(1− |ak|2)

|1− ākz|2
) +

n∑
k=1

O(
(|z|2 − 1)(1− |ak|2)

|1− ākz|2
)2

= −2(1− |z|2)
n∑

k=1

ϵk|1− ākz|−2 +

n∑
k=1

O(2ϵk)
2

= −2(1− |z|2)
n∑

k=1

ϵk|1− ākz|−2 + nO(δn)
2 = −2(1− |z|2)

n∑
k=1

ϵk|1− ākz|−2 +O(δn)

uniformly in D̄.

ln |fn(z)| =
1

n

n∑
k=1

Re(
ωk + z

ωk − z
) ln |f(ωk)| = −

n∑
k=1

ϵk
1− |z|2

|1− ω̄kz|
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From this we can deduce,

ln |Bn(z)| − ln |fn(z)| = −(1− |z|2)
n∑

k=1

ϵk(
1

|1− ρkω̄kz|2
− 1

|1− ω̄kz|2
) +O(δn)

= −(1− |z|2)
n∑

k=1

ϵk(
|z|2(1− ρ2k)− 2|z|(1− ρk) cos(θ − 2kπ

n )

|1− ρkω̄kz|2|1− ω̄kz|2
) +O(δn)

= −(1− |z|2)
n∑

k=1

δn(
|z|2(2δn)− 2|z|(

√
δn) cos(θ − 2kπ

n )

|1− ρkω̄kz|2|1− ω̄kz|2
) +O(δn)

= O(
√
δn)

Hence ln |Bn(z)| → ln |f(z)|, which implies |Bn(z)| → |f(z)|, uniformly in S. Since Bn(0) > 0, it
also follows that Bn(z) → f(z) uniformly in each disk Dr, by

Bn(z)

f(z)
= exp

{
1

2π

∫ 2π

0

eit + z

eit − z
ln |Bn(e

it)

f(eit)
|dt
}

→ 1

Proof of Corona Problem. We first assume that (9.1) holds and prove (9.2) by induction on n.
n = 1 is clear. Let us assume (9.2) holds for n− 1, since Theorem 9.1 is invariant under conformal
map, (9.2) satisfied for all simple connected domain.

Consider first the case when fn(z) is a finite Blaschke productB(z) with simple zeros b1, b2, . . . , bs.
The set |B(z)| < δ

2 has the components D1, D2, . . . , Dq. In each Di there exist functions Piν such
that

n−1∑
ν=1

Piν(z)fν(z) = 1 ∥Piν∥ ≤ (n− 1)!(
2

δ
)(n−1)A13

by theorem 9.2, there exist functions pν ∈ B, ν = 1, 2, . . . , n− 1, such that

pν(bj) = Piν(bj), bj ∈ Di; ∥pν∥ ≤ (n− 1)!(
2

δ
)(n−1)A13+A13

the function pn(z) defined by

pn(z) = (1−
n−1∑
1

pν(z)fν(z))B(z)−1

belongs to B, and now {pν(z)}n1 satisfied (9.2) with exponent nA13.
For the general case, we choose ρ < 1 and replace fν by gν(z) = fν(ρz). If we can prove (9.2)

for an infinite sequence ρµ → 1, we have proved it generally. Since if∑
pρµνgρµν = 1 ∥pρµν∥ ≤ n!(

2

δ
)nA13 (9.5)

by Ascoli theorem we can take subsequece {ρµ} such that for every ν = 1, 2, . . . , n. pρµν converges
uniformly on every compact subset of D, thus converge to a holomorphic function pν with.

n∑
ν=1

pνfν = 1 ∥pν∥ ≤ n!(
2

δ
)nA13
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We choose ρ so that gn(z) ̸= 0 on |z| = 1 and choose Gn(z) analytic and ̸= 0 in |z| < 1 such that

|Gn(e
iθ)| = min(|gn(eiθ)|−1, 2δ−1). (9.6)

since G analytic and ̸= 0, we conclude that log 1
|G| is harmonic function with bounded value

max(log|gn(eiθ)|, log δ
2 ). Since harmonic function get its maximal value on the boundary, we deduce

|G| ⩾ min(|gn(eiθ)|−1, 2δ−1) ⩾ min( 2δ , 1) = 1

We will prove that the functions g1, g2, . . . , Gngn satisfied (9.1) for 1
2 . Since if |gn(z)| ≤

δ
2 , Then

|g1|+ |g2|+ · · ·+ |gn−1| ⩾ δ
2 . Otherwise, |gn| ⩾ δ

2 , |Gngn| ⩾ δ
2 .

By lemma 9.1, there exists a sequence {Bk(z)} of finite Blaschke products with simple zeros
converging uniformly to Gn(z)gn(z) outside any neighborhood of the set on |z| = 1 where |gn(z)| ≤
δ
2 . We apply the above result to g1, . . . , gn−1, Bk and let k → ∞ and observe that

lim
k→∞

[ inf
|z|<1

(|g1|+ · · ·+ |gn−1|+ |Bk|)] ⩾
δ

2
(9.7)

This is because we can choose a sequence of neighborhood Un converging toH =
{
|z| = 1 : |gn(z)| ≤ δ

2

}
.

To each Un we choose Bn such that

|Bn(z)−Gn(z)gn(z)| <
1

n2
,∀z ∈ Un

We can choose N , such that ∀n > N, |g1(z)|+ · · ·+ |gn−1(z)| > δ
2 ,∀z ∈ D−Un, and (9.7) satisfied

∀z ∈ Un.
Thus we can obtain a selection of convergent subsequences, coefficients p1, . . . , pn ∈ B such that

p1g1 + · · ·+ (pnGn)gn = 1

By above special case,

∥pnGn∥ ≤ n!(
2

δ
)nA13

Finally,if (9.2) not holds, there is a sequence zj , so that lim
j→∞

fν(zj) = 0. This then imply 1 is not

in I.
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Sumsets and Arithmetical Progression
Rui Rao, Di Wu

1 Introduction
We are interested in the structure of the sets and the sumsets. For example,
if we consider two sets A and B in R, both having n elements and these
elements being ’general’, their sumset

A+B := {m |m = a+ b, a ∈ A, b ∈ B}

will consist of n2 elements.
But interesting things happen if they do have some relations such that the

sumset have only elements of order O(n). This means some of the sums are
the same, and we can guess easily that they have some artihmetical relations.
For generality, we will work in a torsion-free abelian group. That will cover
many of our applications such as integers, Euclidean spaces and so on. The
relation and the result will be described in what follows.

Definition 1.1 (Arithmetical progression). Assume G is an abelian group,
a, q1, q2 . . . qd ∈ G, l1, l2 . . . ln ∈ N∗. Then we call

P (q1, q2 . . . qd; l1, l2 . . . ld) = {n : n = a+ x1q1 + x2q2 · · ·+ xdqd, 0 ≤ xi ≤ li}

a d-dimensional arithmetical progression. We call the number of its elements
the size of the arithmetical progression.

Now come to the main theorem following Z. Ruzsa [1].

Theorem 1.2 (Z. Ruzsa). Assume G is a torsion-free abelian group. For
any α > 1,we can find d = d(α), C = C(α) such that, for any A,B ⊆ G
satisfies |A| = |B| = n and |A+B| ≤ αn, there is an arithmetical progression
P ,dimension at most d and size at most Cn,with A ⊆ P .

Remark 1.3. The d(α) and C(α) can be given explicit formulas.

1
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2 Finite abelian groups
In this and the following two sections, we will show the tools and lemmas for
the proof of the main theorem. Most of these proofs are taken from [1].

First we introduce some notations about sumsets. We have defined A+B,
similarly we define

A− B := {n |n = a− b, a ∈ A, b ∈ B},

and
2A := A+ A.

By the same way we can define sumsets like 3A and 4A− 5B, etc.
This section we deal with finite abelian groups to get some useful esti-

mates. We will focus on characters first.

Definition 2.1 (Bohr set). Assume G is a finite abelian group and let
γ1, γ2 . . . γk be some characters of G，0 < ε ≤ 1

2
, then the set

B(γ1, γ2 . . . γk; ε) := {g ∈ G : |arg γj(g)| ≤ 2πε for all j}

will be called a Bohr (k, ε)-set.

Lemma 2.2 (Bogolyubov). Assume G is an abelian group of order m, A ⊂
G,and |A| = n = βm,then D = 2A − 2A contains a Bohr (k,

1

4
)-set, with

k ≤ β−2.

Proof. Step 1: Denote Γ the set of characters of G. For γ ∈ Γ, write f(γ) =
Σa∈Aγ(a). We have the following orthogonality

∑
γ

γ(a)γ(b) =

{
0, a ̸= b,

1, a = b,

By direct calculation, we have∑
γ

|f(γ)|2 = mn,

and ∑
γ

γ(g) =

{
m, g = e,

0, else.

2
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Now we consider
h(x) =

∑
γ

|f(γ)|4γ(x).

We claim that if h(x) ̸= 0, then x ∈ D. If x ̸∈ D = 2A − 2A, then we
calculate

h(x) =
∑
γ

f(γ)2f(γ)2γ(x)

=
∑

γ∈Γ,a,b,c,d∈A

γ(a)γ(b)γ(−c)γ(−d)γ(x)

=
∑

a,b,c,d∈A

∑
γ

γ(x+ a+ b− c− d)

= 0.

And this proves our claim.
Step 2: Let γ0 be the principal character (i.e γ0(g) = 1 for all g ∈ G).

We split Γ− {γ0} into two parts:

Γ1 = {γ : f(γ) ≥
√
βn},

Γ2 = {γ : f(γ) <
√
βn}.

Then we construct the Bohr (k,
1

4
)-set B where these γi take all γ ∈ Γ1 and

k = |Γ1|. We want to show B ⊆ D. By step 1, it suffices to show that
h(x) ̸= 0 when x ∈ B. If x ∈ B, Re(γ(x)) > 0 for all γ ∈ Γ1, so we have the
inequality

Re(h(x)) > n4 +Re
( ∑

γ∈Γ2

|f(γ)|4γ(x)
)

≥ n4 − |βn2
(∑

γ

|f(γ)|2
)
|

≥ n4 − βn3m = 0

so we have B ⊂ D.
Step 3: In this part we prove that k = |Γ1| < β−2. By the definition of

Γ1, we have

km2β3 = kβn2 ≤
∑
γ∈Γ1

|f(γ)|2 <
∑
γ∈Γ

|f(γ)|2 = mn = m2β,

3
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so we get k < β−2.

Next we consider cyclic groups only. We prove Bohr set must contain
arithmetical progressions. By Freiman homomorphism (introduced later),
this is enough for our purposes. Let G = Z/mZ, and we use residues to
express the element of G. Its characters can be expressed with an residue u:

γu(x) = e2πiux/m.

Lemma 2.3. Let m be a positive integer, u1, u2, · · · , uk be residues with
(u1, u2, · · · , uk,m) = 1, ε1, ε2, · · · , εk real numbers satisfying 0 < εi <

1

2
,

then there are residues q1, q2, · · · , qk, and l1, l2, · · · , lk ∈ N such that the set

P = {x1q1 + x2q2 + · · ·+ xkqk | |xi| ≤ li},

is contained in B(u1, u2, · · · , uk; ε1, ε2, · · · , εk). And the sums in P are all
distinct with

|P | > δm,

here
δ =

ε1 · · · εk
kk

.

Proof. Let L be a k-dimensional lattice (seen in a R-vector space) of (x1, x2, · · · , xk)
satisfying

x1 ≡ xu1, · · · , xk ≡ xuk mod m,

with some integer x. Since we have the coprimality condition, every space of
mk have exactly m points in L, hence its determinate is mk−1.

Let Q be a rectangle defined by

Q = {(x1, x2, · · · , xk) | |xi| ≤ εi, ∀i}.

Let λ1, · · · , λk denote the successive minima of Q with respect to L. A
classical result of Minkowski show

λ1λ2 · · ·λk ≤ 2k
detL
volQ =

mk−1

ε1 · · · εk
.

By definition of λi, we can find {ai} ⊆ L linearly independent with ai ∈
Qλi, and if we write

ai = (ai1, ai2, · · · , aik),

4
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then |aij| ≤ λiεj and aij ≡ qiuj mod m for some qi(< m). For

li =

[
m

kλi

]
,

we set P = {x1q1 + x2q2 + · · ·+ xkqk | |xi| ≤ li}. Direct calculation shows

P ⊆ B = B(u1, u2, · · · , uk; ε1, ε2, · · · , εk).

Next we show sums in P are all distinct. If x1, · · · , xk and y1, · · · , yk
correspond the same value in P , then zi = xi − yi satisfy∑

i

ziqi = 0, |zi| ≤ 2li,

Multiplying uj we get ∑
i

ziaij ≡ 0 mod m,

But
|
∑
i

ziaij| ≤
∑
i

2liλiεi ≤
∑
i

2mεi
k

< m,

then
∑
i

ziaij = 0, so
∑
i

ziai = 0. But {ai} is linearly independent, zi = 0,

which is what we want. Then immediately we get

|P | > mk

kkλ1λ2 · · ·λk
≥ δm.

Combining lemma 2.2 and lemma 2.3, we get an important result.
Lemma 2.4. Let m be a prime number, and A be a nonempty subset of Z/mZ
with |A| = βm. There are residues q1, q2, · · · , qk, and l1, l2, · · · , lk ∈ N such
that the set

P = {x1q1 + x2q2 + · · ·+ xkqk | |xi| ≤ li},
is contained in 2A− 2A. And the sums in P are all distinct with

|P | ≥ δm,

here
k ≤ β−2,

δ = (4k)−k.

5
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3 Freiman homomorphism
In this section we introduce homomorphism in the sense of Freiman, and
study its properties. This concept can be defined in general abelian groups.

Definition 3.1. Let G1, G2 be abelian groups, A1 ⊆ G1, A2 ⊆ G2 and r > 1
a fixed positive integer. If a mapping ϕ : A1 → A2 satisfies that for any
x1, · · · , xr, y1, · · · , yr ∈ A1(not necessarily distinct), the equation

x1 + · · ·+ xr = y1 + · · ·+ yr,

will imply
ϕ(x1) + · · ·+ ϕ(xr) = ϕ(y1) + · · ·+ ϕ(yr),

we call ϕ a Freiman homomorphism of order r, or Fr-homomorphism. We
call it a isomorphism if it is one-to-one. When we do not specify r, we mean
r = 2.

Lemma 3.2. Let G,G′ be abelian groups. If P ′ ⊆ G′ is a Freiman image
of a arithmetical progression P (q1, · · · , qd; l1, · · · , ld; a), then there are q′i, a′
such that

P ′ = P (q′1, · · · , q′d; l1, · · · , ld; a′),

and the homomorphism is given by

ϕ(a+ x1q1 + · · ·+ xdqd) = a′ + x1q
′
1 + · · ·+ xdq

′
d.

Proof. we define
a′ = ϕ(a), q′i = ϕ(a+ qi)− ϕ(a),

and we can prove by induction that

ϕ(a+ x1q1 + · · ·+ xdqd) = a′ + x1q
′
1 + · · ·+ xdq

′
d.

We use induction on
r = x1 + x2 · · ·+ xn,

and by the definition of q′i the statement is correct when r ≤ 1.
Now assume that r ≥ 2 and the statement holds for all smaller r, and

let’s just further assume x1 ≥ 1, then by the definition, we have

ϕ(a+x1q1+x2q2 · · ·+xdqd)+ϕ(a) = ϕ(a+(x1−1)q1+x2q2 · · ·+xdqd))+ϕ(a+x1),
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ϕ(a+ x1q1 + x2q2 · · ·+ xdqd) = a′ + (x1 − 1)q′1 + x2q2
′ · · ·+ xdq

′
d + a′ + x′1 − a′

= a′ + x1q
′
1 + x2q

′
2 · · ·+ xdq

′
d.

Then by induction we complete the proof.

Lemma 3.3. Let G,G′ be abelian groups. A ⊆ G,A′ ⊆ G′ are Fr-isomorphic
sets. Write r = r′(k + l) with positive integers r′, k, l. Then kA − lA and
kA′ − lA′ is Fr′-isomorphic.

Proof. For
x = a1 + · · ·+ ak − b1 − · · · − bl ∈ kA− lA,

we define

ψ(x) = ϕ(a1) + · · ·+ ϕ(ak)− ϕ(b1)− · · · − ϕ(bl),

where ϕ is the Fr isomorphism between G,G′. We can check easily that it is
well defined and is a Fr′-isomorphism.

4 Estimate of sumsets
In [1] there are two lemmas the author didn’t give proof (lemma 5.1 and
lemma 5.2). These two lemmas is useful in the final theorem.

We need some preparations for the proof of these lemmas. In what follows
we are always dealing with finite sets in a fixed torsion-free abelian group.

Lemma 4.1. Set fB(X) =
|X +B|

|X|
. If X satisfies fB(X) ≤ fB(Z) for every

Z ⊂ X, then fB(X) ≥ fB(X + C).

Proof. Assume k =
|X +B|

|X|
, then |Z +B|

|Z|
≥ k for all Z ⊂ X, and we will

use induction on |C| to prove this lemma.
If |C| = 0, it’s trivial.
If for any C with |C| < s, this lemma is correct. For |C| = s, we take

c0 ∈ C and let C = c0∪C ′, where |C ′| = s−1, let T = (X+c0)∩(X+C ′−c0)

|X +B + (C ′ ∪ c0)| = |X +B + C ′|+ |(X +B + c0) \ (X +B + C ′)|
≤ |X +B + C ′|+ |X +B| − |T +B|
≤ k|X + C ′|+ k|X| − k|T | = k(|X + C ′|+ |X| − |T |)
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because
|X| = |X + c0| ≥ |T |.

If we divide both sides |X + C|, then we finish the proof.

Lemma 4.2.
|A||B − C| ≤ |A− B||A− C|.

Proof. Consider the following map

Φ : A× (B − C) −→ (A− B)× (A− C),

a× x −→ (a− b0)× (a− c0),

here we takes b0 = b(x) as fixed for each x such that there exists c ∈ C
satisfying b0 − c = x and c0 is b0 − x.

The following chain show Φ is reversible (hence injective):

(a− b0)× (a− c0) →(a− b0, b0 − c0)

→ (a− b0, b0 − c0, b0) → (a, b0, c0).

Lemma 4.3 (lemma 5.2 of [1], see also [2]). If |B| = n, |B + A| = αn, then
for any positive integer k, l, we have

|kA− lA| ≤ αk+ln

Proof. Take X ⊂ B such that |X + A|
|X|

takes the minimum.

By lemma 4.1 we have |X + A|
|X|

≤ α and

|X +mA||X| ≤ |X +A||X + (m− 1)A| ≤ α|X||X + (m− 1)A| · · · ≤ αm|X|.

So using lemma 4.2 we get

|kA− lA| ≤ |X + kA||X + lA|
|X|

≤ αk+l|X| ≤ αk+ln.
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Lemma 4.4 (lemma 5.1 of [1], see also [2]). If A ⊆ Z, r ≥ 2, N ∈ Z s.t
|rA− rA| = N , then for any m > 2r(N − 1) there is a subset A′ ⊆ A satisfy
the following statement:

i) |A′| ≥ |A|
r

,
ii) A′ is Fr-isomorphic to a subset of Z/mZ.

Proof. Choose a large prime number q s.t. q > max{rA− rA}, now consider
the map

Z mod q−→ Z/qZ λ1x+λ2−→ Z/qZ −→ {1, 2, . . . , q} mod N−→ Z/NZ,

which bring A’s subset A′ to the subset B′ of Z/NZ.
Next we choose λ1, λ2 and A′ to make this map a Fr-isomorphism and

|A′| ≥ |A|
r

. It’s obvious that the first two map is Fr-isomorphism, so we need
to ensure that the map

Z/qZ → {1, 2, . . . , q}

and
{1, 2, . . . , q} → Z/NZ

are Fr-isomorphism.
First, for a certain λ1 we choose λ2 that the map

Z/qZ → {1, 2 . . . q}

is a Fr-isomorphic on A′:
Since there is always a integer k s.t the set {k+1+ qZ, k+2+ qZ . . . k+

[
q

r
] + qZ} has |A|

r
elements in |A′′|, here A′′ = {λ1x+ qZ, x ∈ A}, under this

condition we can choose λ2 = −k and |A′| = {x|k < λx ≤ k + [
q

r
], x ∈ A},

then map
Z/qZ → {1, 2, . . . , q}

is a Fr-isomorphism on A′.
Then we choose λ1 to make

ϕ : Z → Z/qZ λ1x+λ2−→ Z/qZ −→ {1, 2 . . . q} modN→ Z/NZ

a Fr-isomorphism, if

9

219 



a1 + a2 + · · ·+ ar ̸= b1 + b2 + · · ·+ br,

but
ϕ(a1) + ϕ(a2) + · · ·+ ϕ(ar) = ϕ(b1) + ϕ(b2) + · · ·+ ϕ(br),

take
d = a1 + a2 + · · ·+ ar − b1 − b2 − · · · − br > 0,

then by the definition of ϕ, we know N |t (where t ≡ λd mod q and 0 ≤
t < q), because q is a prime, for each d there are only [

q

N
] bad λ1. And

there are at most N different d, so there is always λ1 and λ2 satisfy ϕ is a
Fr-isomorphism on A′, where |A′| ≤ |A|

r
.

5 Proof of the main theorem
We finish the final proof.

Proof of the main theorem. Since A is finite, we can assume that A ⊆ Zv for
some v.

For any r, we can find a set A2 ⊆ Z that is Fr-isomorphic to A. In fact,
the map

(a1, · · · , av) → a1 + ta2 + · · ·+ tv−1av,

will work for sufficiently large t. We will use the case r = 8.
Now we use lemma 4.3 for 2A2 − 2A2, getting

|2A2 − 2A2| = |2A− 2A| ≤ α4n.

And we apply lemma 4.4 with r = 8 and any prime m > 2r|2A− 2A|. So we
can always choose m prime with

m < 4r|2A− 2A| < 32α4n,

and get A′ ⊆ A2 that is F8-isomorphic to a T ⊆ Z/mZ with |A′| ≥ n/8.
Then we can use lemma 2.4 to get a k dimensional arithmetical progression
P ⊆ 2T − 2T with |P | > δn, and δ and k depend on α only.

Now we come back to A. T is F8 isomorphic to A∗ ⊆ A, which can be
extended to a F2-isomorphism between 2T − 2T and 2A∗− 2A∗ (lemma 3.3).
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The image of P , denoted by P ∗, is still a arithmetical progression in 2A−2A
(lemma 3.2).

Select maximum subset a1, · · · , as ∈ A such that P ∗ + ai are pairwise
disjoint. This is always possible, and since any of them belong to A+ P ∗ ⊆
3A− 2A, we have (by lemma 4.3 again)

s ≤ |3A− 2A|
|P ∗|

≤ α5n

δn
=
αn

δ
.

Now A can be covered by

A ⊆
∪
i

(ai + P ∗ − P ∗) ⊆ {a1, · · · , as}+ P ∗ − P ∗.

since for any a ∈ A,∃ai such that a + P ∗ = ai + P ∗. Easy to see the set
{a1, · · · , as} is covered by

P (a1, · · · , as; 1, · · · , 1; 0),

and P ∗ − P ∗ is still a k dimensional arithmetical progression with

|P ∗ − P ∗| ≤ 2k|P ∗| ≤ 2k|2A− 2A| ≤ 2kα4n.

Combining these two arithmetical progressions, we finally get that A is
contained in an arithmetical progression of s + k dimension with its size
bounded by 2s+kα4n. The proof is complete.

6 Review
This theorem can be applied to many situations, such as B = −A or B =
A, and we can easily get many similar results. But there can be certain
improvements.

One thing is that this theorem doesn’t state what happens when there is
torsion part. We guess the whole theorem is correct in any abelian groups
and even these constant can be as the same. The problem is that lemmas in
Section 4 which offer certain estimates are central in the final proof, while it
seems hard to be stated in torsion cases. We may need some subtle changes
in these proofs.
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Another thing is that although d, C is independent of n, they seem to be
too large (d is in fact exponential on α). The first theorem of [4] says if we
restrict ourselves to the case B = A, we can have

d < α + 1, for sufficently largen

which is just linear on α. Although we are dealing general cases, we think
polynomial bound should be enough. The key point is lemma 2.4. It is a
general result while we use it in a much more specific case.
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Newlander-Nirenberg Theorem

Xiong Jiangnan

June 10, 2022

1 Introduction
Definition 1.1. A complex manifold is a manifold M , together with:
(1) Atlas {(Uα, ϕα)}, where Uα ⊂ M open, ϕα : Uα → Dn homeomorphism.

where Dn is the unit open disk in Cn.
(2) Transition map ϕα ◦ ϕ−1

β : ϕβ(Uβ) → ϕα(Uα) is holomorphic.
Note: (2) implies that the transition maps are biholomorphic.

These data are called the complex structure on M .

Definition-Lemma 1.2. Let V be an R-vector space.
(1) A complex structure on V is a linear map J : V → V s.t. J2 = −I
(2) Complexification of V is the tensor product VC = V ⊗R C
(3) Given complex structure J , we can regard V as a C-vector space by setting i ·v = Jv,

we denote this C-vector space by VJ .
(4) J can extend to a C-linear map J : VC → VC which commutes with the complex

conjugation, inducing a decomposition VC = V 1,0
C ⊕ V 0,1

C .
where V 1,0

C is i-eigenspace, V 0,1
C is (−i)-eigenspace.

(5) We have isomorphisms: V i
C
∼= V −i

C C-linear, V i
C
∼= VJ C-linear.

Similar constructions can be made on manifolds.

Definition 1.3. An almost complex manifold is a manifold M2n, together with (1,1)-
tensor J , which is a complex structure on (co)tangent spaces pointwise. More precisely:
(1) J ∈ Γ(M,T ∗M ⊗ TM), called the almost complex structure.
(2) ∀p ∈ M , Jp : TpM → TpM is a complex structure on TpM .
(2’) ∀p ∈ M , Jp : T ∗

pM → T ∗
pM is a complex structure on T ∗

pM .

Proposition 1.4. A complex manifold admits a natural almost complex structure.

Proof. Let M be complex manifold of complex dimension n.
Then its underlying real manifold M0 is of real dimension 2n.
We have canonical R-isomorphism TM ∼= TM0.
Multiplied by i on TM gives an almost complex structure on M0.
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There are various examples of almost complex structures which do not arise from
complex structures, for example S6. This inverse problem is answered by Newlander-
Nirenberg Theorem.

Theorem 1.5 (Newlander-Nirenberg). Let (M,J) be an almost complex manifold. Then
there is a complex structure on M which induces the almost complex structure J if and
only if J is integrable.

Remark 1.6. For smooth manifolds and smooth J , this theorem is a corollary of Frobenius’
theorem. We treat with weaker smoothness in this report.

2 Local Representation
Let M be a manifold.
Lowercase letters j, k, l, · · · denote indices from 1 to n.
Greek letters µ, ν, λ, · · · denote indices from 1 to 2n.
The Einstein summation convention is employed.
Recall the complexification TMC = TM ⊗R C, when M is R-manifold

If M is a complex manifold, (zj) be a complex coordinate.
The induced almost complex structure can be described as follows:
(xj = Re zj, yj = Im zj) is real coordinate for the underlying manifold M0.
dzj 7→ idzj gives the almost complex structure J : dxj 7→ −dyj, dyj 7→ dxj

Moreover, dzj, dzj form a R-frame of T (M0)C.
The extension J : T ∗

CM0 → T ∗
CM0 is dzj 7→ idzj, dzj 7→ −idzj

Now assume (M,J) is an almost complex manifold.
Let (x1, · · · , x2n) be a R local coordinate system.
We can introduce complex coordinate (not necessarily analytic) by

zj = xj + i · xj+n, zj+n = zj = xj − i · xj+n

All complex coordinates (zµ) in this report satisfy the convention zj+n = zj, and we often
refer to it as (zj), without explicitly mentioning (zj).

Let J ∈ Γ(M,T ∗MC ⊗ TMC) be the natural extension.
Then J has local representation

J = Jλ
µdz

µ ⊗ ∂

∂zλ
(2.1)

Jdzλ = Jλ
µdz

µ (2.2)

J
∂

∂zµ
= Jλ

µ

∂

∂zλ
(2.3)
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Now J is almost complex structure means

Jλ
µJ

ν
λ = −δνµ (2.4)

Definition 2.1. A function w = w(z) of (zj) is called analytic with respect to the almost
complex structure J , if

Jdw = idw, Jdw = −idw (2.5)

A chart (ζµ) is called analytic w.r.t. J if each ζj is.

Lemma 2.2. J is induced by a complex manifold if and only if M can be covered by
analytic complex coordinate charts.

Proof. Let (ζµ), (ηµ) be two coordinate system analytic w.r.t. J
We shall prove that the transition map (ζj) 7→ (ηj) is holomorphic.

It suffices to prove that
∂ηj

∂ζ
k
= 0. Calculate as follows:

dηj =
∂ηj

∂ζk
dζk +

∂ηj

∂ζ
k
dζ

k (2.6)

Jdηj =
∂ηj

∂ζk
Jdζk +

∂ηj

∂ζ
k
Jdζ

k (2.7)

idηj = i
∂ηj

∂ζk
dζk − i

∂ηj

∂ζ
k
dζ

k (2.8)

(2.6) + i(2.8):
∂ηj

∂ζ
k
dζ

k
= 0 (2.9)

This lemma shows that the question whether the almost complex structure comes from
a complex manifold is purely local.

We now discuss this local problem.
By diagonalization, we can apply a suitable linear transformation, and then assume

that (2.5) holds for Z = (zj) at Z = 0, i.e.

Jdzj(0) = idzj(0), Jdzj(0) = −idzj(0) (2.10)

Under this assumption, we now give some equivalent description of (2.5).

Lemma 2.3. For w = w(Z), the following are equivalent near Z = 0.
(1) w is holomorphic w.r.t. J
(2) Jdw = idw

3
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(3) i
∂w

∂zλ
=

∂w

∂zµ
Jµ
λ

(4) i
∂w

∂zj
=

∂w

∂zk
Jk
j +

∂w

∂zk
Jk+n
j , i

∂w

∂zj
=

∂w

∂zk
Jk
j+n +

∂w

∂zk
Jk+n
j+n

(5) i
∂w

∂zj
=

∂w

∂zk
Jk
j+n +

∂w

∂zk
Jk+n
j+n

Proof. (1) =⇒ (2): trivial.
(2) =⇒ (1): J preserves complex conjugate.

(2)⇐⇒ (3): dw =
∂w

∂zµ
dzµ, Jdw =

∂w

∂zµ
Jµ
λdz

λ, compare the coefficients.
(3)⇐⇒ (4): trivial.
(4)⇐⇒ (5): We restate the problem in the language of matrices:

J = [Jµ
λ ] =

[
Jk
j Jk+n

j

Jk
j+n Jk+n

j+n

]
, X =

[
∂w

∂zµ

]
=

[
∂w
∂zk
∂w
∂zk

]
To prove that (iI − J)X = 0 is equivalent to the last n rows.

iI − J =

[
iδkj − Jk

j −Jk+n
j

−Jk
j+n iδkj − Jk+n

j+n

]
(2.11)

(iI − J)(0) =

[
iδkj − Jk

j (0) −Jk+n
j (0)

−Jk
j+n(0) iδkj − Jk+n

j+n (0)

]
=

[
0 0
0 2iI

]
(2.12)

(iI + J)(0) =

[
iδkj + Jk

j (0) Jk+n
j (0)

Jk
j+n(0) iδkj + Jk+n

j+n (0)

]
=

[
2iI 0
0 0

]
(2.13)

Claim: A ∈ CN×N , A2 = I, then rank(iI − A) + rank(iI + A) = N
The claim is an easy linear algebraic problem, we omit the proof.

By (2.12), the last n rows of iI − J is linearly independent near Z = 0.
By (2.13), rank(iI + J) ≥ n near Z = 0.
Now by Claim, rank(iI − J) ≤ n near Z = 0.
So rank(iI − J) = n near Z = 0, and its row space is generated by the last n rows.
The proof is completed.

Now we can solve from Lemma 2.3.(5) to obtain that

∂w

∂zj
= akj

∂w

∂zk
(2.14)

where akj is defined near Z = 0 by [akj ] = [iδkj − Jk+n
j+n ]

−1[Jk
j+n]

More precisely: (iδkj − Jk+n
j+n )a

l
k = J l

j+n

Then (2.14) is equivalent to that w is analytic w.r.t. J .
Note that akj (0) = 0.
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3 Integrability Condition
Assume that we are given analytic coordinate (ζj) w.r.t. J , then:

Jdζj = idζj,
∂ζj

∂zk
= alk

∂ζj

∂zl
(3.1)

dζj =
∂ζj

∂zl
dzl +

∂ζj

∂zk
dzk =

∂ζj

∂zl
dzl + alk

∂ζj

∂zl
dzk =

∂ζj

∂zl
(dzl + alkdz

k) (3.2)

Let ul = dzl + alkdz
k, then (3.2) is dζj =

∂ζj

∂zl
ul

Let [blj] =

[
∂ζj

∂zl

]−1

, then ul = bljdζ
j

dul = dblj ∧ dζj =
∂ζj

∂zk
dblj ∧ uk (3.3)

This leads to our first formulation of integrability condition.
The integrability condition: the exterior differential of ul is a sum of exterior products

of 1-forms with uk.

This formulation is close to the modern description of integrability condition. (We’ll
return to it in the end of this report)

However, it’s not easy to use. We shall reformulate it into a more computable form.

Define operators Lj =
∂

∂zj
− akj

∂

∂zk

LkLj =

(
∂

∂zk
− alk

∂

∂zl

)(
∂

∂zj
− amj

∂

∂zm

)
=

∂2

∂zk∂zj
− alk

∂2

∂zl∂zj
−

∂amj
∂zk

∂

∂zm
− amj

∂2

∂zk∂zm
+ alk

∂amj
∂zl

∂

∂zm
+ alka

m
j

∂2

∂zl∂zm

Note that
∂2

∂zµ∂zλ
=

∂2

∂zλ∂zµ
, we get:

LjLk − LkLj =

(
∂amj
∂zk

− alk
∂amj
∂zl

− ∂amk
∂zj

+ alj
∂amk
∂zl

)
∂

∂zm
(3.4)

Let Lm
j,k =

∂amj
∂zk

− alk
∂amj
∂zl

, then (3.4) is

LjLk − LkLj = (Lm
j,k − Lm

k,j)
∂

∂zm
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Proposition 3.1. The integrability condition is equivalent to that Lj commutes with each
other.

Proof. By (3.4), Lj commutes with each other if and only if Lm
j,k = Lm

k,j

dum = d(dzm + amj dz
j) = damj ∧ dzj

=
∂amj
∂zl

dzl ∧ dzj +
∂amj
∂zk

dzk ∧ dzj

=
∂amj
∂zl

dzl ∧ dzj + alk
∂amj
∂zl

dzk ∧ dzj + Lm
j,kdz

k ∧ dzj

=
∂amj
∂zl

ul ∧ dzj + Lm
j,kdz

k ∧ dzj

= −(
∂amj
∂zl

dzj) ∧ ul + Lm
j,kdz

k ∧ dzj

If Lm
j,k = Lm

k,j, then Lm
j,kdz

k ∧ dzj = 0, the integrability condition holds.
On the other hand, assume that for 1-forms vl = vl,kdz

k + vl,k+ndz
k

Lm
j,kdz

k ∧ zj = vl ∧ ul

Then we have:

Lm
j,kdz

k ∧ zj = vl ∧ ul = (vl,kdz
k + vl,k+ndz

k) ∧ (dzl + aljdz
j)

= vl,kdz
kdzl + vl,k+ndz

kdzl + vl,ka
l
jdz

kdzj + vl,k+na
l
jdz

kdzj

= vl,kdz
kdzl + (vk,j+n − vl,ka

l
j)dz

jdzk + vl,k+na
l
jdz

kdzj

By comparing coefficients, we get

vl,k = vk,l

vk,j+n = vl,ka
l
j

Therefore

vl,k+na
l
j = vm,la

m
k a

l
j = vl,ma

m
k a

l
j = vm,j+na

m
k = vl,j+na

l
k

Lm
j,kdz

k ∧ zj = vl,k+na
l
jdz

k ∧ dzj = 0

We get Lm
j,k = Lm

k,j. The proof is completed.

Conclusion: If J is induced by a complex manifold, then the integrability condition
holds: Lj commutes with each other.

We now need to do the converse. Assume that the integrability condition holds, to
find a complex analytic coordinate system (ζj).
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Lemma 3.2. Assume that the following equations hold:

∂zk

∂ζ
j = −akm

∂zm

∂ζ
j (3.5)

Then (ζj) is analytic w.r.t. J

Proof. Evaluation at Z = 0, then
∂zk

∂ζ
j (0) = 0.

Since (zµ), (ζλ) are two coordinate system, det
(
∂zµ

∂ζλ

)
̸= 0

Then

(
∂zk

∂ζ
j

)
is non-singular near Z = 0

0 =
∂ζj

∂ζ
k
=

∂ζj

∂zl
∂zl

∂ζ
k
+

∂ζj

∂zm
∂zm

∂ζ
k
= −alm

∂zm

∂ζ
k

∂ζj

∂zl
+

∂ζj

∂zm
∂zm

∂ζ
k
=

∂zm

∂ζ
k
Lmζ

j

Therefore Lmζ
j = 0, (ζj) is analytic w.r.t. J

4 Integral operator
Through this section, we use z, ζ, · · · to denote single complex variable in C

We want to solve equation of the following type:

∂w

∂z
= f(z) (4.1)

Definition 4.1. Define an operator T as follows

Tf(ζ) =
1

2πi

∫
D

f(z)

z − ζ
dzdz (4.2)

where D = B(0, R) = {z : |z| < R} for some fixed R > 0

Example 4.2. For all ζ ∈ D = B(0, R)

T1(ζ) =
1

2πi

∫
D

dzdz

z − ζ
= ζ (4.3)

Proof. Let z = x+ iy = reiθ. Let S(0, r) = {z ∈ C : |z| = r}

1

2πi

∫
D

dzdz

z − ζ
=

−1

π

∫
D

dxdy

z − ζ
=

−1

π

∫ R

0

rdr

∫
S(0,r)

dθ

z − ζ

ϕ(r) :=

∫
S(0,r)

dθ

z − ζ
=

∫
S(0,r)

ireiθdθ

iz(z − ζ)
=

∫
S(0,r)

dz

iz(z − ζ)
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If ζ = 0, then ∀0 < r < R

ϕ(r) =

∫
S(0,r)

dz

iz(z − ζ)
= 2πi · Res

z=0

1

iz2
= 0

If ζ ̸= 0,

ϕ(r) =


2πi · Res

z=0

1

iz(z − ζ)
= −2π

ζ
, if 0 < r < |ζ|

2πi ·
(
Res
z=0

1

iz(z − ζ)
+ Res

z=ζ

1

iz(z − ζ)

)
= 0, if |ζ| < r < R

In both cases,

1

2πi

∫
D

dzdz

z − ζ
=

−1

π

∫ R

0

ϕ(r)rdr =

∫ |ζ|

0

2

ζ
rdr =

|ζ|2

ζ
= ζ

Theorem 4.3. Let α > 0, f ∈ Cα(D), D = B(0, R), i.e.

Lipα(f) = sup
z1,z2∈D

|f(z1)− f(z2)|
|z1 − z2|α

< ∞

Then Tf(ζ) ∈ C1(D), with derivatives:

∂

∂ζ
Tf(ζ) = f(ζ) (4.4)

∂

∂ζ
Tf(ζ) =

1

2πi

∫
D

f(z)− f(ζ)

(z − ζ)2
dzdz (4.5)

Proof. Recall:
∂

∂ζ
=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂ζ
=

1

2
(
∂

∂x
+ i

∂

∂y
)

∂

∂ζ
Tf =

1

2
(
∂

∂x
Tf + i

∂

∂y
Tf)

= lim
h→0

(
Tf(ζ + h)− Tf(ζ)

2h
+ i

Tf(ζ + ih)− Tf(ζ)

2h

)
= lim

h→0

∫
D

f(z)

2h

(
1

z − ζ − h
+

i

z − ζ − ih
− i+ 1

z − ζ

)
dzdz

= lim
h→0

∫
D

1−i
2
hf(z)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

= lim
h→0

∫
D

1−i
2
h(f(z)− f(ζ))

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz + f(ζ)

∂

∂ζ
T1

= lim
h→0

1− i

2
h

∫
D

f(z)− f(ζ)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz + f(ζ)
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Now estimate ∣∣∣∣∫
D

f(z)− f(ζ)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

∣∣∣∣
≤ C

∫
D

|f(z)− f(ζ)|
|z − ζ||z − ζ − h||z − ζ − ih|

dxdy

≤ CLipα(f)

∫
D

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

Let D1 = B(ζ, h
2
), D2 = B(ζ + h, h

2
), D3 = B(ζ + ih, h

2
)∫

D1

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

≤ C

h2

∫ h
2

0

1

r1−α
rdr = C · hα−1

∫
D2

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

≤ C

h2−α

∫ h
2

0

1

r
rdr = C · hα−1

∫
D3

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

≤ C

h2−α

∫ h
2

0

1

r
rdr = C · hα−1

Let D4 = B(ζ, 3h
2
)− (D1 ∪D2 ∪D3), D5 = D −B(ζ, 3h

2
)∫

D4

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

≤ C · h2 · 1

h3−α
= C · hα−1∫

D5

1

|z − ζ|1−α|z − ζ − h||z − ζ − ih|
dxdy

≤ C

∫ R

3h
2

1

r3−α
rdr ≤ C

∫ ∞

3h
2

1

r2−α
dr = C · hα−1

Therefore we have∣∣∣∣∫
D

f(z)− f(ζ)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

∣∣∣∣ ≤ CLipα(f) · hα−1 (4.6)
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Similar argument holds for ∂
∂ζ

:

∂

∂ζ
Tf =

1

2
(
∂

∂x
Tf − i

∂

∂y
Tf)

= lim
h→0

∫
D

f(z)

2h

(
1

z − ζ − h
− i

z − ζ − ih
− 1− i

z − ζ

)
dzdz

= lim
h→0

∫
D

f(z) · (z − ζ − i+1
2
h)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

= lim
h→0

∫
D

(f(z)− f(ζ)) · (z − ζ − i+1
2
h)

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

=

∫
D

f(z)− f(ζ)

(z − ζ)2
dzdz + lim

h→0

∫
D

i+1
2
h(f(z)− f(ζ))

(z − ζ)(z − ζ − h)(z − ζ − ih)
dzdz

− lim
h→0

∫
D

ih2(f(z)− f(ζ))

(z − ζ)2(z − ζ − h)(z − ζ − ih)
dzdz =

∫
D

f(z)− f(ζ)

(z − ζ)2
dzdz

The proof is completed.

Lemma 4.4 (Mean Value Theorem). Let ω be a convex domain, f(z) ∈ C1(ω)

Lip1(f) ≤ sup

∣∣∣∣∂f∂z
∣∣∣∣+ sup

∣∣∣∣∂f∂z
∣∣∣∣ (4.7)

f(z1)− f(z0) =
∂f

∂z
· (z1 − z0) +

∂f

∂z
· (z1 − z0) (4.8)

Proof. Let zt = z0 + t(z1 − z0), g(t) = f(zt) = f(z0 + t(z1 − z0))

|f(z1)− f(z0)| = |
∫ 1

0

g′(t)dt| ≤
∫ 1

0

|g′(t)|dt

g′(t) =
∂f

∂z
(zt) · (z1 − z0) +

∂f

∂z
(zt) · (z1 − z0)

This proves (4.7). For (4.8), use Mean Value Theorem in R2 twice:

f(z1)− f(z0) =
∂f

∂x
(z′) · (x1 − x0) +

∂f

∂y
(z′′) · (y1 − y0)

=

(
∂f

∂z
+

∂f

∂z

)
z1 − z0 + z1 − z0

2
+

(
i
∂f

∂z
− i

∂f

∂z

)
z1 − z0 − z1 + z0

2i

=
∂f

∂z
· (z1 − z0) +

∂f

∂z
· (z1 − z0)

Be careful what this formula means.
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Theorem 4.5. We have the following estimates:

|Tf | ≤ C ·R · sup |f | (4.9)∣∣∣∣ ∂∂ζ Tf
∣∣∣∣ ≤ sup |f | (4.10)∣∣∣∣ ∂∂ζ Tf
∣∣∣∣ ≤ C ·Rα · Lipα(f) (4.11)

Lip1(Tf) ≤ sup |f |+ C ·Rα · Lipα(f) (4.12)

Lipα

(
∂

∂ζ
Tf

)
= Lipα(f) (4.13)

Lipα

(
∂

∂ζ
Tf

)
≤ C · Lipα(f) (4.14)

Proof. By (4.4), it’s trivial to get (4.10),(4.13)

|Tf(ζ)| ≤ C

∫
D

|f(z)|
|z − ζ|

dxdy ≤ C sup |f |
∫
B(0,2R)

1

|z|
dxdy = CR sup |f |

∣∣∣∣ ∂∂ζ Tf(ζ)
∣∣∣∣ ≤ C

∫
D

|f(z)− f(ζ)|
|z − ζ|2

dxdy ≤ C

∫
B(0,2R)

Lipα(f)

|z|2−α
dxdy = CRαLipα(f)

Lip1(Tf) ≤ sup

∣∣∣∣ ∂∂ζ Tf(ζ)
∣∣∣∣+ ∣∣∣∣ ∂∂ζ Tf(ζ)

∣∣∣∣ ≤ sup |f |+ CRαLipα(f)

∀ζ1, ζ2 ∈ D, let D1 = B(ζ2, 2|ζ1 − ζ2|) ∩D, D2 = D −D1

∂

∂ζ
Tf(ζ1)−

∂

∂ζ
Tf(ζ2) =

1

2πi

∫
D1

f(z)− f(ζ1)

(z − ζ1)2
dzdz − 1

2πi

∫
D1

f(z)− f(ζ2)

(z − ζ)2
dzdz

+
1

2πi

∫
D2

(f(z)− f(ζ1))

(
1

(z − ζ1)2
− 1

(z − ζ2)2

)
dzdz − 1

2πi

∫
D2

f(ζ1)− f(ζ2)

(z − ζ2)2
dzdz

∣∣∣∣∫
D1

f(z)− f(ζ1)

(z − ζ1)2
dzdz

∣∣∣∣ ≤ C

∫
B(ζ1,3|ζ1−ζ2|)

Lipα(f)

|z − ζ1|2−α
dxdy ≤ CLipα(f)|ζ1 − ζ2|α∣∣∣∣∫

D1

f(z)− f(ζ2)

(z − ζ2)2
dzdz

∣∣∣∣ ≤ C

∫
B(ζ2,2|ζ1−ζ2|)

Lipα(f)

|z − ζ2|2−α
dxdy ≤ CLipα(f)|ζ1 − ζ2|α
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∣∣∣∣ 1

2πi

∫
D2

(f(z)− f(ζ1))

(
1

(z − ζ1)2
− 1

(z − ζ2)2

)
dzdz

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫
D2

(f(z)− f(ζ1))
(ζ1 − ζ2)(2z − ζ1 − ζ2)

(z − ζ1)2(z − ζ2)2
dzdz

∣∣∣∣
≤C

∫
C−B(ζ2,2|ζ1−ζ2|)

Lipα(f)|ζ1 − ζ2|
|z − ζ2|3−α

dxdy

=C

∫ ∞

2|ζ1−ζ2|

Lipα(f)|ζ1 − ζ2|
r3−α

dr = CLipα(f)|ζ1 − ζ2|α

1

2πi

∫
D2

dzdz

(z − ζ2)2
=

1

2πi

∫
D2

∂

∂ζ2

(
−1

z − ζ2

)
dzdz =

∂

∂ζ2

(
−1

2πi

∫
D2

1

z − ζ2
dzdz

)
=

∂

∂ζ2

(
1

2πi

∫
D1

1

z − ζ2
dzdz − 1

2πi

∫
D

1

z − ζ2
dzdz

)
=

∂

∂ζ2
(0− ζ2) = 0

(4.14) is proved by these together.

5 Higher Dimension Case
We now deduce corresponding conclusions in higher dimension.
We work in Cn, let 0 < r < 1

4
, 0 < α < 1 fixed, D = B(0, r) ⊂ C

Consider functions defined on Ω = {(ζ1, · · · , ζn) : |ζj| ≤ r,∀1 ≤ j ≤ n}
Define the integral operators:

T jf(ζ1, · · · , ζn) = 1

2πi

∫
D

f(ζ1, · · · , ζj−1, τ, ζj+1, · · · , ζn) dτdτ
τ − ζj

(5.1)

Let ∂j denote either
∂

∂ζj
or

∂

∂ζ
j

Let δj denote a difference quotient operator of the form:

δjf = |δζj|−α(f(ζ1, · · · , ζj + δζj, · · · , ζn)− f(ζ1, · · · , ζj, · · · , ζn)) (5.2)

Theorem 5.1. Under suitable differentiability conditions, we have:

(1)
∂

∂ζ
j T

jf = f

∂

∂ζj
T jf =

1

2πi

∫
D

f(ζ1, · · · , ζj−1, τ, ζj+1, · · · , ζn)− f(ζ1, · · · , ζn)
(τ − ζj)2

dτdτ
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(2) ∀k ̸= j, ∂kT j = T j∂k, δkT j = T jδk, δk∂j = ∂jδk
(3) We have the following estimates:∣∣T jf

∣∣ ≤ Cr sup |f | (5.3)∣∣∣∣∣ ∂

∂ζ
j T

jf

∣∣∣∣∣ ≤ sup |f |∣∣∣∣ ∂

∂ζj
T jf

∣∣∣∣ ≤ Crα sup |δjf |


∣∣∂jT jf

∣∣ ≤ sup |f |+ Crα sup |δjf | (5.4)

∣∣δjT jf
∣∣ ≤ Cr1−α sup |f |+ Cr sup |δjf | (5.5)∣∣∣∣∣δj ∂

∂ζ
j T

jf

∣∣∣∣∣ ≤ sup |δjf |∣∣∣∣δj ∂

∂ζj
T jf

∣∣∣∣ ≤ C sup |δjf |


∣∣δj∂jT jf

∣∣ ≤ C sup |δjf | (5.6)

Proof. (1) follows from Thm 4.3, (2) is obvious, (3) follows from Thm 4.5

Corollary 5.2 (potential theoretic lemma).

sup |T jf |+ rα sup |δjT jf |+ r sup |∂jT jf |+ r1+α sup |δj∂jT jf |
≤ Cr sup |f |+ Cr1+α sup |δjf | (5.7)

Theorem 5.3. Consider the following equations under suitable differentiability conditions

∂ω

∂ζ
j = fj (5.8)

Write F = (f1, · · · , fn), define the combined integral operator:

TF =
n−1∑
s=0

(−1)s

(s+ 1)!

∑
j1,··· ,js,k distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T kfk (5.9)

Then TF ∈ C1, with derivatives

∂

∂ζ
j TF = fj +

n−2∑
s=0

(−1)s

(s+ 2)!

∑
j1,··· ,js,k,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T k

(
∂fk

∂ζ
j − ∂fj

∂ζ
k

)
(5.10)

In particular, if F satisfies the compatibility relations

∂

∂ζ
k
fj =

∂

∂ζ
j fk (5.11)

then TF is a solution to (5.8)
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Proof.

∂

∂ζ
j TF =

n−1∑
s=0

(−1)s

(s+ 1)!

∑
j1,··· ,js,k distinct

∂

∂ζ
j T

j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T kfk

=
n−1∑
s=0

(−1)s

(s+ 1)!

( ∑
j1,··· ,js,k,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T k ∂

∂ζ
j fk

+
∑

j1,··· ,js,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
fj

+
∑

j1,··· ,ĵl,··· ,js,k distinct

T j1
∂

∂ζ
j1
· · ·

̂
T jl

∂

∂ζ
jl
· · ·T js

∂

∂ζ
js
T k ∂

∂ζ
j fk


=

n−2∑
s=0

( ∑
j1,··· ,js,k,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T k ∂

∂ζ
j fk ·

(
(−1)s

(s+ 1)!
+ (s+ 1)

(−1)s+1

(s+ 2)!

)

+
∑

j1,··· ,js,k,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T k ∂

∂ζ
k
fj ·

(−1)s+1

(s+ 2)!

)
+ fj

=
n−2∑
s=0

(−1)s

(s+ 2)!

∑
j1,··· ,js,k,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T k

(
∂

∂ζ
j fk −

∂

∂ζ
k
fj

)
+ fj

6 Normed Function Spaces
We introduce some norms on the space of functions on Ω = {(ζ1, · · · , ζn) : |ζj| < r, ∀j}
Recall that:
∂j denotes either

∂

∂ζj
or

∂

∂ζ
j

δj denotes a difference quotient operator of the form:

δjf = |δζj|−α(f(ζ1, · · · , ζj + δζj, · · · , ζn)− f(ζ1, · · · , ζj, · · · , ζn)) (6.1)

Let ∂m denote an operator of the form ∂j1 · · · ∂jm with j1, · · · , jm distinct.
Let ∂m;j denote an operator of the form ∂j1 · · · ∂jm with j, j1, · · · , jm distinct.
Let δm denote an operator of the form δj1 · · · δjm with j1, · · · , jm distinct.
Let δm;j denote an operator of the form δj1 · · · δjm with j, j1, · · · , jm distinct.
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Definition 6.1 (Norms). For functions z, f : Ω → C, define

Hα[z] =
n∑

k=0

rkα

k!
sup |δkz| (6.2)

|z|n =
n∑

k=0

rk

k!
sup |∂kz| (6.3)

|z|n+α =
n∑

k=0

rk

k!
supHα[∂

kz] (6.4)

|f |jn−1+α =
n−1∑
k=0

rk

k!
supHα[∂

k;jf ] (6.5)

where the supremum runs over all suitable operators.

Lemma 6.2. Hα[z], |z|n, |z|n+α, |f |jn−1+α are indeed norms.
And the normed spaces they induced are Banach algebras.

Proof. It’s obvious that they are indeed norms.
The completeness follows from that

∂j
∑

z =
∑

∂jz, δj
∑

z =
∑

δjz

which follows from the dominated convergence theorem.
The rest to prove that they are multiplicative.
By Leibniz rule,

∂j(fg) = ∂jf · g + f · ∂jg, δj(fg) = δjf · g + f · δjg

∂k(fg)

k!
=

k∑
l=0

∂lf

l!
· ∂k−lg

(k − l)!
,
δk(fg)

k!
=

k∑
l=0

δlf

l!
· δk−lg

(k − l)!

It follows that

Hα[fg] ≤
∞∑

m=0

rmα

m∑
k=0

sup
|δkf |
k!

sup
|δm−kg|
(m− k)!

= Hα[f ]Hα[g]

|fg|n ≤
∞∑

m=0

rmα

m∑
k=0

sup
|∂kf |
k!

sup
|∂m−kg|
(m− k)!

= |f |n|g|n

|fg|n+α ≤
∞∑

m=0

rm
m∑
k=0

supHα

[
∂kf

k!

]
supHα

[
∂m−kf

(m− k)!

]
= |f |n+α|g|n+α

|fg|jn−1+α ≤
∞∑

m=0

rm
m∑
k=0

supHα

[
∂k;jf

k!

]
supHα

[
∂m−k;jf

(m− k)!

]
= |f |jn−1+α|g|

j
n−1+α

Therefore the normed space they induced are Banach algebras.
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Definition 6.3. For Z = (z1, · · · , zn), F = (f1, · · · , fn), define

|Z|n+α = sup
1≤j≤n

|zj|n+α, |F |n−1+α = sup
1≤j≤n

|fj|jn−1+α (6.6)

They are indeed norms and induced Banach spaces.

Lemma 6.4.

|z|n+α ≤
∑
k,m

rk+mα

k!m!
sup |δm∂kz| (6.7)

rk+mα|δm∂kz| ≤ C|z|n+α (6.8)

|f |jn−1+α ≤
∑
k,m

rk+mα

k!m!
sup |δm∂k;jf | (6.9)

rk+mα sup |δm∂k;jf | ≤ C|f |jn−1+α (6.10)

Proof. By definition,

|z|n+α =
∑
k

rk

k!
supHα[∂

kz] ≤
∑
k,m

rk+mα

k!m!
sup |δm∂kz|

rk+mα|δm∂kz| ≤ CrkHα[∂
kz] ≤ C|z|n+α

The other two can be proved similarly

Example 6.5.
|ζj|n+α ≤ (2 + 21−α)r (6.11)

Proof.

|ζj| ≤ r,

∣∣∣∣∂ζj∂ζj

∣∣∣∣ = 1

|δjζj| = |ζj1 − ζj2 |1−α ≤ (2r)1−α

|ζj|n+α ≤
∑
k,m

rk+mα

k!m!
sup |δm∂kζj|

= sup |ζj|+ r sup

∣∣∣∣∂ζj∂ζj

∣∣∣∣+ rα sup |δjζj|

= (2 + 21−α)r
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Lemma 6.6. ∀j, l,

|T j(fg)|ln−1+α ≤ Cr|f |jn−1+α|g|ln−1+α (6.12)

|T j(fg)|n+α ≤ Cr|f |jn−1+α|g|n+α (6.13)

Proof.

|T j(fg)|ln−1+α ≤
∑
k,m

rk+mα

k!m!
sup |δm∂kT j(fg)|

Let Φ be a term of the following form

Φ = rk+mαδm;j∂k;j,l(fg)

We shall estimate terms of the following types:

T jΦ, rαδjT
jΦ, r∂jT

jΦ, r1+αδj∂jT
jΦ

which are bounded in absolute value by

Cr sup |Φ|+ Cr1+α sup |δjΦ|

r|Φ| = rk+1+mα|δm;j∂k;j,l(fg)| ≤ rk+1+mα
∑
s,t

C|δs;j∂t;j,lf | · |δm−s;j∂k−t;j,lg|

= r
∑
s,t

Crt+sα|δs∂t;jf | · rk−t+(m−s)α|δm−s∂k−t;lg| ≤ Cr|f |jn−1+α|g|ln−1+α

r1+α|δjΦ| = rk+1+(m+1)α|δjδm;j∂k;j,l(fg)| ≤ rk+1+(m+1)α
∑
s,t

C|δs∂t;jf | · |δm+1−s∂k−t;lg|

= r
∑
s,t

Crs+tα|δs∂t;jf | · |rk−t+(m+1−s)αδm+1−s∂k−t;lg| ≤ Cr|f |jn−1+α|g|ln−1+α

The other one is proved similarly.

Corollary 6.7. ∀j, l

|T jf |ln−1+α ≤ Cr|f |ln−1+α (6.14)

|T jf |n+α ≤ Cr|f |jn−1+α (6.15)

Lemma 6.8.
|∂jf |jn−1+α ≤ C

r
|f |n+α (6.16)
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Proof.

|∂jf |jn−1+α ≤
∑
k,m

rk+mα

k!m!
sup |δm∂k;j∂jf | ≤

C

r
|f |n+α

Corollary 6.9.
|T j∂jf |n+α ≤ C|f |n+α (6.17)

Theorem 6.10.
|TF |n+α ≤ Cr|F |n−1+α (6.18)

Proof. Recall

TF =
n−1∑
s=0

(−1)s

(s+ 1)!

∑
j1,··· ,js,k distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T kfk

|T j1∂j1 · · ·T js∂jsT
kfk|n+α ≤ C|T kfk|n+α ≤ Cr|fk|kn−1+α ≤ Cr|F |n−1+α

Lemma 6.11.
Hα[z] ≤ C|z|n (6.19)

Proof. By Mean Value Theorem

|δjz| ≤ Cr1−α sup |∂jz|

Hα[z] =
∑
k

rkα

k!
sup |δkz| ≤ C

∑
k

rk

k!
sup |∂kz| = C|z|n

We now consider a function a(Z) = a(z1, · · · , zn), and its norm as a function of (ζj).

Let ∂k
Za denote an operator of the form:

∂k

∂zµ1 · · · ∂zµk
, (µ1, · · · , µk may not be disjoint)

Note that |Z|n+α = sup |zj|n+α = sup |zµ|n+α

Lemma 6.12. Assume that a ∈ Cn, |z|n+α ≤ 1, |∂k
Za| ≤ K, ∀0 ≤ k ≤ n, then

Hα[a] ≤ C|a|n ≤

{
CK

CK|Z|n+α, if a(0) = 0
(6.20)
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Proof.

|a|n =
∑
j

rj

j!
sup |∂ja|

∀j > 0, by Bruno’s Formula, ∂ja is linear combination of the following terms:

Φ = (∂k
Za)(∂

j1zµ1) · · · (∂jkzµk), where ∂j1 · · · ∂jk = ∂j

rj|Φ| ≤ K|zµ1|n · · · |zµk |n ≤ K|Z|n+α

For j = 0, |a| ≤ K. If a(0) = 0, by Mean Value Theorem,

|a(Z)| = |a(Z)− a(0)| =
∣∣∣∣ ∂a∂zµ

· (zµ − 0)

∣∣∣∣ ≤ CK|Z|n+α

Theorem 6.13. Assume |Z|n+α ≤ 1, a ∈ C2n, |∂k
Za| ≤ K, ∀0 ≤ k ≤ 2n, then

|a(Z)|n+α ≤

{
CK

CK|Z|n+α, if a(0) = 0
(6.21)

Proof.

|a(Z)|n+α =
∑
j

rj

j!
Hα[∂

ja]

∀j > 0, ∂ja is linear combination of

Φ = (∂k
Za)(∂

j1zµ1) · · · (∂jkzµk), where ∂j1 · · · ∂jk = ∂j

rjHα[Φ] ≤ Hα[∂
k
Za]r

j1Hα[∂
j1zµ1 ] · · · rjkHα[∂

jkzµk ] ≤ K|Z|n+α

For j = 0,

Hα[a] ≤ C|a|n ≤

{
CK

CK|Z|n+α, if a(0) = 0

The same method shows that

Theorem 6.14. Assume |Z|n+α ≤ 1, a ∈ C2n−1, |∂k
Za| ≤ K, ∀0 ≤ k ≤ 2n− 1, then ∀m

|a(Z)|mn−1+α ≤

{
CK

CK|Z|mn−1+α, if a(0) = 0
(6.22)
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Theorem 6.15. Let Z1 = (zj1), Z2 = (zj2), |Z1|n+α, |Z2|n+α ≤ 1,
a ∈ C2n−1, |∂k

Za| ≤ K, ∀0 ≤ k ≤ 2n− 1, then:

|a(Z1)− a(Z2)|mn−1+α ≤ CK|Z1 − Z2|n+α (6.23)

Proof. By Mean Value Theorem

a(Z1)− a(Z2) =
∂a

∂zj
· (zj1 − zj2) +

∂a

∂zj
· (zj1 − zj2)

|a(Z1)− a(Z2)|mn−1+α ≤ C|∂1
Za|mn−1+α|Z1 − Z2|n+α ≤ CK|Z1 − Z2|n+α

7 Proof of Main Theorem
We now solve (3.5)

∂zk

∂ζ
j = −akm

∂zm

∂ζ
j

under integrability condition and suitable differentiability conditions.

Let fk
j (Z) = −akm

∂zm

∂ζ
j , then (3.5) is

∂zk

∂ζ
j = fk

j (Z)

Let F k = (fk
1 , · · · , fk

n), let zk0 (Z) be the value of TF k(Z) at ζ1 = · · · = ζn = 0
Consider the integral equation Z = Θ(Z):

zk = ζk + TF k(Z)− zk0 (Z) =: Θ
k(Z) (7.1)

Lemma 7.1. A solution of (7.1) satisfies (3.5), for sufficiently small r

Proof. Assume that (7.1) holds. Let gkj =
∂zk

∂ζ
j + akm

∂zm

∂ζ
j . To prove: gkj = 0

Apply
∂

∂ζ
j to (7.1),

∂zk

∂ζ
j =

∂

∂ζ
j TF

k(Z)

gkj =
∂zk

∂ζ
j + akm

∂zm

∂ζ
j =

∂

∂ζ
j TF

k(Z)− fk
j (Z)

=
n−2∑
s=0

(−1)s

(s+ 2)!

∑
j1,··· ,js,l,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T l

(
∂fk

l

∂ζ
j −

∂fk
j

∂ζ
l

)
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∂fk
l

∂ζ
j −

∂fk
j

∂ζ
l
=

∂

∂ζ
j

(
−akm

∂zm

∂ζ
l

)
− ∂

∂ζ
l

(
−akm

∂zm

∂ζ
j

)
=

∂akm

∂ζ
l
· ∂z

m

∂ζ
j − ∂akm

∂ζ
j · ∂z

m

∂ζ
l

=
∂akm
∂zp

∂zp

∂ζ
l

∂zm

∂ζ
j +

∂akm
∂zs

∂zs

∂ζ
l

∂zm

∂ζ
j − ∂akm

∂zp
∂zp

∂ζ
j

∂zm

∂ζ
l
− ∂akm

∂zs
∂zs

∂ζ
j

∂zm

∂ζ
l

=
∂akm
∂zp

(
gpl

∂zm

∂ζ
j − gpj

∂zm

∂ζ
l

)
+

∂zs

∂ζ
l

∂zm

∂ζ
j

(
∂akm
∂zs

− aps
∂akm
∂zp

)
− ∂zs

∂ζ
j

∂zm

∂ζ
l

(
∂akm
∂zs

− aps
∂akm
∂zp

)

=
∂akm
∂zp

(
gpl

∂zm

∂ζ
j − gpj

∂zm

∂ζ
l

)
+

∂zs

∂ζ
l

∂zm

∂ζ
j L

k
m,s −

∂zs

∂ζ
j

∂zm

∂ζ
l
Lk
m,s =

∂akm
∂zp

(
gpl

∂zm

∂ζ
j − gpj

∂zm

∂ζ
l

)
Here used the integrability condition Lk

m,s = Lk
s,m and commutes the index s,m.

We get a system of linear integral equations of gkj

gkj =
n−2∑
s=0

(−1)s

(s+ 2)!

∑
j1,··· ,js,l,j distinct

T j1
∂

∂ζ
j1
· · ·T js

∂

∂ζ
js
T l

(
∂akm
∂zp

(
gpl

∂zm

∂ζ
j − gpj

∂zm

∂ζ
l

))
(7.2)

It suffices to prove that (7.2) admits only the null solution for r sufficiently small.
Now estimate the norm:∑
j,k

|gkj |
j
n−1+α ≤

∑
j,k,s

C
∑

j1,··· ,js,l,j distinct

∣∣∣∣T j1∂j1 · · ·T js∂jsT
l

(
∂akm
∂zp

(
gpl ∂jz

m − gpj∂lz
m
))∣∣∣∣j

n−1+α

≤ C
∑
j,k

∑
l ̸=j

∣∣∣∣T l

(
∂akm
∂zp

(
gpl ∂jz

m − gpj∂lz
m
))∣∣∣∣j

n−1+α

≤ Cr
∑
j,k

∑
l ̸=j

(
|gpl |

l
n−1+α

∣∣∣∣∂akm∂zp
∂jz

m

∣∣∣∣j
n−1+α

+

∣∣∣∣∂akm∂zp
∂lz

m

∣∣∣∣l
n−1+α

|gpj |
j
n−1+α

)

≤ Cr
∑
j,k

sup

∣∣∣∣∂akm∂zp

∣∣∣∣j
n−1+α

sup |∂jzm|jn−1+α

∑
p,l

|gpl |
l
n−1+α ≤ CKr

∑
p,l

|gpl |
l
n−1+α

Now for r sufficiently small, CKr < 1,
∑

j,k |gkj |
j
n−1+α = 0, gkj = 0

Lemma 7.2. Let Z1 = (zj1), Z2 = (zj2). If |Z1|n+α, |Z2|n+α ≤ 4r < 1, then

|fk
j (Z)|

j
n−1+α ≤ CKr (7.3)

|fk
j (Z1)− fk

j (Z2)|jn−1+α ≤ CK|Z1 − Z2|n+α (7.4)

Proof.

|fk
j |

j
n−1+α = |akm∂jzm|

j
n−1+α ≤ |akm|

j
n−1+α|∂jzm|

j
n−1+α

≤ CK|Z|n+α · C
r
|zm|n+α ≤ CK

r
|Z|2n+α ≤ CKr
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|fk
j (Z1)− fk

j (Z2)|jn−1+α = |akm(Z1)∂jz
m
1 − akm(Z2)∂jz

m
2 |

j
n−1+α

≤|akm(Z1)− akm(Z2)|jn−1+α|∂jzm1 |
j
n−1+α + |akm(Z2)|jn−1+α|∂j(zm1 − zm2 )|

j
n−1+α

≤CK|Z1 − Z2|n+α
C

r
|Z1|n+α + CK|Z2|n+α

C

r
|Z1 − Z2|n+α ≤ CK|Z1 − Z2|n+α

Theorem 7.3. Equation (7.1) has a solution for r sufficiently small.

Proof. ∀|Z|n+α ≤ 4r

|Θk(Z)|n+α = |ζk + TF k(Z)− zk0 (Z)|n+α ≤ |ζk|n+α + 2|TF k(Z)|n+α

≤(2 + 21−α)r + Cr|F k(Z)|n−1+α = (2 + 21−α)r + Cr sup |fk
j (Z)|

j
n−1+α

≤(2 + 21−α)r + CKr2 < 4r

For r sufficiently small.
∀|Z1|n+α, |Z2|n+α ≤ 4r

|Θk(Z1)−Θk(Z2)|n+α = |TF k(Z1)− TF k(Z2) + zk0 (Z1)− zk0 (Z2)|n+α

≤ 2|TF k(Z1)− TF k(Z2)|n+α = 2|T (F k(Z1)− F k(Z2))|n+α

≤ Cr|F k(Z1)− F k(Z2)|n−1+α = Cr sup |fk
j (Z1)− fk

j (C2)|jn−1+α

≤ CKr|Z1 − Z2|n+α ≤ 1

2
|Z1 − Z2|n+α

Now apply Banach Fixed-Point Theorem.

Remark 7.4. The proof above only shows that there is a solution (ζj) which has mixed
derivatives. We need some standard results about elliptic equations to ensure that ζj has
better smoothness. We omit it here.

8 Modern Formulation
Let (M,J) be an almost complex manifold.
Recall: TMC = TM ⊗R C.
The almost complex structure induced a decomposition

TMC = TM1,0 ⊕ TM0,1, T ∗MC = T ∗M1,0 ⊕ T ∗M0,1 (8.1)

where TM1,0 is the bundle of i-eigenspaces, TM0,1 is that of (−i)-eigenspaces.
This leads to a decomposition of the bundle of exterior algebras

∧nT ∗M =
⊕

p+q=n

∧p,qT ∗M, ∧T ∗MC =
⊕
n

∧nT ∗M =
⊕
p,q

∧p,qT ∗M (8.2)
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where ∧p,qT ∗M = (∧pT ∗M1,0) ∧ (∧qT ∗M0,1)
Let Ωp,qM = Γ(M,∧p,qT ∗M) be the collection of (p, q)-forms. Then

ΩnM = Γ(M,∧nT ∗M) =
⊕

p+q=n

Ωp,qM (8.3)

Recall the exterior differential operator

d : ΩnM =
⊕

p+q=n

Ωp,qM → Ωn+1M =
⊕

p′+q′=n+1

Ωp′,q′M (8.4)

Ωp,qM is sent to
⊕

p′+q′=n+1Ω
p′,q′M

Let’s first look at the case when J is induced by a complex structure.
Let (zj) be a complex analytic coordinate system.
Then dzj forms a local base of T ∗M1,0, dzj forms that of T ∗M0,1

Now a form ω ∈ Ωp,q has the following local representation

ω =
∑

I,J :|I|=p,|J |=q

ωI,Jdz
I ∧ dzJ (8.5)

we used the multi-index notation: dzI = dzi1 ∧ · · · dzik when I = {i1, · · · , ik}

dω =
∑

I,J :|I|=p,|J |=q

dωI,J ∧ dzI ∧ dzJ (8.6)

=
∑
I,J,j

∂ωI,J

∂zj
dzj ∧ dzI ∧ dzJ +

∑
I,J,j

(−1)p
∂ωI,J

∂zj
dzI ∧ dzj ∧ dzJ (8.7)

Thus dω ∈ Ωp+1,qM ⊕ Ωp,q+1M
This leads to the modern formulation of integrability condition.

Theorem 8.1. Let (M,J) be an almost complex manifold. TFAE:
(1) J is induced by a complex manifold.
(2) For ul = dzl + alkdz

k

the exterior differential of ul is a sum of exterior products of 1-forms with uk.
(3) the exterior differential d sends Ωp,qM to Ωp+1,qM ⊕ Ωp,q+1M

Proof. We have showed that (2) ⇐⇒ (1) =⇒ (3).
Now assume that d : Ω1,0M → Ω2,0M ⊕ Ω1,1M = Ω1,0M ∧ Ω1M
Claim: Ω1,0M = span{ul}
Firstly, we prove that ul ∈ Ω1,0M :

Jul = Jdzl + alkJdz
k = J l

jdz
j + J l

j+ndz
j + alkJ

k+n
j dzj + alkJ

k+n
j+n dz

j

iul = idzl + ialkdz
k = iδljdz

j + ialkδ
k
j dz

j
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By comparing coefficients, it suffices to prove that:

alk(iδ
k
j − Jk+n

j+n ) = −(−J l
j+n) (8.8)

alk(−Jk+n
j ) = −(iδlj − J l

j) (8.9)

Note that (8.8) is the definition formula of alk,
(8.9) is obtained from (8.8) by a linear transformation.
Now ul ∈ Ω1,0M , and obviously ul are linearly independent,
note that dimΩ1,0M = n, therefore Ω1,0M = span{ul}
Thus d : span{ul} → Ω1M ∧ span{ul}, which is exactly what we need.
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the Unique Conformal Mating between

the Ideal Triangle Group and the

Anti-polynomial

Qiandu He

June 2022

1 Introduction

In this final project, we will going to introduce how to produce a conformal
mating between a map (denoted by ρ) constructed from the ideal triangle group
and the anti-polynomials (a shorthand of anti-holomorphic polynomials) z2 by
using Schwarz reflection map (denoted by σ) of the deltoid. The most of fol-
lowing results and proofs are taken from [1]. In particular, it can be expressed
as the following theorem (theorem 1.1 in [1]):

Theorem 1.1. (Dynamics of deltoid reflection).1) The dynamical plane of Sch-
warz reflection σ of the deltoid can be partitioned as

Ĉ = T∞ ⊔ Γ ⊔A(∞),

where T∞ is the tiling set, A(∞) is the basin of infinity, and Γ is their common
boundary. Moreover, Γ is a conformally removable Jordan curve.

2) σ is the unique conformal mating of the reflection map ρ : D \ intΠ→ D
and the anti-polynomial f0 : Ĉ \ D→ Ĉ \ D, z 7→ z2.

It’s hard to understand the mating in above theorem at first glance. There-
fore we will describe the basic dynamical objects associated with iteration of
Schwarz reflection maps and the meaning of mating. Given a disjoint collection
of quadrature domains, we call the complement of their union a droplet. Re-
moving the finitely many singular points from the boundary of a droplet yields
the fundamental tile. One can then look at a partially defined anti-holomorphic
dynamical system σ that acts on the closure of each quadrature domain as its
Schwarz reflection map. Consider the reflection dynamics σ defined on the clo-
sure of each quadrature domain, Ĉ admits a dynamically invariant partition.
The first one is an open set called the escaping/tiling set, it is the set of all
points that eventually escape to the fundamental tile (for z0 here, the dynamics
of σ can’t be iterated forever). The second invariant set is the non-escaping set,
namely, the set of all points on which σ can be iterated forever. The last one
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is their common boundary, where the most chaotic and complex phenomenon
happens. On mating, note that the non-escaping set is analogous to the filled
Julia set in polynomial dynamics; i.e., the set of points with bounded forward
orbits under a polynomial when the tiling set contains no critical points of σ.
While the σ−action on the tiling set exhibits features of reflection groups. As
for their common boundary, which is simultaneously analogous to the Julia set
of an anti-polynomial (i.e., the boundary of the filled Julia set) and to the limit
set of a group.

At the end of these section, let us now detail the organization of this paper.
In Section 2, we give a description of the ideal triangle group Π, the associated
tessellation of the unit disk, and the reflection map ρ. Here we also define
the topological conjugacy E between ρ and the anti-doubling θ 7→ −2θ on the
circle T. In Section 3, we briefly review some general notions and properties of
quadrature domains and Schwarz reflection maps. Also, in this section, there
are some useful tools used in the proof below . Section 4 is devoted to the study
of the dynamics of Schwarz reflection with respect to the deltoid. The principal
goal of this section is to present the processing of the proof in [1], but for some
difficult parts, we will omit the concrete processing and give some introduction.

2 Ideal Triangle Group

Consider the open unit disk D in C. Let C̃1, C̃2, C̃3 be the hyperbolic geodesics in
D connecting 1 and ω, ω and ω2, 1 and ω2 respectively. (ω = e

2πi
3 ). The closed

ideal triangle bound by these geodesics is called Π below. For each i ∈ {1, 2, 3},
we know that C̃i is an arc of a circle, the reflection of the circle restricted in D is
called ρi, thus these three maps generated a subgroup G ⩽ Aut(D), which we call
the ideal triangle group. As for the rest of the disc, we will denote the connected
component of D \Π containing intρi(Π) by Di, i.e., D1 ∪ D2 ∪ D3 = D \Π.

We can define ρ : D \ intΠ → D : z 7→ ρi(z) if z ∈ Di ∪ C̃i, for i = 1, 2, 3.
Moreover, we can induct a symbolic dynamics through the map ρ as follow: Let
W := {1, 2, 3}, an element (i1, i2, ...) ∈WN is called M -admissible if Mik,ik+1

=
1, for all k ∈ N, and we will denote the set of all M -admissible words in WN

by M∞ (M is the 3× 3 matrix whose diagonal elements are all zero and other
elements are all one). Similarly, we can define the M -admissibility of finite
words. Since ρ(Di) ⊆ Di+1 ∪Di+2, ρ(Di) ∩Di = ∅, for i = 1, 2, 3 (all subscripts
is defined in module 3), the dynamics of ρ is similar to the symbolic dynamics
of M∞.

2.1 Tessellation of the Disc

Note that Π is a fundamental domain of G. We can give the tessellation of D
arising from G to describe the dynamics of ρ.

Definition 2.1. (Tiles). The images of the fundamental domain Π under the
elements of G are called tiles. More precisely, for any M−admissible word
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(i1, ..., ik), we define the tile

T i1,...,ik := ρi1 ◦ ... ◦ ρik(Π).

We can write T i1,...,ik by ρ in another way. In fact, we have ρik ◦ ... ◦
ρi1(T

i1,...,ik) = Π because G is a reflection group. Thus T i1,...,ik consists of all
those z ∈ D such that ρ◦(n−1)(z) ∈ Din ,∀1 ≤ n ≤ k (to make sure the correctly
definition of iteration of ρ) and ρ◦k(z) ∈ Π. In other words,

T i1,...,ik =

k⋂
n=1

ρ−(n−1)(Din) ∩ ρ−k(Π).

For a M−admissible word (i1, i2, ...), let us consider the sequence {0, ρi1(0),
ρi1 ◦ρi2(0), ...}. Since dD(0, ρ1(0)) = dD(0, ρ2(0)) = dD(0, ρ3(0)) and the element
in G keep the hyperbolic distance, thus any two consecutive points in this points
in this sequence is constant. Connecting consecutive points of this sequence by
hyperbolic geodesics of D, we obtain a curve corresponding to (i1, i2, ...). And
all these curves form a dual tree to the G−tessellation of D.

2.2 ρ−action on the circle T
First, we extend ρ as an orientation-reversing C1 double covering. As the di-
vision of D1,D2,D3, we have T = (∂D1 ∩ T) ∪ (∂D2 ∩ T) ∪ (∂D3 ∩ T) with the
transform matrix M defined above. Also, one can see ρ|T is an expansive map,
therefore, for any element of M∞, the corresponding infinite sequence of tiles
shrinks to a single point of T (i.e., the curve corresponding to (i1, i2, ...) lands
at Q(i1, i2, ...)), which allows us to define a continuous surjection

Q :M∞ → T, (i1, i2, ...) 7→
⋂
n∈N

ρ−(n−1)(∂Din ∩ T)

which semi-conjugates the (left-)shift map on M∞ (denoted as L) to the map
ρ on T.

Definition 2.2. (Semi-conjugation). Let M,N be topological spaces and f, g be
self-homeomorphisms of M,N respectively. f is called semi-conjugated to g, if
there is a continuous surjection h :M → N such that h ◦ f = g ◦ h.

M∞ Q−−−−→ TyL

yρ|T

M∞ Q−−−−→ T
We would add some explanation for the semi-conjugation and some property

of Q here because there are some similar conclusion of the mapping constructed
below with some similar proofs.

Actually, one can see the continuity of Q from the image of the landing of
curve constructed above. And for any point x ∈ T, we can select (i1, i2, ...)

3

249 



properly such that ρ◦(n−1)(x) ∈ ∂Din ,∀n ∈ N (if there is one more in such that
ρ◦(n−1)(x) landed on ∂Din , then we select the smallest one.)

To prove the semiconjugation, it suffices to prove

ρ(
⋂
n∈N

ρ−(n−1)(∂Din ∩ T)) =
⋂
n∈N

ρ−(n−1)(∂Din+1
∩ T)).

Note that ρ◦(n−1)(x) ∈ ∂Din ∩ T⇒ ρ◦(n−2)(ρ(x)) ∈ ∂Din ∩ T,∀n ≥ 2, thus the
conclusion is corrected.

2.3 The conjugacy E
We would induct the other expanding double covering of the circle, which is
z2|T (the action of z2 on angles of external dynamical rays) as follow:

m−2 : R/Z→ R/Z, θ 7→ −2θ

As the analysis above, The map m−2 admits the same parition R/Z = [0, 13 ] ∪
[ 13 ,

2
3 ] ∪ [ 23 , 1] with the same transform matrix M . Similarly, we can define a

continuous surjection

P :M∞ → R/Z, (i1, i2, ...) 7→
⋂
n∈N

m
−(n−1)
−2 (Iin)

which semi-conjugates the (left-)shift map on M∞ to the map m−2 on R/Z by
the similar proof. Thus we get the commutative diagram below:

R/Z P←−−−− M∞ Q−−−−→ Tym−2

yL

yρ|T

R/Z P←−−−− M∞ Q−−−−→ T
and we can obtain the conjugation between ρT and m−2 by E := P ◦ Q−1. In
fact, to ensure the mapping is well-defined, we need to pay attention to, for
x ∈ T, the time when the preimage of Q is branched. By the definition of Q,
one more selection of in implies ρ◦(n−1)(x) ∈ {1, w, w2}. Because 1, w, w2 are
all fixed points of ρ, the sequence {ρ◦(m−1)(x) : m ≥ n} will be the same point.
One can see that the same property happens in the iteration of m−2, so we can
well-define the mapping E on the such point x ∈ T. For the same reason, the
mapping E ′ := Q ◦P−1 is well-defined and is the inverse of E , therefore, we find
the conjugacy between ρ and z2 on the circle T.

3 Quadrature Domain, Schwarz Reflection and
Some Useful Tools

3.1 Quadrature Domain and Schwarz Reflection

First, we denote the complex conjugation map by ι. We will give the definition
of the quadrature domain below. All these notions, properties and proofs is

4
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cited from the Section 1 of [2].

For bounded case, a bounded connected open set Ω ⊆ Ĉ is a bounded quadra-
ture domain if it carries a finite node quadrature identity, which means there
exists a finite collection of triples (ak,mk, ck), where ak is points (not necessarily
distinct) in Ω, mk is non-negative integers, and ck is some complex numbers,
such that

∀f ∈ C(Ω) ∩H(Ω),

∫
Ω

fdA =
∑
k

ckf
(mk)(ak). (1)

Here, H(Ω) denotes the space of analytic functions in Ω, C(Ω) denotes the space
of continuous functions in Ω. dA is the area measure. Therefore we will always
assume Ω = intΩ. Look back to (1), we can rewrite it by using the contour
integral in the right hand side of the quadrature identity,

∀f ∈ C(Ω) ∩H(Ω),

∫
Ω

fdA =
1

2i

∮
∂Ω

f(z)r(z)dz, (2)

where,

r(z) ≡ rΩ(z) =
1

π

∑
k

ck
mk!

(z − ak)mk+1

We will call rΩ the quadrature function and deg(rΩ) the order of the quadrature
domain Ω. What’s more, we see that quadrature function is uniquely determined
by the quadrature domain as long as we require that all poles of r be inside Ω
and r(∞) = 0.

For unbounded case, we will modify slightly the statement above. Let Ω ⊆ Ĉ
such that ∞ ∈ Ω and int Ω = Ω (also, we don’t want to discuss the case of

Ω = Ĉ). The unbounded open set Ω is an unbounded quadrature domain if
there exists a rational function r = rΩ with no poles outside Ω such that

f ∈ C(Ω) ∩H(Ω), f(∞) = 0⇒
∫
Ω

fdA =
1

2i

∮
∂Ω

f(z)r(z)dz. (3)

The integrals over unbounded domains are always understood in the sense of
principal value, ∫

Ω

≡ v.p.
∫
Ω

:= lim
R→∞

∫
Ω∩B(0,R)

.

and the notions are all same as the bounded case.
To sum up, we have the definition for quadrature function below. In the rest

of this subsection, let Ω ⊆ Ĉ (not Riemann sphere itself) be a domain such that
∞ /∈ ∂Ω and int Ω = Ω

Definition 3.1. (Quadrature functions). If there is a rational map rΩ whose
all poles are inside Ω (with rΩ(∞) = 0 if Ω is bounded) such that the identity∫

Ω

fdA =
1

2i

∮
∂Ω

f(z)rΩ(z)dz

5
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holds for every functions f ∈ H(Ω)∩C(Ω) (if Ω is unbounded, we further require
f(∞) = 0), then we call Ω a quadrature domain and rΩ the quadrature function
of Ω.

Also, we can define the quadrature domain by Schwarz funtions.

Definition 3.2. (Schwarz functions and quadrature domains). For a domain
Ω A Schwarz funtion of Ω is a meromorphic extension of ι|∂Ω to all of Ω. More

precisely, a continuous function S : Ω→ Ĉ of Ω is called a Schwarz function of
Ω if it satisfies the following two properties:

(1) S is meromorphic on Ω,
(2) S = ι on ∂Ω.
The domain Ω is called a quadrature domain if it admits a Schwarz function.

To be further, the map σ := ι ◦ S : Ω → Ĉ is the unique anti-meromorphic
extension of the Schwarz reflection map with respect to ∂Ω. We will call σ the
Schwarz reflection map of Ω.

The following theorem implies these two definition is equivalent. The proof
here is cited from the Lemma 3.1. of [2].

Theorem 3.1. (Characterization of quadrature domains). The following are
equivalent.

(1) Ω admits a Schwarz funtion,
(2) Ω admits a quadrature function rΩ.

Proof. Assume Ω has a Schwarz function S. Since S has finitely many poles in
Ω, is continuous up to boundary, and of course finite on ∂Ω. We can construct
a rational function r which has exactly the same poles and the same principal
parts at the poles as S by add the principal part at all poles up (if S has a pole
at ∞, then we add the p( 1z ) where p(z) is the principal part of f( 1z ) at 0.), thus
when Ω is bounded, we select r(∞) such that r(∞) = 0; when∞ ∈ Ω, we select
r(∞) such that limz→∞(S(z)− r(z)) = 0.

Here we will induct the Cauchy transform as a tool in this proof. Actually,
for a Borel set E ⊆ C with a compact boundary, we denote by CE the Cauchy
transform of the area measure of E,

CE(z) =
1

π

∫
E

kz(w)dA(w), kz(w) :=
1

z − w
.

We will calculate CĈ as an example, which is useful in the following proof as
well.

Indeed, if R > |z|, let ϵ > 0 be small sufficiently such that the disc |w−z| ≤ ϵ
is contained in the disc |w| < R. We will divide the integral into two parts:∫
|w|≤R

=
∫
|w|≤R,|w−z|≥ϵ

+
∫
|w−z|≤ϵ

.

Note that dw∧ dw = (dx+ idy)∧ (dx− idy) = −2idx∧ dy = −2idA, for the
first part, we have

1

2πi

∫
|w|≤R,|w−z|≥ϵ

dwdw

z − w
=

1

2πi
(

∮
|w|=R

−
∮
|w−z|=ϵ

)
w

z − w
dw,

6
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While ∮
|w|=R

w

z − w
dw =

∮
|w|=R

R2

w(z − w)
= 0,

∮
|w−z|=ϵ

w

z − w
dw =

∮
|w−z|=ϵ

(
z

z − w
− z − w
z − w

)dw

=

∮
|w−z|=ϵ

(− ϵ2

(z − w)2
+

z

z − w
)dw

= −2πiz

Therefore, the first integral is equal to z.
Note that dA = dxdy = rdrdθ, for the second part, we have

1

π

∫
|w−z|≤ϵ

dxdy

z − w
= − 1

π

∫ ϵ

0

∫ 2π

0

rdrdθ

reiθ
= − ϵ

π

∫ 2π

0

e−iθdθ = 0.

To sum up, we get CĈ(z) = z.
We will discuss the unbounded case first. For each z ∈ Ω we have

CΩc

(z) =
1

π

∫
Ωc

dA(w)

z − w

=
1

2πi

∫
Ωc

dwdw

w − z

=
1

2πi

∮
∂Ω

w

w − z
dw (follow from the Green′s formula)

=
1

2πi

∮
∂Ω

S(w)− r(w)
w − z

dw +
1

2πi

∮
∂Ω

r(w)

w − z
dw.

Note that we used the fact that the boundary of Ω is rectifiable and the as-
sumption that S(w) − r(w)|w=∞ = 0 to make sure the first integral above is
well-defined. By residue formula, the first integral is equal to S(z)− r(z). Since
all the poles of r(w) are inside Ω and z ∈ Ω, by applying Cauchy’s theorem
in each component of the interior of Ωc. Thus we have S = r + CΩc

,∀z ∈ Ω.
Moreover, these three maps are continuous in ∂Ω, so we can expand this identity
to the close of Ω.

We can now examine r is the quadrature function of Ω. For all f ∈ H(Ω) ∩
C(Ω) satisfying f(∞) = 0, we have∫

Ω

fdA =
1

2i

∮
∂Ω

zf(z)dz(the same reason as above)

=
1

2i

∮
∂Ω

S(z)f(z)dz

=
1

2i

∮
∂Ω

r(z)f(z)dz +
1

2i

∮
∂Ω

CΩc

(z)f(z)dz.
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Since f and CΩc

is holomorphic in Ω and all achieve zero at ∞, by using
Cauchy’s theorem in Ω, the first integral is zero. It follows that Ω admits r as
its quadrature function.

Suppose Ω admits quadrature funtion r satisfying the property introduced
in the Definition 3.1., especially for the case of f = 1

z−w with z ∈ intΩc. Then

CΩ(z) =
1

π

∫
Ω

dA

w − z
=

1

2πi

∮
∂Ω

r(w)

z − w
= r(z)

Thus for z ∈ ∂Ω, we have r(z) + CΩc

(z) = CĈ(z) = z̄ which means that
S := r + CΩc

is the Schwarz funtion of Ω.
The bounded case have the same result by similar proof. Note that for

bounded case, we can omit the examination of the property of CΩ(z) = r(z) for
z =∞. Since ∞ /∈ ∂Ω, the property of S(z) in ∂Ω is still right.

Moreover, quadrature domains have some other interesting properties, the
real analyticity of their boundary, a sufficient and necessary condition for simply
connected quadrature domain for instance. (i.e. Theorem 3.4. and Theorem
3.5. in [1]) Here, we won’t add more proof of these theorem, because they won’t
be used in the following proof.

3.2 John Domain

In Section 4.3. of [1], this tool is used to prove conformal removability of the
limit set implying uniqueness in the mating theory for theorem 3.2.

Definition 3.3. (Conformal Removability). A compact set E ⊆ Ĉ is confor-

mally removable if for all homeomorphisms f : Ĉ → Ĉ, if f is conformal on
Ĉ \ E, then f is conformal on Ĉ, i.e. is a Möbius transformation.

Definition 3.4. (John domain). A domain D ⊆ C is called a John domain if
there exists c > 0 and reference points w0 such that for any z0 ∈ D, there exists
an arc γ ∈ D joining z0 to w0 satisfying

δ(z) ≥ c|z − z0|, z ∈ γ, (4)

where δ(z) stands for the Euclidean distance between z and ∂D.

Theorem 3.2. Suppose D is a John domain, then ∂D is conformally removable.

Here, we can change (5) to another property because of the simple connect-
edness of T∞ and the theorem below.

Theorem 3.3. For z ∈ D, we denote by γz the part of the hyperbolic geodesic
of D passing through z and a fixed base-point w0 that runs from z and lands on
∂D. A simply connected domain D is John domain if and only if there exists
M > 0 such that for all z ∈ D,

w ∈ γz, dD(z, w) ≥M ⇒ δ(w) ≤ 1

2
δ(z), (5)

where dD is the hyperbolic distance in D.

8
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The main work in 4.3. is the proof that T∞ satisfies (5) for some fixed
base-point w0.

3.3 Riemann-Hurwitz Formula

We will use this formula when these two complex manifold are all Riemann
surface Ĉ to prove the simply-connectedness of A and give a proof of the formula
in this section. The following proof is cited from [3].

Theorem 3.4. (Riemann-Hurwitz formula). Let V and W be domains on Ĉ
of finite connectivity m and n, respectively, and let f : V → W be a k-sheeted
(ramified) analytic proper map having r critical points (counted by multiplicity).
Then

m− 2 = k(n− 2) + r. (6)

Here the proper map means that preimages of compact subsets of W are com-
pact. Then f assumes every value exactly k-times for the k-sheets of f .

Proof. The proof of (6) is based on the following lemma.

Lemma 3.5. Let V be a domain of connectivity m, which is divided by k cross-
cuts c1, ..., ck (disjoint in V ) into l domains V1, ..., Vl, of connectivity m1, ...,ml,
respectively. Then

l∑
j=1

(mj − 2) = m− 2− k.

Here, a cross-cut is a Jordan curve lying in V except for its end points, (the
points) which belong to ∂V . We can divide the domain into two domains with
lower connectivity.

Proof of lemma 3.5.: We proceed by induction. In the case of k = 1, we have
either V \c is a domain of connectivity m−1 or consists of two domains V ∗ and
V ∗∗ of connectivity m∗ and m∗∗, respectively, such that m∗ +m∗∗ = m+ 1.

For k > 1, we first assume that V \ c1 is not a domain, which consists of
domains V ∗ and V ∗∗ of connectivitym∗ andm∗∗, respectively. There are k∗ and
k∗∗ cross-cuts in these two domains, such that k∗ + k∗∗ = k − 1. V ∗ is divided
into V1, ..., VL∗ by these cross-cuts. Thus inductive assumption, we have

l∗∑
j=1

(mj − 2) = m∗ − 2− k∗,

similarly
l∑

j=l∗+1

(mj − 2) = m∗∗ − 2− k∗∗.

Adding up gives the desired result.

9
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Otherwise, however, V \c1 is a domain with multiplicitym−1, and is divided
by c2, ..., ck into domains V1, ..., Vm, thus

l∑
j=1

(mj − 2) = (m− 1)− 2− (k − 1) = m− 2− k.

Now we come to the proof of the formula itself. First, by applying the
Riemann-mapping theorem, we may assume that V and W are all bounded by
analytic Jordan curves and singletons.

We will first discuss the case where f is unramified (so that r = 0). Then
any local branch of f−1 may be continued along any curve inW . IfW is simply
connected, then, by monodromy theorem, f−1 is single-valued in W and thus
is a conformal mapping. This means that n=1 implies implies m = k = 1, thus
(6) holds. We proceed by induction. In case m > 1, we take a cross-cut c in W ,
which diminishes the connectivity number: W ∗ =W \ c is (m− 1)−connected.
Suppose f−1(c) is k cross-cuts c1, ..., ck of V , and f−1(W ) consists of l domains
V1, ..., Vl of connectivity m1, ...,ml, respectively, and f is a kj−sheeted proper
map Vj → W ∗, where k1 + ... + kl = k. By inductive assumption and lemma
3.5., we get the desired result.

If f is ramified, it has finitely many critical values w1, ..., ws ∈ W . Then
W ∗ = W \ {w1, ..., ws} has connectivity n + s. Since any wj has pj preimages
with multiplicities qtj such that

∑pj

t=1 q
t
j = k, and

∑s
j=1

∑pj

t=1(q
t
j − 1) = r, thus∑s

j=1 = sk−r, V ∗ = f−1(W ∗) has connectivity m+sk−r. Since f : V ∗ →W ∗

is k-sheeted and unramified, we have

m+ ks− r = k(m+ s− 2)

and (6) holds true also in this case.

Remark 3.1. We would introduce Monodromy theorem as follows. Let f be
a function which is analytic in the domain D and let G be a simply-connected
region which contains D. For any path γ in G with initial point in D there is
an analytic continuation of f on D along γ. Then there is an analytic function
F : G→ C such that F (z) = f(z) for all z in D.

4 Dynamics of the Deltoid Reflection: Proof for
Main Result

4.1 introduction

Suppose φ(z) = z + 1
2z2 and ι̃(z) = 1

z , where ι̃ is reflection in the unit circle,

one can see that this map is univalent in Ĉ \ D. We define

Ω := φ(Ĉ \ D), T := Ωc, σ := φ ◦ ι̃ ◦ (φ|Ĉ\D)
−1 : Ω→ Ĉ.

10

256 



Ĉ \ D φ−−−−→ Ωyι̃

yσ

D φ−−−−→ Ĉ

Note that σ(z) = z, ∀z ∈ ∂Ω, thus σ is the associated Schwarz reflection map
of Ω. Note that φ(wx) = wφ(x), it follows that T is symmetric rotation by 2π

3 .
Moreover, as φ has simple critical points at 1, w, w2, ∂T has three 3

2−cusp points

(one can see this by Taylor expansions of x = cosθ + cos2θ
2 , y = sinθ − sin2θ

2 ).

We denote that T 0 is T − { 32 ,
3w
2 ,

3w2

2 }.

4.1.1 Schwarz reflection σ

In this section, we will give some properties of σ as a function or a covering
mapping.

Proposition 4.1. The Schwarz reflection map σ of Ω has a double pole at ∞,
but no other critical points in Ω.

Proof. Since the only critical point of φ in D is at the origin, it follows that σ
has a pole at ∞. After analysis of the dominant term of the formula at w =∞,
one can see the order of the pole is two.

By definition, one can see σ(φ(w)) = φ( 1
w ), thus ∂σ

∂w (φ(w)) · ∂φ(w)
∂w =

∂φ( 1
w )

∂w .

Substitute φ(w) = w + 1
2w2 in it, we have ∂(φ(w)) = w (we denote ∂f

∂z by ∂f).

Since the univalence of φ(w) in Ĉ \ D and (φ| ˆC\D)
−1 and 1

z are all well-defined

in the corresponding domain, there is no other critical points of σ in Ω.

Proposition 4.2. σ : σ−1(Ω)→ Ω is a proper branched 2−cover branched only
at ∞. On the other hand, σ : σ−1(T 0)→ T 0 is a 3−cover.

Proof. Suppose that X1 = φ−1(T 0) ∩ D and X2 = φ−1(Ω) ∩ D, by definition,
σ−1(T 0) = (φ◦ ι̃)(X1), σ

−1(Ω) = (φ◦ ι̃)(X2). In fact, one can see that there are
three connected components of X1 and the connectedness of X2 by considering
the preimage of ∂T . What’s more, because φ is continuous and the degree of φ
is three, φ : X1 → T 0 is a proper covering of degree three and φ : X2 → Ω is
proper branched covering of degree 2 branched only at 0.

We can construct the univalent components ofX1 andX2 by φ which implies
that σ : (φ ◦ ι̃)(X1) → T 0 is a proper covering of degree three and σ : (φ ◦
ι̃)(X2)→ Ω is proper branched covering of degree 2 branched only at ∞.

Note that σ−1(Ω) = (φ◦ι̃)(X2) ⊆ φ(Ĉ\D) = Ω, we can induce the conclusion
below.

Corollary 4.3. The maps σ◦n : σ−n(Ω) → Ω are proper branched covers of
degree 2n branched only at ∞.

11
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In the dynamical system of ρ in Π, we have D =
⋃

n∈N ρ
−(n−1)(Π). Similarly,

we denote that T∞ =
⋃

n∈N σ
−(n−1)(T 0) and call it tiling set. Moreover we will

call the components of σ−nT 0 tiles of rank n. Also, the image of these two
dynamical systems is similar. In fact, there are 3 · 2n−1 tiles of rank n and the
union of tiles of rank≤ n is a ”polygon” with 3 · 2n iterated preimage of cusps
of T as its vertices. Let △n be a tile of rank n ≥ 1. It’s a ”triangle”; one of its
sides is a side of a tile of rank n− 1; we will call it (the side) the base of △n.

4.1.2 The tiling set T∞

First, we will induct a lemma to prove the geometric properties of T∞.

Lemma 4.4. Let K be limn→∞Kn, where Kn ⊆ Kn+1, ∀n ∈ N, if Kn are all
connected domain, then K is connected. Further, if Kn are all simply connected,
then K is simply connected.

Proof. Consider x, y ∈ K, without loss of generality, suppose x, y ∈ Kn for
some integer numbers n. Because of the connectedness of Kn, we have x, y
are connected in K. Thus K is connected domain. Consider a Jordan curve
γ ∈ K, for any point z ∈ γ, it will belong to Kn eventually for some integer
numbers n. Because of openness of Kn, there is a neighborhood of z (denoted
by Bz)is contained in Kn. The compactness of curve γ induces that there are
finite points zk : k = 1, 2, ...,m and their corresponding neighborhood Bzk such
that γ ⊆

⋃m
k=1Bzk , therefore it is contained in Kn for some integer numbers n,

and can be shrunk into a single point in Kn because Kn is simple-connected.
To sum up, K is simply-connected.

Proposition 4.5. T∞ is a simply connected domain.

Proof. For z ∈ T∞, if z belongs to the interior of some tiles, then it belongs
to intT∞. If z belongs to the boundary of some tiles, assume the order is n,
then σn(z) ∈ ∂T and not the three cusps, therefore, σn(z) ∈ intΠ, since the
continuity of σ, we have z ∈ T∞. Hence, T∞ is open.

Note that T∞ is a increasing union of the connected, simply connected do-
mains {int(

⋃n
k=0 σ

−kT 0)}n∈N, by lemma, we have T∞ itself is connected and
simply connected.

Corollary 4.6. Ĉ \ T∞ is a closed, completely invariant set.

Now we pay attention to the inverse branches of the iterates of σ on T∞.
For a subset X, we denote by Nϵ(X) the ϵ−neighborhood of X. Let us fix some
small ϵ > 0 and K > 1 such that the set Thyp := Nϵ(T∞) \ NKϵ(T ) has three
simply connected components.

Proposition 4.7. All inverse branches of σ◦n, n ≥ 1 are well-defined locally on
Thyp. Moreover, σ is hyperbolic on Thyp.
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Proof. Note that Thyp ⊆ Ω, and σ : σ−1(Ω)→ Ω is a branched covering and T∞

is bounded, therefore Thyp doesn’t intersect ∞, the critical point of iteraction
of σ.

For the second part of the proposition, recall that |∂σ(φ(w))| = |w| >
1,∀w ∈ Ĉ \ D. Since Thyp ⊆ Ω is compact, it follows that ∂σ have a fixed
low bound λ0 > 1.

Remark 4.1. We omit the proof that T∞ is bounded. This conclusion will be
clearly as a corollary of Proposition 4.9.

Since points in T∞ \T 0 escape to T 0 under some iteration of σ, we say that

T∞ is the escaping set of σ and Ĉ \ T∞ is the non-escaping set of σ.

4.1.3 the basin of ∞

By the double pole at ∞ of σ, ∞ is a super-attracting fixed point of σ. We
denote the basin of attraction of ∞ by A = {z ∈ C | σ◦n(z) → ∞ as n → ∞}.
Naturally, A ⊆ Ĉ \ T∞.

Proposition 4.8. A is a simply connected, completely invariant domain.

Proof. By definition, for any point x ∈ A, we have σ(x) ∈ A and σ−1(x) ⊆ A,
therefore, A is a completely invariant set.

By the property of ∞, ∀ϵ > 0, ∃M > 0, such that |∂σ(z)| < ϵ, ∀|z| > M.
Thus for |x|, |y| > 2M , |σ(x) − σ(y)| = |

∫
γ
∂σ(w)dw| < |

∫
γ
ϵ|dw|| < ϵ|x − y|.

The above fact induces that there is a neighborhood of ∞ (denoted by U) is
contained in A and A is the increasing union of the domain {σ−(k−1)(U)}k∈N.
It follows that A is open. What’s more, ∀k ∈ N, every connected component
of σ−(k−1)(U) has a preimage of ∞. While σ−1(∞) = {∞}, σ−(k−1)(U) is
connected, by lemma 4.4., A is connected.

σ :
⋃n

i=1 σ
−(i−1)(U) →

⋃n−1
i=1 σ

−(i−1)(U) is a proper branched 2−cover
branched only at ∞ (the order is 2). Because of simply-connectedness of U ,
by Riemann-Hurwitz formula, we have

⋃n
i=1 σ

−(i−1)(U) is simply-connected by
induction on n. Thus A is simply-connected domains by lemma 4.4.

4.1.4 Singular points

We define S :=
⋃

n∈N σ
−(n−1)(T \ T 0). It’s clear that S ⊆ ∂T∞. Also we have

Proposition 4.9. S ⊆ ∂A.

Proof. Since A is completely invariant, so is ∂A. For a real x > 1, we have

σ(x+
1

2x2
) =

1

x
+
x2

2
> x+

1

2x2
,

thus the forward σ−orbit of any real x > 3
2 must converge to ∞. Otherwise,

assume the orbit would converges to a fixed positive number s > 3
2 , while this

is contradiction to the inequality above, thus ( 32 ,+∞) ⊆ A, which induced that
3
2 ∈ ∂A. By definition, we have S ⊆ ∂A.

13
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4.2 Proof for Theorem 4.12. in [1]

As a summary to above analysis, we give the following results about the dy-
namical plane of σ.

Theorem 4.10. We have ∂T∞ = ∂A = S. Moreover, this set, which we denote
by Γ, is a Jordan curve. Moreover, Ĉ = T∞ ⊔ Γ ⊔A.

Proof. Let ψin : Π → T be the homeomorphic extension of a conformal iso-
morphism such that ψin(0) = 0, ψin(1) = 3

2 . Since σ has no critical point in
T∞, the tiles of all rank of σ map diffeomorphically onto T 0 under iterates of
σ. Similarly, the tiles of the tessellation of D arising from the ideal triangle
group G map diffeomorphically onto Π under iterates of ρ. Furthermore, σ
and ρ act as identity maps on ∂T 0 and ∂Π respectively. This allows us to lift
ψin to a conformal isomorphism D → T∞. Note that the trivial actions of σ
and ρ on ∂T 0 and ∂Π ensure that this map match on the boundaries of tiles.
Thus, by construction, the conformal map ψin conjugates ρ : D \ intΠ → D
to σ : T∞ \ intT → T∞ by the uniqueness of the Schwarz reflection map. By
the local connectedness of Γ (cf.Lemma 4.11.) and Carathéodory′s theorem,
we can extend ψin to T continuously. Since the preimage of cusps by G are
dense in T, we have S = ψin(T). In fact, for any point x ∈ ∂T∞, there is a
sequence of distinct points {x1, x2, ...} ⊆ T∞ converging to it, thus x = ψin(y)
for some points y ∈ D. If y ∈ D, then x = ψ(y) ∈ T∞, which is contradiction to
the selection of x and openess of T∞. Therefore ∂T∞ ⊆ ψin(T). Similarly, by
Open-mapping theorem, we have ψin(T) ⊆ ∂T∞, i.e. S = ∂T∞.

By proposition 4.9.,S ⊆ ∂A, therefore, ∂T∞ = S ⊆ ∂A. It remains to prove
the opposite inclusion. Let a ∈ ∂A \ ∂T∞. Then a /∈ T∞, and there is a open
set U such that a ∈ U ⊆ C \T∞. Note that all iterates of σ can be defined in U

properly, because they avoid T . Note that σ(φ(x)) = φ( 1x ), and x+
1

2x2 = 1
x+

x2

2
implies that 2|x− 1

x | = |x
2 − 1

x2 | = |x− 1
x ||x+ 1

x |, thus x ∈ T, i.e., φ(x) ∈ ∂T .
For any point x in U , the iteraction series doesn’t converge to ∞ (we assume
the cluster point is x̃, thus x̃ is a fixed point of σ). By the analysis above, we
have x̃ ∈ ∂T , thus x̃ is a cusp point of T . Therefore {σ, σ◦2, ..., σ◦n, ...} is a
normal family and converge uniformly to a analytic function g or ∞ by Montel
theorem, which is contradiction to the fact that x̃ is a cusp point. It follow that
a ∈ A, a contradiction.

It is the last part of theorem that Γ (called the limit set of σ) is a Jordan
curve. In this article, authors think this fact is based on the locally connected-
ness of ∂T∞. I don’t know why.

The rest of this section is the proof of lemma 4.13. in [1].

Lemma 4.11. Γ is locally connected.
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4.2.1 Local dynamics near cusp points

We consider the dynamics image near 3
2 , the case of other two cusps of T are

similar. For ϵ > 0 small enough, let us denote

B = B(
3

2
, ϵ), B− = B ∩ {z | Re(z) < 3

2
}, B+ = B \B−.

On domain B ∩ Ω, we have the following series expansion of σ( 32 + δ
2
) = 3

2 +
δ2 + kδ3 +O(δ4), thus

σ(
3

2
+ δ) =

3

2
+ δ + kδ

3
2 +O(δ2),

where k > 0 and the chosen branch of square root is located in Re(z) ≥ 0.
Moreover, we can obtain an asymptotic expansion of the form ζ 7→ ζ+ 1

2 +O( 1
ζ
)

on κ(B ∩ Ω) by coordinate exchange κ : w 7→ k1√
w− 3

2

, where k1 is a proper

negative number to make sure the constant 1
2 in asymptotic expansion.

Comparing with the proof of proposition 4.9., ( 32 ,
3
2+ϵ) is a repelling direction

of σ at 3
2 . And after the coordinate exchange, it was sent to the real axis near

∞. κ(B ∩ Ω) is contained in an angle π at ∞. For any α ∈ (0, π2 ), points
with sufficiently large absolute value and lying between the boundary curves
κ(B ∩ ∂Ω) and the infinite rays κ( 32 + [0, ϵ)e±iα) eventually escape to κ(B \Ω).
In the original coordinates, this means that points sufficiently close to 3

2 which
not located in the real axis will escape to T0 after iterates of σ. We will record
these observations as following.

Proposition 4.12. If ϵ is sufficiently small, B− ⊆ T∞, and σ−nB+ → { 32}.
Here σ−n is the branch in B+ which fixes 3

2 .

Proof. We would add the proof of some above analysis. First, we need to give
precise choice of the branch of square root, for z ∈ C+, we define

√
z as the

point that located in the upper plane; for z ∈ C−, we define
√
z as the point

that located in the lower plane. What’s more, it send the positive real number
to the positive one. Secondly, we draw the image of κ(B ∩ Ω), one can see the
point will move along positive real axis after iteractions. Thus for the point
with the sufficiently large absolute value, it will escape to κ(B \ Ω).

What’s more, note that locally near the cusps, ∂T∞ is contained in the
”repelling petals” of the cusp points. By definition, ∃ϵ > 0 such that if an orbit
in ∂T∞ stays ϵ−close to a cusp of T , then the orbit lands on this cusp.

Let us denote the Green function of A with pole at∞, which can be explicitly
written as in A

G(z) = lim
n→+∞

log|σ◦n(z)|
2n

.

In Ac, we define G = 0. By definition, for any ρ > 0, σ maps the level curve
{G = ρ} to level curve {G = 2ρ}.

15
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Recalling the notions given in section 4.1.1., we have the vertices of the base
are iterated preimages of the cusps of T . Note that 3

2 is connected to∞ through
a external ray, the vertices of the base of △n are landing points of two external
rays in A. We denote by P (△n) the closed region bounded by the base of △n,
the two rays, and the level curve {G = 1

2n } (so △n ⊆ P (△n)), and call it a
puzzle piece of rank n.

Proposition 4.13. For each n ≥ 1, the sets ∂T∞ ∩ P (△n) are connected.

Note that these sets are all σ−invariant, thus it suffices to prove that the

case of n = 1. By definition, Γ \ {32 ,
3w
2 ,

3w2

2 } can be divided into three parts as
the form Γ ∩ P (△1). Because T∞ is a bound simply-connected domain, Γ is a
connected set, Γ ∩ P (△1) is connected as well by the symmetry of Γ. Combin-
ing the G−ray, we have the following proposition naturally by considering the
dynamical plane D of ρ.

Proposition 4.14. The puzzle pieces separate the impressions of the internal
rays of T∞ (images of G− rays under ψin) landing at points of S from each
other.

4.2.2 Local connectivity at ”radial” points

Proposition 4.15. If x ∈ ∂T∞ \ S, then ∂T∞ is locally connected at x.

Proof. Note that ∂T∞ is completely σ−invariant, then the set {x ∈ ∂T∞ | ∂T∞

is locally connected at x} is completely σ−invariant.
Consider the orbit xn = σ◦n(x) of some x ∈ ∂T∞ \ S. If d(xn, T ) → 0, as

n→∞, then d(xn, T \T 0)→ 0, as n→∞, or it will landing into T 0 eventually
by the fact about ”repelling petals ”. This would imply that x ∈ S, which
contradicts our choice of x.

Thus there is a subsequence of {xn} at a positive distance from T with a
cluster point ζ. By the compactness of ∂T∞, ζ is in ∂T∞ and not a cusp of T .
By replacing ζ by one of its iterated preimages, we can assume that ζ doesn’t
lie in the impression of the rays at angles 0, 13 ,

2
3 .

The above assumption on ζ, we can assume ζ ∈ intP ⊆ P ⊆ intP1, where
P, P1 are puzzle pieces with rank m and 1, respectively. Thus we have xn ∈
intP for infinitely many terms. To prove that ∂T∞ is locally connected at x, it
suffices to show that suitably chosen iterated preimages of intP produce a basis
of open, connected neighborhoods of x in ∂T∞.

In fact, by proposition 4.7., for each n with xn ∈intP , we can define the
inverse branches σ−n : intP1 → C, xn 7→ x. These inverse branches form a
normal family on intP1.

We claim that there is a subsequence such that (σ−n)′ → 0 locally uniformly
on intP1, so on the compact set P ∩ ∂T∞. Indeed, we have σ−nk → g on intP1,
and we need to prove that g′ = 0 on some open set V ⊆ P1. Consider that
V is a small disc inside the rank one tile contained in P1, so the preimages
Vk := σ−nkV are disjoint open sets. By Koebe distortion theorem, we have

area(Vk) = O[diam(Vk)]
2,
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so diam(Vk)→ 0, which implies the claim.
Thus, diam[σ−nk(intP ∩ ∂T∞)] → 0, as k → ∞. These sets are open

connected neighborhoods of x in ∂T∞ which implies ∂T∞ is local connected at
x.

4.2.3 Local connectivity at S

To finish the proof of the local connectivity of ∂T∞, it suffices to check local
connectivity at the point 3

2 . Let △
±
n be the two tiles of rank n which have 3

2 as
a common vertex. Let

P̃n := int[P (△+
n ) ∪ P (△−

n )]

, and for any n ≥ 2, σ : P̃n → P̃n−1 is a bijection.
The sets (∂T∞∩P̃n)∪{ 32} are open and connected. Moreover, their diameters

go to zero. Hence, they form a basis of open connected neighborhoods of 3
2 in

the relative topology in ∂T∞.

4.3 Proof for Theorem 4.25. in [1]

In this section, we will study the dynamics near cusp points, the following wedges
will be useful. In the dynamical plane of σ, for θ ∈ [0, π2 ), we define

Wθ := Uθ ∪ wUθ ∪ w2Uθ ⊆ T∞,

where

Uθ := {3
2
+ reiθ

′
: 0 < r <

1

100
,
π

2
− θ < θ′ <

3π

2
+ θ}.

Similarly, in the dynamical plane of ρ, for θ ∈ [0, π4 ), we define

Wθ := Uθ ∪ wUθ ∪ w2Uθ ⊆ D,

where
Uθ := {1 + reiθ

′:0<r< 1
100 ,

3π
4 <θ′< 5π

4 + θ}.

First, for two paths Γ1(τ) and Γ2(τ) in D, where 0 ≥ τ <∞, and let C > 0,
we denote that the paths shadow each other with a constant C if

∀τ > 0, dD(Γ1(τ),Γ2(τ)) ≥ C;

and we denote it by:Γ1 ≈ Γ2.
Secondly, let us fix a positive fixed number η > 0 and state a ”shadowing”

lemma for ρ. For a fixed θ0 ∈ [0, π4 ) and z0 ∈ D \Wθ0 with d(z0,T) < η, and
Γz0 be the segment [z0, ζ0), where ζ0 = z0

|z0| . We parametrize Γz0 such that

dD(z0,Γ
z0(τ)) = τ. If ρ◦(z0) can be defined, we denote it by zn, ζn := ρ◦n(ζ0),

and z′n = |zn|ζn. Let N be a positive integer such that d(zk,T) < η and
zk /∈W := Wθ0 , for k = 0, 1, ..., N .
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Lemma 4.16. For a fixed θ0 ∈ [0, π4 ), we have that ρ◦N (Γz0) ≈ Γz′
N , where the

shadowing constant C = C(θ) is independent of z0 and N .

Proof. First, since ρ fixed T as a set, we can extend ρ to the open set V :=
Ĉ \ Π ∪ ι̃(Π) by Schwarz reflection principle and denote the three connected
components of V by Vi, i ∈ {1, 2, 3}.

For any k = 0, 1, ..., N , since zk /∈W and d(zk,T) < η for η small enough, we
have zk ∈ Vi for some i. Note that V is the union of three discs which is vertical
to D, ρ−N (Vi) is a disjoint union of finitely many discs that are invariant under
ι̃, we have z0 and ζ0 lies in the same disk T0 of above ones. By construction,
zN and ζN are in the same component Vi. It follows that there is a mapping
ρ−N : Vi → T0 : zn 7→ z0, ζN 7→ ζ0. The fact that zN /∈W and d(zN ,T) < η
imply that

A := Vi \ (ρ◦N (Γz0) ∪ ι̃(ρ◦N (Γz0)))

satisfying that mod(A) has a positive low bounded that denpends only on θ0
and is independent of z0 and N . Note that ρ−N on Vi is an isometry with
two corresponding hyperbolic metrics in these two domain. Hence, ρ−N (A) is
a annulus of definite modulus surrounding Γz0 ∪ ι̃(Γz0) in ρ−N (Vi).

The lower bound of mod[ρ−N (A)] implies that Γz0 ∪ ι̃(Γz0) is uniformly
bounded away from the boundary of ρ−N (Vi), thus the hyperbolic metric of
D and that of ρ−N (Vi) are both uniformly comparable (here, comparability
means equivalence) to the reciprocal of the distance to T. Thus they are com-
parable to each other on Γz0 , by isometry ρ◦N : ρ−N (Vi)→ Vi with hyperbolic
metrics, we have uniformly comparability between hyperbolic metrics of D and
of Vi on ρ◦N (Γz0).

Therefore, we have
dD(x, y) ∝ dρ−N (Vi)(x, y),

dD(ρ
◦N (x), ρ◦N (y)) ∝ dVi

(ρ◦N (x), ρ◦N (y)),

and
dρ−N (Vi)(x, y) = dVi

(ρ◦N (x), ρ◦N (y)),

which implies thatρ◦N : Γz0 → ρ◦N (Γz0) is a quasi-isometry with constants
independent of z0 and N .

(why?) Therefore, ρ◦N (Γz0) is shadowed by a hyperbolic geodistic of D with
one end-point at ζN . Since ρ is expanding away from the third roots of unity, we
conclude that the other end-point of this shadowing geodesic is bounded away
from ζN . It follows that ρ◦N (Γz0) is shadowed by the geodesic arc Γz′

N , with a
shadowing constant independent of z0 and N .

Remark 4.2. We add a definition of quasi-isometry between metric spaces
(X, dX) and (Y, dY ), we say a mapping f : X → Y is isometry with constants
λ > 0 and k ≥ 0 if for all x and x′ in X, the following inequality holds:

λ−1dX(x, x′)− k ≤ dY (f(x), f(y)) ≤ λdX(x, x′) + k.

Especially here we have k = 0.
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Next, we would state two uniform estimates for the model map ρ. Here,
under ψin, 0 ∈ T∞ corresponds to 0 ∈ D and curves γz in T∞ are now geodesic
rays through the origin. We set W :=Wθ0 for fixed θ0 ∈ [0, π2 ).

Since Γ is a Jordan curve, we can prove the following lemma by contradiction.

Lemma 4.17. ∀ϵ > 0,∃M > 0 such that if δ(z′) ≥ η, w′ ∈ γz′
, and dT∞(w′, z′)

≥M, then δ(w′) ≤ ϵδ(z′).

Lemma 4.18. ∀ϵ > 0,∃M > 0 such that if σ(z′) ∈ Nhyp(W,C), where Nhyp(W,
C) := {z ∈ T∞ : dT∞(z,W ) ≤ C}, C is the shadowing constant from lemma
4.16., w′ ∈ γz′

, and dT∞(w′, z′) ≥M, then δ(w′) ≤ ϵδ(z′).

By the following estimation, we will obtain the theorem 4.25. in [1].

4.4 Proof for the Subsection 4.4.3. in [1]

We now show that the Schwarz reflection of the deltoid arises as the unique
conformal mating of the anti-polynomial z2 and the reflection map ρ.

First, since A is simply connected in Ĉ, we have a Riemann uniformization
ψout : Ĉ \ D → A such that ∞ 7→ and 1 7→ 3

2 . For σ−action on non-escaping

set Â, we can conjugate it to f0 : ˆC \ D→ ˆC \ D, f0(z) = z2 by ψout.
It is based on the fact that σ has only critical at ∞ as a pole with order 2.

Thus in the coordinate under ψout, the corresponding function f0 with the only
critical at ∞ satisfies that f0 : Ĉ \D→ Ĉ \D. Consider 1

f( 1
z )
, we can write it as

a degree two anti-Blaschke product. Thus we have 1

f0(
1
z )

= z2, i.e., f0(z) = z2.

Secondly, we will now show the deltoid group G△ ⊆ Aut(T∞) is confor-
mally equivalent to the ideal triangle group G. Precisely, we have the following
proposition.

Proposition 4.19. Let T 1
j (j=1,2,3) be the three tiles of rank 1, so we have

σ−1T 0 = T 1
1 ⊔ T 1

2 ⊔ T 1
3 .

Then each map σ : T 1
j → T 0 extends to a conformal automorphism σj : T∞ →

T∞. The deltoid group G△ := ⟨σ1, σ2, σ3⟩ ⊆ Aut(T∞) is conformally conjugate
to the ideal triangle group G.

Proof. Recall that in proof of theorem 4.10., we have proved that ψ : D→ T∞

conjugates ρ to σ, and hence in particular, conjugates ρj |ρj(Π) to σ|T 1
j
. Also,

the desired between G and G△ is given by ψin.

The final part is related to introduce σ−action on the limit set. For this
common boundary, on the one hand, σ : Γ → Γ is topologically equivalent to
f0 : J → J , where J = T is Julia set of f0. On the other hand, σ : Γ → Γ is
topologically equivalent to the Markov map ρ : Λ→ Λ where Λ = T is the limit
set of the ideal triangle group G.

Recall in section two we have given a homeomorphism E : T → T, 1 7→ 1.
Here we will use it to glue two dynamical systems together.
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Proposition 4.20. There is a unique orientation-preserving homeomorphism
E : T→ T that conjugates ρ and f0 on T.

Proof. It suffices to prove the uniqueness here. We can consider the orientation-
preserving automorphism of T commuting with f0 : T → T and fixing 1. One
can see it must be identity map by consider the images of π, π2 , ...., and check
they are all fixed point one by one.

We can summarize this discussion as follows.
(1) We have two conformal dynamical systems

ρ : D \ intΠ→ D, and f0 : Ĉ \ D→ Ĉ \ D.

We also have a mating tool, the homeomorphism E : T→ T which conjugates ρ
on the limit set and f0 on the Julia set.

(2)(Topological mating). Define X = D ∨E (Ĉ \ D), Y = X \ intΠ, so X
is a topological sphere, and Y is a closed Jordan disc in X. The well-defined
topological map η := ρ ∨E f0 : Y → X is the topological mating between ρ and
f0

(3)(Conformalmating). The two Riemann uniformization, ψin and ψout,
glue together into a homeomorphism

H : (X,Y )→ (Ĉ,Ω)

which is conformal outside H−1(Γ) and which conjugates η to σ.
(4)(Uniqueness of conformal mating). There is only one conformal struc-

ture on X compatible with the standard structure on X \H−1(Γ). Indeed, one
can see this by the comformal removability of Γ.

Now we come back to the proof of Theorem 1.1. The first part follows from
theorem 4.10. and section 4.3. The second statement is the content of section
4.4.

References

[1] Seung-Yeop Lee, Mikhail Lyubich, Nikolai G. Makarov, and Sabyasachi
Mukherjee. Dynamics of Schwarz reflections: the mating phenomena. arXiv
e-prints, pages 1–24, November 2018.

[2] Seung-Yeop Lee and Nikolai Makarov. Topology of quadrature domains.
Journal of the American Mathematical Society, 29:334,335,347,348, 07 2013.

[3] Norbert Steinmetz. The formula of riemann-hurwitz and iteration of rational
functions. Complex Variables and Elliptic Equations, 22:203–206, 09 1993.

20

266 



Algebraic-Analytic Correspondence

Xingzhu Fang and Haoda Li

May, 2022

Abstract

We introduce the classical GAGA theorems of Serre along with some applications
and generalizations of it.
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1 Introduction and Statement

GAGA is a general principle in geometry connecting the seemingly unrelated algebraic
geometry and analytic geometry. We usually use GAGA-type result to address results in-
volving a comparison between objects in analytic geometry and their analogs in algebraic
geometry. On one hand, this type of results allow us to introduce analytic methods into
algebraic geometry over C (or a general char = 0 field via Lefschetz principle), e.g. Kodaira’s
original proof of Kodaira vanishing; on the other hand, algebraicity of analytic objects can
sometimes be of great use to address problems of analytic nature.

To begin with, we need to give X(C) the structure of complex analytic variety for any
scheme X locally of finite type over C.
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Definition 1.1 (Analytification). The functor sending any complex analytic space to the
set of morphisms to X as ringed spaces over C is representable and represented by Xan, the
analytification of X, with universal morphism h : Xan → X.

Remark 1.2. By evaluating the functors at C, the points of Xan is identified with X(C).
Also note that analytification functor is fully faithful by Yoneda lemma.

Remark 1.3. After showing the flexibility of representability under taking closed sub-
schemes, open subsets and product space, one is reduced to analytify A1

C as C, while both
sides assigns a complex analytic space to the globally defined holomorphic functions on it.

Remark 1.4. The morphism h is flat: we may simply observe that the stalks of OX and
OXan at the same point are local Noetherian with the same completion.

Then we have to analytify sheaves.

Definition 1.5. For any sheaf of OX modules F , define its analytification to be

Fan := h−1F ⊗h−1OX
OXan

Remark 1.6. Recalling the famous theorem of Oka that OXan is coherent, analytification
sends coherent sheaves to coherent sheaves.

Now we can state the main theorem.

Theorem 1.7 (GAGA). X is a proper scheme over C. Analytification functor gives an
equivalence between the categories of coherent sheaves over X and Xan, inducing isomor-
phisms on cohomology groups.

2 The Proof

The theorem is reduced to projective case by Chow’s lemma and induction on dimension
of support.The projective case follows from the case X = Pr

C by simply considering ideal
sheaves.So we assume X is the projective space in the following paragraphs.The proof is
divided into three parts.

Theorem 2.1 (GAGA, part 1). For every coherent sheaf F on X, and every integer q ≥ 0,
the pullback along h

h∗ : Hq(X,F) → Hq(Xan,Fan)

is bijective.

Proof. Using Hilbert’s syzygy and the exact sequence

0 → OX(n− 1) → OX(n) → OH(n) → 0

for and hyperplane H in X to do induction on dimension and n, we are reduced to the case
F = OX . In this case, H0 consists of constant functions by Liouville’s theorem (on analytic
side) and properness (on algebraic side). All higher cohomologies vanishes by Hodge theory
(on analytic side) and standard computation (on algebraic side).
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Theorem 2.2 (GAGA, part 2). If F and G are two coherent sheaves on X, then every
analytic homomorphism from Fan to Gan comes from a unique algebraic homomorphism
from F to G. In other words, the natural map

HomOX
(F ,G) → HomOXan (Fan,Gan)

is bijective.

Proof. It suffices to show Hom(F ,G)an ∼= Hom(Fan,Gan). By taking stalks, this reduces to
a general fact for flat ring map.

Theorem 2.3 (GAGA, part 3). For every coherent analytic sheaf F on Xan, there exists
a coherent algebraic sheaf G on X such that Gan is isomorphic to F . Moreover, such G is
unique, up to unique isomorphism.

Proof. Induction on the dimension of X. It suffices to show F(n) is globally generated for
n large, as OX(−n) is algebraic and F is exhibited as an algebraic kernel. Take arbitrary
hyperplane H and n large enough, forming corresponding exact sequence

0 → K(n) → F(n− 1) → H(n) → 0

0 → H(n) → F(n) → FH(n) → 0.

By induction hypothesis, K and FH are algebraic since they supports on H. Hence for n large
enough, H2(Xan,K(n)) = H1(Xan,FH(n) = 0, so H1(X,F(n − 1)) ↠ H1(Xan,H(n)) ↠
H1(Xan,F(n)). By a theorem of Cartan, coherent sheaves have finite dimensional coho-
mologies on compact complex manifolds, so the dimension of H1(Xan,F(n)) is eventu-
ally constant and all the surjective arrows become isomorphisms. In conclusion, we have
H0(Xan,F(n)) ↠ H0(Xan,FH(n)). Take n large enough such that FH is globally generated
at a point x, then so is F at x by Nakayama lemma. Varying x ∈ H and use compactness
now completes the proof.

3 Applications and Generalizations

3.1 Chow’s theorem

Theorem 3.1 (Chow’s theorem). Every closed analytic subset of projective space is algebraic.

Proof. This is a direct corollary of Theorem 1.7. Let X be a projective space, and Y be a
closed analytic subset ofX. Recall that the sheafHY = HX/I(Y ) is a coherent analytic sheaf
on Xan, thus there is a coherent algebraic sheaf F on X with HY = Fan by Theorem 1.7.
Therefore

Y = SuppHY = SuppFan = SuppF

is Zariski-closed.
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Chow’s theorem 3.1 leads to some fundamental comparison results:

Corollary 3.2. If X is an algebraic variety, every compact analytic subset X ′ of X is
algebraic.

Proof. Let Y be a projective variety, U a Zariski-open dense subset of Y , and f : U → X a
surjective regular map whose graph Γ is Zariski-closed in X × Y . Now Γ′ := Γ ∩ (X ′ × Y )
is compact, since X ′ and Y are compact and Γ is closed. Therefore the image Y ′ of the
projection from Γ′ to Y is also compact. But Y ′ = f−1(X ′), thus Y ′ is an analytic subset of
U hence of Y , therefore Y ′ is a Zariski-closed subset of Y by Chow’s theorem 3.1. From this
we see that X ′ = f(Y ′) is Zariski-closed in X.

Corollary 3.3. Every holomorphic map f from a compact algebraic variety X to an algebraic
variety Y is regular.

Proof. Let Γ be the graph of f , which is a compact analytic subset of X × Y since f is
holomorphic. Applying Corollary 3.2 now completes the proof.

Remark 3.4. Combining Corollary 3.3 with Riemann existence theorem, we see that the
category of compact Riemann surfaces is equivalent with the category of projective complex
algebraic curves.

3.2 Comparison of coverings

Theorem 3.5 (Grothendieck’s Riemann existence theorem). Let X be a C-scheme locally
of finite type. The functor

Φ : FÉtX → FÉtXan , (f : X ′ → X) 7→ (f an : X ′an → Xan)

induces an equivalence between the categories of finite étale coverings of X and Xan.

proof (sketch). The proper case follows (more or less) directly from the main theorem 1.7, via
the sheaf-theoretic description of (finite) coverings. And since morphisms are algebraizable,
the functor Φ is fully faithful. It then suffices to prove Φ is essentially surjective. For this,
through a long march of (step-wise) straight and easy reductions, we may reduce to the case
where X is regular affine.

We now assume that X = SpecA is connected, affine and regular. Note that by Chow’s
lemma, there exists a compactification j : X → P of X such that P is proper and j is a
dominant open immersion. Then resolve the singularities of P by taking blow ups of points
in P \X to obtain a proper regular scheme R over P . By resolution of singularities over C,
we have a dominant open immersion k : X → R such that j = r ◦ k.

Now suppose the finite étale covering X ′ → Xan can be extended to a finite covering
R′ → Ran. Then by proper case, there exists a finite covering R′ → R such that R′ an ≃ R′.
Let X ′ = R′|X , then

X ′ an = R′|anX ≃ R′ an|Xan ≃ R′|Xan = X ′.
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It thus remains to show that X ′ can be extended to Ran. This problem is local on Ran \Xan.
For an x ∈ Ran \Xan, since Xan and Ran are regular, there exists an open neighbourhood

V ⊂ Ran of x with a biholomorphic map

ϕ : V
≃−→ Cn, x 7→ 0, ϕ(V ∩ (Ran \Xan)) = Z(x1, . . . , xp) ⊂ Cn

where p = codimRanRan \Xan. Let U = Cn and U0 = Cn−Z(x1, . . . , xp) = (C\{0})p×Cn−p.

Now recall that there is an equivalence between the category FÉtU (resp. FÉtU0) of finite
étale coverings of U (resp. U0) and the category FTopCovU (resp. FTopCovU0

) of finite
topological covers of U (resp. U0). A careful topological check then completes the proof.

As a direct consequence, we have:

Corollary 3.6. Let K be a number field and X be a smooth proper scheme over K. Then
the profinite completion of the fundamental group of (X ×K C)an does not depend on the
choice of the embedding K ↪→ C.

Proof. From Grothendieck’s Riemann existence theorem 3.5 and Grothendieck’s Galois the-
ory formalism we see that, the profinite completion of the fundamental group of (X ×K C)an
is isomorphic to the étale fundamental group of XK , thus does not depend on the choice of
the embedding K ↪→ C in particular.

3.3 Riemann-Hilbert Correspondence

3.3.1 A Baby Version

Let X be a complex manifold or smooth algebraic variety over C. Riemann-Hilbert corre-
spondence is concerning the relation between the following two categories.

• Loc(X) A local system L is a locally free CX sheaf of finite rank, where CX is the
constant sheaf with value in C.

• Conn(X) An integrable connection M consists of a vector bundle M on X and a flat
connection on M .

We have the following famous theorem.

Theorem 3.7. X is a complex manifold, then the category of local systems and integrable
connections on X are naturally equivalent.

Proof. We will construct the equivalence in both directions.
Let L be a local system on X, then we simply assign M = L⊗CX

OX and the connection is
induced by the exterior derivative d : OX → Ω1

X .Obviously M is an integrable connection. On
the other direction, for any integrable connection M with structure map∇ : M → M⊗OX

Ω1
X ,

we assign the sheaf of horizontal sections L = M∇ = {s ∈ M : ∇s = 0} .It remains to show
L is locally free over CX with the same rank as M.A section of L is the same as a integrable
submanifold of the total space of M, hence the result follows from Frobenius’ theorem, see
Chapter 19 of [10].
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Next we look at the relation between integrable connections on smooth X and its analyti-
fication Xan.In the projective case, GAGA gives an equivalence between the two categories,
after identifying connections in a categorical way in both categories(notice that ∇ is not a
morphism of coherent sheaves).For general X, we have to carefully specify so called regular
connections.

When X is a smooth curve, we consider it’s smooth compactifiction X and view points in
X−X as ”singularities”. We assume {p} = X−X for simplicity. A meromorphic connection
M is informally an integrable connection with possible pole at p.Write M in coordinates near
p, solving horizontal section of the connection is the same as solving an ordinary differential
equation in complex variables with possible pole at p. ODE tells us the solution is at least
meromorphic (i.e. not essential singularity at p) iff the equation has pole at p of at most
order one. In this case, the meromorphic connection is called regular. Any connection on X
naturally extends to a meromorphic connection onX, hence it’s called regular if the extended
one is. For higher dimensional smooth varieties/manifolds, regularity is defined to be tested
by curves.

The upshot is the following theorem.

Theorem 3.8 (Deligne [4]). X smooth algebraic variety over C, then analytification induces
an equivalence Connreg(X) ∼= Conn(Xan).

Proof. Fix a smooth compactification X of X with complementary a divisor, whose existence
is guaranteed by Hironaka’s resolution of singularity.

The proof divides into three steps by the diagram below.

Connreg(X,D) Connreg(X
an
, Dan)

Connreg(X) Conn(Xan)

The left vertical arrow is an equivalence by definition. Observing that being regular is
equivalent in algebraic and analytic setting, the upper horizontal arrow is ensured by cate-
gorical characterization of connections and GAGA principle (note here we uses properness
of X). The right vertical arrow is called Deligne’s Riemann Hilbert correspondence and is
of analytic nature.The crucial essentially surjective part is actually local (after using a tech-
nical assumption to make the choice unique) and use the interpretation of local systems as
representation of fundamental group to reduce to a explicit calculation of matrices. For a
complete proof, see [4] or [9].

3.3.2 The Complete Statement

We have to explain lots of definitions.The reader should notice they are just glueing the baby
version along some stratification.

Db
c(X) is the full subcategory of the (bounded) derived category of CXan modules, with

cohomologies being constructible sheaves in the following sense.
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Definition 3.9 (Constructible Sheaf). A sheaf F of CXan modules is called constructible if
there exists a smooth stratification of X, such that F is locally constant of finite rank over
CXan on each stratum.

Remark 3.10. Note any constructible sheaf is generically a local system.

Definition 3.11. (Perverse sheaves) We define the perverse t-structure on Db
c(X) by:

D≤0 := {K ∈ Ob(Db
c(X))| Supp(H iK) ≤ −i,∀i ∈ Z}, D≥0 := DXD

≤0.

Define the category of perverse sheaves to be the heart of perverse t-structure:

Perv(X) := (Db
c(X))♡ = D≤0 ∩D≥0.

We turn to the differential side. Let X be an smooth algebraic variety/complex manifold.

Definition 3.12. Define filtered ring (DX , F) by

FlDX = {P ∈ EndCOX : [P, f ] ∈ Fl−1DX ,∀f ∈ OX}, F−1DX = 0, DX =
⋃

FlDX .

Remark 3.13. Local calculation gives grDX = π∗OT ∗X .

Remark 3.14. DX is a coherent sheaf of (noncommutative!) rings, with local rings Noethe-
rian of global dimension dimX. So it makes sense to talk about coherent DX-modules.

Remark 3.15. An integrable connection is the same as a DX-module which is coherent over
OX .

Definition 3.16 (Holonomicity). Let π : T ∗X → X be the cotangent bundle. For any coher-
ent DX-module M , take a good filtration F (choice doesn’t matter). Define the characteristic
variety Ch(M) = supp(OT ∗X ⊗π−1grDX

π−1(grFM)). Then we have dimCh(M) ≥ dimX and
say M is holonomic when the equality holds.

Remark 3.17. A holonomic DX-module is generically an integrable connection.

Db
rh(DX) is the full subcategory of the (bounded) derived category of (left) DX-modules,

with regular holonomic cohomologies.
Let’s move to the de Rham functor.The motivation comes from solving differential equa-

tions.Let P ∈ DX , M = DX/DXP , then HomDX
(M,OX) = {f ∈ OX : Pf = 0} is the

solutions of P. Let X be a smooth algebraic variety and ωX be the canonical sheaf of X.

Definition 3.18 (De Rham and solution functors).

DRXM := ωXan ⊗L
DXan

Man;

SolXM := RHomDXan (M
an,OXan).

Proposition 3.19. DRX
∼= SolX(DXM)[dimX].
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Remark 3.20. Taking horizontal sections is the same as DRX [dimX] ∼= RHomDX
(OX ,−).

Finally, the main theorem is

Theorem 3.21 (Riemann-Hilbert Correspondence). For a smooth algebraic variety X, the
de Rham functor

DRX : Db
rh(DX) → Db

c(X)

is an equivalence of categories with six functor and Verdier dual, transferring standard t-
structure on the left to perverse t-structure on the right.

In particular, it induces an equivalence between the category of regular holonomic D-
modules and the category of perverse sheaves.

3.4 Comparison of K-Theories

There is also a comparison result between the algebraic K-theory K(C) of C and the K-
theory ku of complex vector bundles, namely the following theorem of Suslin.

Theorem 3.22 (Suslin). There is a natural map from K(C) to ku, inducing an isomorphism
K(C)/n ∼= ku/n for each positive integer n.

Remark 3.23. Recall that Bott periodicity tells us the structure of ku is rather simple,
on the other hand, algebraic K-theories are often very complicated. Thus, this theorem of
Suslin connects the relatively complicated K(C) to the relatively simple ku, allowing us to
get more hold of K(C).

We assume the following result of Suslin. For a proof, see [6].

Theorem 3.24 (Suslin rigidity). Let (A, I) be a Henselian pair, n ∈ A× be an integer. Then
K(A, I)/n = 0. i.e., the natural map K(A) → K(A/I) is an isomorphism modulo n.

We first recall the construction of the mentioned K-theories in the language of condensed
mathematics.

Definition 3.25 (Algebraic K-theory). Let R be a ring. Then the algebraic K-theory of
R is the groupification of the E∞-monoidal anima (cProj(R),⊕), where cProj(R) denotes
the groupoid of finitely generated projective R-module (viewed as an anima). We denote the
algebraic K-theory of R by K(R) ∈ GrpE∞(Ani) = Sp≥0.

Definition 3.26 (Complex topological K-theory). The topological K-theory of complex vec-
tor bundles is the groupification of the E∞-monoidal anima (VectC,⊕), whereVectC denotes
the topological groupoid of finite dimensional complex vector spaces. We denote the topo-
logical K-theory of complex vector bundles by ku ∈ GrpE∞(Ani) = Sp≥0.

It is easy to check that

π0Hom(X, ku) = (BunC(X),⊕)gp,

thus Definition 3.26 coincides with the classical definition.
We now make the following generalization of Definition 3.25 for condensed rings.
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Definition 3.27. Let R ∈ CondRing be a condensed ring. Then the algebraic K-theory of
R is given by

K(R) = (ExDisc ∋ S 7→ K(R(S))) ∈ CondSp≥0.

Write
cProj(R) = (ExDisc ∋ S 7→ cProj(R(S))) ∈ MonE∞(CondAni),

then K(R) = cProj(R)gp is its groupification.

From now on, we use C to denote its corresponding condensed ring. Then the classical
algebraicK-theory of complex numbers is now justK(C)(∗). The following theorem connects
K(C) and ku, indicating that ku is the “non-archimedean” part of K(C).

Theorem 3.28. We have

cProj(C) =
∞∐
n=0

BGLn(C),

where BGLn(C) denotes the classifying space of GLn(C) as a condensed group. The natural
map GLn(C) → h(GLn(C)) induces a map cProj(C) →

∐∞
n=0B(h(GLn(C))) = VectC,

giving a map K(C) → ku after taking groupification, which is an isomorphism after taking
solidification. In particular, K(C)■ = ku.

3.5 Other GAGA Theorems

GAGA results also appears in other types of geometries.

Theorem 3.29 (Formal GAGA). Let A be an adic Noetherian ring, with defining ideal I.
Denote Y = SpecA, Yn = SpecA/In, Ŷ = Spf A. Let X be a Noetherian scheme, separated
and of finite type over Y , with I-adic completion X̂. Then completion gives an equivalence
between the categories of coherent sheaves over X and X̂ with proper support over Y and Ŷ
respectively, inducing isomorphism on cohomologies (i.e. completion commutes with higher
pushforward).

Proof. The cohomology part is the formal function theorem, see Chapter 29 of [15] or Chapter
3, Section 11 of [8]. The existence part also firstly deal with projective case, proving a coherent
sheaf becomes globally generated after twisting enough times in a rather direct way, and then
deal with general case by Noetherian induction and Chow’s lemma. For the whole account
of the proof (and more applications), see [5].

Theorem 3.30 (Rigid GAGA). Let X be a proper scheme over a non-archimedean field
K. Then rigid analytification (similarly defined) induces an equivalence between categories
of coherent sheaves over X and Xrig, inducing isomorphism on cohomologies.

Proof. The proof carries mutatis mutandis, assuming Kiehl’s proper mapping theorem (rigid
version of Grothendieck coherence or Cartan’s theorem). For more details, see [2].
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We record three more developments of GAGA theorems.
Noticing the difference of the essential techniques in proving different GAGA theorems,

Peter Scholze develops condensed mathematics to treat archimedean geometry in a non-
archimedean way.The following theorem of Ostrowski is a first glimpse of how the analytifi-
cation works.

Theorem 3.31 (Ostrowski). A is any C-algebra, then the standard norm on C induces a
homeomorphism MBerk(A) = Hom(A,C), where MBerk is the Berkovich spectrum.

For any cocomplete closed symmetric monoidal stable ∞-category C, we can assign a
natural locale (i.e. pointless topological space) S(C) whose closed subsets correspond to
idempotent algebras of C. For any closed subset A, we assign C(A) = ModA(C) and C(U) =
C/C(S(C)− U), giving rise to a sheaf of ∞-category on the locale S(C), called the structure
sheaf. Define a categorified locale to be (X, C), where X is a locale and C a cocomplete
closed symmetric monoidal stable ∞-category, together with a morphism f : S(C) → X.
The structure sheaf of X is the pushforward of that of S(C).

For finite type algebra A over C, define S(A) = S(D(Liqp(A))) and a open subset S(A,A)
by certain convergence conditions. We have natural maps S(A,A) → MBerk(A) → SpecA(C)
and S(A) → SpecAop.Descend by Zariski topology, any X separated of finite type over C
give rise to (X(C), Can(X)) and (X,Calg(X)).

Theorem 3.32. For X proper, there is a natural equivalence of cocomplete closed symmetric
monoidal D(Liqp(C))-linear stable ∞-categories

Can(X) ∼= Calg(X).

There is also a formal GAGA for good moduli spaces.

Definition 3.33. A quasi-compact and quasi-separated morphism of locally Noetherian
algebraic stacks ϕ : X → Y is a good moduli space morphism if

• (ϕ is Stein) the morphism OY → ϕ∗OX is an isomorphism, and
• (ϕ is cohomologically affine) the functor ϕ∗ : QCoh(OX) → QCoh(OY ) is exact.

A stack is said to have the resolution property if every coherent sheaf has a surjection
from a vector bundle.

Theorem 3.34 ([7]). Suppose X → SpecA is a good moduli space, where A is a complete
Noetherian local ring with maximal ideal m and X is of finite type over SpecA. Let X̂ denote
the formal completion of X with respect to m.

(1) The completion functor Coh(X) → Coh(X̂) is fully faithful.
(2) Suppose X0 = X×SpecA SpecA/m has the resolution property. TFAE:
(quot) X is the quotient of an affine scheme by GLn for some n.
(quot’) X is the quotient of an algebraic space by an affine algebraic group.
The above conditions imply the following equivalent conditions:
(res) X has the resolution property.
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(res’) Every coherent sheaf on X0 has a surjection from a vector bundle on X.
The above conditions imply
(GAGA) The completion functor Coh(X) → Coh(X̂) is an equivalence.
If the unique closed point of X has affine stabilizer group then (res) implies (quot’), and

if X has affine diagonal then (GAGA) implies (res’).

GAGA theorem also appears in derived geometry, see [11].

Theorem 3.35. Let f : X → Y be a proper morphism of derived complex Artin stacks
locally almost of finite presentation. Then the diagram commutes.

Coh−(X) Coh−(Xan)

Coh−(Y ) Coh−(Y an)

(−)an

f∗ fan
∗

(−)an

Theorem 3.36. Let X be a proper derived Artin stack locally almost of finite presentation
over C. Then the analytification functor induces an equivalence Coh(X) ∼= Coh(Xan).
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Abstract

The ideas about dessins d’enfants are originally outlined by Alexander Grothendieck
in his famous program Esquisse d’un programme, we introduce some developments of it
in this paper. Dessins d’enfants are topological and combinatorial objects that reflects
rich geometric and arithmetic information. The first five sections are devoted to give an
overview of the theory of dessins d’enfants. They cover topics like Belyi’s theorem and
the Grothendieck correspondence, along with Galois action on dessins; which shed light
on the geometric and arithmetic feature of dessins d’enfants. Examples and applications
are given in Section 6 and Section 7, respectively. The prerequisites needed to read the
applications in Section 7 are partly covered in the appendices.
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1 Introduction

The theory of dessins d’enfants is considered by Grothendieck as one of the most impor-
tant discoveries he made in his mathematical career, according to Grothendieck himself in
the Esquisse d’un programme [3]. As easily seen in the Definition 2.0.1 given in Section 2,
such objects are purely of topological and combinatorial data. However, these objects con-
tain rich geometric and arithmetic information. For example, as we shall see in Section 5 and
Section 7.3, they yield interesting descriptions of the absolute Galois group Gal(Q/Q) and
its representations (see Corollary 5.1.4 and Theorem 7.3.2, for example). Heuristically speak-
ing, they lead to comparisons between arithmetic Galois groups and geometric fundamental
groups, which are somewhat highly nontrivial since naturally the arithmetic fundamental
group is an extension of the arithmetic Galois group and the geometric fundamental group.
Moreover, the theory of dessins d’enfants is considered as the starting point of the study of
anabelian geometry.

An important feature of dessins d’enfants is that they correspond to étale coverings of
P1
Q\{0, 1,∞}, in particular the absolute Galois group Gal(Q/Q) acts on them. More precisely,

the category of dessins d’enfants is equivalent to the category FÉtP1
Q
\{0,1,∞} of finite étale

coverings of P1
Q \ {0, 1,∞}, which is equivalent to the category FTopCov

Gal(C/Q)

P1
C\{0,1,∞} of finite

topological ramified coverings of P1
C defined over Q and branching only at some points in

{0, 1,∞} (by Grothendieck’s Riemann existence theorem and that P1
C\{0, 1,∞} is integral as

a scheme, see [14] for details). This is called the Grothendieck correspondence, a topological
constructive proof is given in Section 3.2, another proof via the cartographical group is given
in Section 3.3, see Section 3 for details.

Using the topological and combinatorial datum, we may define the automorphism group
Aut(D) and the monodromy group Mon(D) of a dessin D, they coincide with the automor-
phism group Aut(fD) and the monodromy group Mon(fD) of the ramified cover fD obtained
via the Grothendieck correspondence, see Section 4 for details. They are both interesting in-
variants of dessins, as they are direct to compute and invariant under the action of Gal(Q/Q),
in particular they can be used to check whether two dessins are in the same Galois orbit. It
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is also worth mentioning that Aut(D) is in fact isomorphic to the centralizer Z(Mon(D)) of
Mon(D) in Sn.

There are many interesting applications of the theory of dessins d’enfants. For example,
it yields a new perspective of Davenport’s bound on f 3 − g2, leading to a clean and short
new proof of Zannier’s main result in [13]. Also, we may use Belyi’s theorem to show that
the abc-conjecture implies Faltings theorem. For details, see Section 7.

2 The definition of Dessin d’enfants

Definition 2.0.1. A dessin d’enfant, or simply a dessin, is a pair (X,D), where X is an
oriented compact topological surface, and D ⊂ X is a finite graph such that:

(1) D is connected.

(2) D can be put a bipartite structure, namely the vertices can be marked with two distinct
marks in such a way that the direct neighbors of any given vertex are all of the opposite
mark.

(3) X \ D is the union of finitely many topological discs, which is called the faces of D.

Definition 2.0.2. A clean dessin is a dessin where all the vertices with a particular mark
have degree 2. And it’s to be understood that in the definition of the dessin the condition
(2) is removed. For a graph satisfying the conditions (1) and (3), a dessin is associated by
giving all the vertices the same mark and placing a new vertex with a different mark in the
middle of each edge.

Note that a dessin is more than a mere abstract graph, since it’s equipped with a certain
embedding in a given topological surface. The genus of a dessin (X,D) is simply the genus
of the topological surface X. When the topological surface X is clear from the context, we
will denote the dessin simply by D.

3 Grothendieck correspondence

3.1 Belyi’s theorem

There’s a one-one correspondence between dessin d’enfants and Belyi functions, which is
the main reason why we consider the theory of dessin d’enfants. Belyi’s celebrated theorem
states that a Riemann surface with a Belyi’s function on it if and only if it’s defined over Q,
and Belyi’s functions are defined over Q.

Definition 3.1.1. A morphism f : X → P1
C all of whose critical values lie in {0, 1,∞} is

called a Belyi morphism. We call f clean if all the ramification orders over 1 are equal to 2.
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Definition 3.1.2. If X is an algebraic curve defined over Q and f is a Belyi function on it,
we call the couple (X, f) a Belyi pair. Two Belyi pairs are said to be equivalent if they are
equivalent as ramified coverings.

Theorem 3.1.3 (Belyi’s theorem). Let S be a compact Riemann surface, then the following
statements are equivalent:

(a) X is defined over Q.

(b) There exists a non-constant holomorphic function f : X → P1
C all of whose branch values

lie in {0, 1,∞}, i.e., a Belyi function.

Full proof is given in appendix, here we just prove (a)⇒ (b) as the construction is useful
in creating some dessins. And a partly proof of (b)⇒ (a)(different from the approach taken
in appendix) is given based on a main criterion just to show maybe some insights of the
theorem.

Lemma 3.1.4. Let f be a morphism from Riemann surface S to P1
C and all critical values

of f lie in Q∪{∞}. Then there exists a function P : P1
C 7→ P1

C such that g = P ◦ f is a Belyi
function. Moreover, P can be chosen to be a polynomial.

Proof. A general observation is given first that the following equation holds.

Branch(g ◦ f) = Branch(g) ∪ g(Branch(f)) (3.1.4.1)

Step 1: Constructing a function only ramifies in rational numbers.
Let S be the set of all critical values of f and all their conjugates under Gal(Q/Q). If

S ∈ Q, go to the next step. If not, set m1(z) =
∏

s∈S(z − s) ∈ Q[z]. The branch values of
m1◦f are contained in S1 = m1({roots of m′

1∪{0,∞}) by equation 3.1.4.1. Since m′
1 ∈ Q[z],

S1 contains all the conjugates of S1 under Gal(Q/Q). Thus, set m2(z) =
∏

s∈S1
(z−s) ∈ Q[z],

then we have degm2 ≤ degm′
1 < degm1. So we can construct mi ∈ Q[z] recursively, and the

degrees of mi decrease successively until for some n, deg(mn) = 0. Let h = mn−1 ◦mn−2 ◦
· · · ◦m1 ◦ f , then all the branch values are contained in Q.
Step 2: If there’s a branch value m/(m+ n) ∈ Q ∩ (0, 1)

Consider the Belyi polynomial

Pm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n (3.1.4.2)

which transforms both 0 and 1 to 0, and m/(m + n) to 1. It ramifies only at the points
x = 0, 1,m/(m + n),∞. Hence, Branch(Pm,n ◦ h) = Branch(h) − {m/(m + n)}. We can
reduce branch values by one in Q ∩ (0, 1) by composing h with a Belyi polynomial.
Step 3: If there are branch values in Q− [0, 1]

Composing Möbius transformation M(z) = 1/z or M(z) = 1 − z can help to transform
some branch values to [0, 1].

After finishing step 1, we can use step 2 and step 3 alternately to obtain the wanted Belyi
function.
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Proof of (a)⇒(b). Let S = SF be a compact Riemann surface where F (X, Y ) = p0(X)Y n +
p1(X)Y n−1 + · · · + pn(X). Considering the function x: (x, y) 7→ x, then Branch(x) ⊂
{roots of p0} ∪ {first ordinates of common roots of FY and F}. By Bézout’s theorem, the
branch values of x are all in Q. Then by Lemma 3.1.4, the proof of this half is done.

This approach can be applied to construct some Belyi morphisms, and then by Grothendieck
correspondence some dessins.

For (b)⇒(a), a criterion for definability over Q is given without proof.

Theorem 3.1.5. Let S be a compact Riemann surface, the following conditions are equiva-
lent:

• S is defined over Q.

• The family {Sσ}σ∈Gal(C/Q) contains only finitely many isomorphism classes of Riemann
surfaces.

Proof of (a)⇒(b) based on the criterion. From this criterion the proof of Belyi theorem is
quickly accessed. If f : S → P1

C is a Belyi function, then for arbitrary σ ∈ Gal(C), the
degree of fσ : Sσ → P1

C unchanged. σ acts trivially on set {0, 1,∞}, then f and fσ have
the same branch values. So the monodromies of fσ have only finite possibilities when σ goes
through Gal(C), which shows fσ are in finite equivalent classes of coverings. Then apply
theorem 3.1.5 to finish the proof.

3.2 A proof via a topological construction

In the original work of Grothendieck, he only considered the clean dessins and proves the
correspondence of the clean dessins and clean belyi pairs. But the proof of construction
also works for the general situations. In the next section, we will introduce another proof
of Grothendieck correspondence of clean dessins d’enfants by considering action of carto-
graphical group on the set of flags of a dessin, which can also be modified to suit non-clean
case.

We first construct a dessin from a Belyi pair. For a given Belyi pair (S, f), let Df =
f−1[0, 1], where [0, 1] is the segment of the real line on P1

C, the vertices of the graph are
f−1(0) and f−1(1) with different marks which equip the graph a bipartite structure. Then
(S,Df ) is a dessin.

Proposition 3.2.1. The dessin (S,Df ) satisfies the following properties:

(1) Df is a dessin d’enfant.

(2) Each face of the dessin has exactly one point in f−1(∞).

(3) Each of the sets f−1[0, 1], f−1[0,∞] and f−1[1,∞] is a union of topological segments.
All of them together are the complete set of edges of a triangle decomposition T (Df ) of
S. This shows Df satisfies the condition (1) and (3) of the definition of dessins.
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(4) deg(f) agrees with the number of edges of Df .

(5) The multiplicity of f at a vertex v of Df coincides with the degree of the vertex. The
multiplicity of a point in the set f−1(∞) agrees with half the valency of the face where
the point is.

(6) If f is clean, Df is clean.

Next, we are going to construct a Belyi pair from a given dessin (X,D), including equip-
ping the topological surface X with a Riemann surface structure. Suppose the two marks on
the dessin are ◦ and •, and the edges of the dessin are labelled with numbers from 1 to n.
Step 1: We shall first construct a triangle decomposition T = T (D) of X associated to D.
Choose a centre in each of the faces of D and mark them with ⋆. For each pair (v, A) where
v is a vertex in the boundary of a face A, draw a segment γv

A that starts at v and ends at
the centre of A, and it’s not allowed to meet any edge except at v it self. Then the γv

A divide
X into some triangles, satisfying following properties:

• Every triangle contains one vertex of each type ◦, • and ⋆.

• For an edge numbered j, there are two triangles T+
j and T−

j of which j is a common
edge. A triangle of which j is an edge is denoted by T+

j if the circuit ◦ → • → ⋆→ ◦
follows the positive orientation of δT+

j , and by T−
j otherwise.

Step 2: For a triangle T+
j , we can construct a homeomorphism f+

j from the triangle T+
j to

H̄+ := H ∪ R ∪∞ satisfying the following condition:

f+
j :


∂T+

j −→ R ∪∞
◦ 7−→ 0

• 7−→ 1

⋆ 7−→ ∞

(3.2.1.1)

And similarly construct f−
j from the adjacent triangle T−

j to H̄− := Ĉ \ H that coin-
cides with f+

j in the intersection T+
j ∩ T−

j and verifies also equation 3.2.1.1. To ensure the

compatibility condition on the boundary, we can first construct the homomorphisms on ∂T δ
j

(δ ∈ {+,−}) and extend them to T δ
j . Since these two homeomorphisms agree on T+

j ∩ T−
j ,

we say they can be glued together.
Glue together the collection of homeomorphisms f±

j : T±
j → H̄± to construct a continuous

function fT (D) : X → Ĉ whose restriction on X∗ = X \ f−1
T (D){0, 1,∞} → Ĉ \ {0, 1,∞} is a

topological covering. So X∗ inherits from Ĉ a unique Riemann surface structure such that f±
j

is holomorphic. Furthermore X can be converted into a compact Riemann surface denoted
ST (D) such that fT (D) becomes a morphism from ST (D) to Ĉ.

Moreover, it can be checked that for a different triangle decomposition L(D), (SL(D), fL(D))
and (ST (D), fT (D)) are in the same equivalent class of covering, which means that modulo the
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equivalence of coverings, the pair (SL(D), fL(D)) depends only on the dessin (X,D). Therefore,
we shall write (SD, fD) instead of (ST (D), fT (D)).

The following proposition is direct from the above construction procedure.

Proposition 3.2.2. The pair (SD, fD) satisfies the following properties:

(1) (SD, fD) is a Belyi pair.

(2) The same number equations as in Proposition 6.

(3) f−1
D ([0, 1]) = D.

It’s easy to check the two correspondences given above are mutually inverse.

Theorem 3.2.3. The two correspondences

{Equiv. classes of dessins} −→ {Equiv. classes of Belyi pairs}
(X,D) 7−→ (SD, fD)

(S,Df ) ←− [ (S, f)

are mutually inverse.

Definition 3.2.4. A function R : Ĉ→ Ĉ is called Belyi extending if it satisfies the following
conditions:

(1) R is a Belyi function.

(2) R is defined over the rationals.

(3) R({0, 1,∞}) ⊂ {0, 1,∞}.

If (S, f) is a Belyi pair and R is a Belyi extending, then R ◦ f is still a Belyi function. It
will be shown in the section 6 that Belyi-extendings can be used to create new invariants of
Galois action.

Take R = 1/4z(1− z). If f c denote R ◦ f , Dc denote the dessin corresponding to f c, then
f c is a clean Beiyi function and therefore Dc is a clean dessin. Actually, Dc can be obtained
by changing all the vertices of D white and adding a black vertex in the middle of each edge.

Take R = 1/z. Let D be a clean dessin and f is the corresponding clean Belyi function.
The dual dessin formed from the preimages of the line segment [1,∞] corresponds to the
R ◦ f = 1/f .

3.3 Cartographical group and clean dessin

Definition 3.3.1. The cartographical group C2 is generated by σ0, σ1 and σ2 with the
relations σ2

0 = σ2
1 = σ2

2 = 1 and (σ0σ2)
2 = 1. The oriented cartographical group C+

2 is the
subgroup of index 2 of C2 containing all even words of C2, generated by ρ0 = σ1σ0, ρ1 = σ0σ2

and ρ2 = σ2σ1, with the relations ρ21 = 1 and ρ0ρ1ρ2 = 1.
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Definition 3.3.2. Let D be a clean dessin with marking as above, and the vertices marked
• are of degree 2. Then the flag set F (D) is the set of triangles in the triangle decomposition
T (D), the elements of which are called flags, and the oriented flag set is the collection of all
T+
j .

The action of the group C2 on F (D) is defined as in Figure 1.

(a) F (b) σ0(F ) (c) σ1(F ) (d) σ2(F )

Figure 1: The action of σ0, σ1, σ2 on a flag F

Only the group element in C+
2 preserves the orientation. And the oriented flags can be

uniquely determined by a vertex ◦ and an edge coming out of the vertex. In this view, the
actions given by ρ0(F ), ρ1(F ) and ρ2(F ) are shown by Figure 2.

(a) ρ0(F ) (b) ρ1(F ) (c) ρ2(F )

Figure 2: The action of ρ0, ρ1, ρ2 on a flag F

Definition 3.3.3. Let BF,D be the set of elements of C+
2 fixing a flag F , which is a subgroup

of finite index in C+
2 . Since C+

2 acts transitively on F+(D), for any other flag F ′, BF ′,D is
conjugate to BF,D in C+

2 .

Theorem 3.3.4. There is a bijection between the isomorphism classes of clean dessins and
the conjugacy classes of subgroups of C+

2 of finite index.

Proof. By Lemma 3.3.3, a dessin can be associated with a conjugacy class of subgroups of
C+

2 of finite index by the stabilizer of a flag. Then our only task is to construct a dessin from
a subgroup of C+

2 of finite index fitting this correspondence.
If B be the set of elements of C+

2 fixing a flag F , then the action of C2 on the flag set
is isomorphic to its action on the coset space H = C2/B. So imagine the elements in the
coset space H = C2/B be flags with three vertices marked with ◦, •, ⋆ respectively. A flag is
positively oriented if and only if it’s contained in C+

2 /B. By the definition of the action of σ0,
two flags have the common ◦ − ⋆ edge if and only if they are in the same σ0-obit. The • − ⋆
and ◦ − ⋆ edges can be identified in the similar way. Thus, we can glue the flags together in
a unique way such that the dessin obtained corresponds to conjugacy class of B.
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The fundamental group of P1
C − {0, 1,∞} is denoted by π1, generated freely by loops

γ0, γ1 around 0 and 1. Recall the classical results:

Lemma 3.3.5. There is a bijection between the conjugacy classes of subgroups of finite index
of π1 and isomorphism classes of finite coverings X of P1

C ramified only over 0, 1,∞.

For the clean type, let π′
1 = π1/⟨γ2

1⟩, then we have the following:

Corollary 3.3.6. There is a bijection between the conjugacy classes of subgroups of finite
index of π′

1 and isomorphism classes of finite coverings X of P1
C ramified only over 0, 1,∞

such that the ramification over 1 is of degree at most 2.

Theorem 3.3.7. There is a bijection between the set of equivalent classes of clean dessins
and the set of equivalent classes of clean Belyi pairs.

This theorem is an immediate consequence of Lemma 3.3.6 and Theorem 3.3.4.

Remark 3.3.8. Actually, the actions ρ1, ρ2 defined here are consistent with σ0, σ1 in the
next section, and the argument above can be adopted in the non-clean general case, which
is related with the Fuchsian group description of Belyi pairs.

Let p, q be the order of the actions of ρ1, ρ2 on flag set. Πp,q denotes the hyperbolic regular
q-gon with angles 2π/p in H, and Γp,q ⊂ PSL2(R) is the group generated by two hyperbolic
rotation β, γ. β is the rotation of Πp,q about the centre of angle 2π/p, and γ is the rotation
of H about a vertex of Πp,q of angle 2π/p. β, γ satisfies the relations βq = γp.

Then the homomorphism ϕ : C+
2 → Γp,q : ρ1 7→ β, ρ2 7→ γ is well defined. Set ΓD,F =

ϕ(BD,F ). Since the conjugate class of ΓD,F is independent of the choice of F , so we may
denote it by ΓD.

Figure 3: Πp,q

The actions of β, γ on Γp,q/ΓD,F are isomorphic to the actions of ρ1, ρ2 on C+
2 /BD,F .

Thus, the Belyi pair (SD, f) isomorphic to (H/ΓD, π) where π is the natural projection
H/ΓD → H/Γp,q. And the triangles in Figure 3 maps to flags by the projection H→ H/ΓD.

And obviously this also can be done in non-clean case with some adjustment.

4 Permutation representation pair

From now on, we assume a dessin is marked with white and black color such that the
corresponding Belyi function sends white vertices to 0 and black vertices to 1.
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Definition 4.0.1. Let (X,D) be a dessin. If the dessin has n edges, label the edges of the
dessin with integer {1, 2, . . . , n}. Consider two element σ0, σ1 in the permutation group Sn.
Since the edges of the dessin is labelled, we can define the action of σ0, σ1 on the set of edges.
σ0 permutes an edge i to the following edge under positive rotation around the white vertex
of i, and σ1 permutes an edge i to the next edge by positive rotation around the black vertex
of i. Then (σ0, σ1) is called the permutation representation pair of the dessin.

Proposition 4.0.2. The permutation representation pair satisfies the following properties:

(1) The circles of the σ0 is in one-one correspondence with the white vertices of the dessin.
And the degree of the corresponding vertex agrees with the length of the circle.

(2) The circles of the σ0 is in one-one correspondence with the black vertices. And the degree
of the corresponding vertex agrees with the length of the circle.

(3) The circles of the σ1σ0 is in one-one correspondence with the faces.

(4) #{cycles of σ0} = #{f−1
D (0)},

#{cycles of σ1} = #{f−1
D (1)},

#{cycles of σ1σ0} = #{f−1
D (∞)}.

(5) The genus of the dessin can be calculated by the formula

2− 2g = #{cycles of σ0}+#{cycles of σ1} − n+#{cycles of σ1σ0}.

(The Euler-Poincare characteristic of X corresponding to the polygonal decomposition)

(6) the group ⟨σ0, σ1⟩ acts transitively on the edges.

Proof. The first three properties can be easily viewed by the definition of (σ0, σ1), for the
obit of an edge i under the action of σ0 is just all the edges that have the common white
vertex with i, similar for σ1. The statement of the faces needs slightly more thoughts to
consider the rotation of the triangle introduced in section 3.2.

Based on the first three propositions, the fourth one comes from the Grothendieck cor-
respondence, and the fifth is an application of the Riemann-Hurwitz formula. The last one
is because a dessin is a connected graph.

If we label the edges of the dessin in a different way, and get a new permutation repre-
sentation pair (σ′

0, σ
′
1), then there’s a permutation in Sn that conjugate σ0 to σ′

0 and σ1 to
σ′
1. Actually, dessins are in one-one correspondence with permutation representation pairs

up to conjugation. The way to construct a dessin from a given pair is to be discussed next,
and the uniqueness is due to the relationship between the permutation representation pair
and monodromy of corresponding Belyi function.

Proposition 4.0.3. Let σ0, σ1 ∈ Sn, and ⟨σ0, σ1⟩ is a transitive subgroup. There exists a
dessin of n edges whose permutation representation pair is precisely (σ0, σ1).
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One possible idea is to construct the faces first. Starting from an arbitrary edge i, the
sequence i, σ0i, σ1σ0i, σ0σ1σ0i, · · · iterates through the edges of a face containing i in coun-
terclockwise direction. The common vertex of i and σ0(i) is marked white, and the common
vertex of i and σ1(i) is marked black. When we have all faces constructed and all vertex
marked, we can glue the same edge together such that the white vertices are glued to white
ones and black to black. Then a dessin has been constructed now and obviously (σ0, σ1) is
the dessin’s permutation representation pair.

Figure 4: σ0 = (1, 5, 4)(2, 6, 3), σ1 = (1, 2)(3, 4)(5, 6)

4.1 Monodromy of dessins

The fundamental group π1(P1
C \ {0, 1,∞}, y) is a rank 2 free group. Let y = 1/2, then

π1(P1
C \ {0, 1,∞}, y) is generated by γ0, γ1 that are the loops based at y = 1/2 and turning

counterclockwise once around the points 0 and 1 respectively. σγ ∈ Bij(f−1(1/2)) is defined
as follows. If x ∈ f−1(1/2), then we can lift γ to a path γ̃ with the initial point x and the
point x′ ∈ f−1(1/2). Set σγ(x) = x′.

Figure 5: Lift of γ0
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As every edge of the dessin has exactly one point in the inverse image of 1/2, σγ0 , σγ1 can
be thought to act on the set of edges of the dessin. Then it can be known easily from the
construction of the Grothendieck correspondence that σγ0 = σ0, σγ1 = σ1.

Proposition 4.1.1. The permutation representation pair of a dessin and the monodromy of
the corresponding Belyi pair are determined by each other.

Definition 4.1.2. The permutation group generated by σ0 and σ1 is called the monodromy
group of the dessin, denoted by Mon(D).

4.2 Automorphisms of dessins

Definition 4.2.1. Let (X,D) be a dessin. Homeo+(X,D) is defined to be the set of orientation-
preserving homeomorphisms of X that preserve D as a bicoloured graph. We set

Aut(D) = Homeo+(X,D)/ ∼,

where H1 ∼ H2 if H1 ◦H−1
2 preserves setwise every edge of D, called the automorphisms of

the dessin.

It’s clear that an element of Aut(D) is determined by how it permutes the edges of the
dessin, then an element of Aut(D) can be represented by a permutation in Sn (If we label
the edges of a dessin with {1, 2, · · · , n}).

As the Grothendieck correspondence, the automorphisms of dessins correspond to auto-
morphisms of the associated Belyi covers. Obviously, an automorphism of Belyi cover can be
thought as an element of Aut(D). The following gives a brief description of why all element
in Aut(D) can be constructed in this way.

Proposition 4.2.2. The map Aut(fD)→ Aut(D) : H 7→ H is an isomorphism of group.

The inverse map can be obtained by the following lemma.

Lemma 4.2.3. Let T (D) be a triangle decomposition for the dessin (X,D), and (ST , fT ) is
the Belyi pair given by T (D). H ∈ Homeo+(X,D), then there exits H1 ∈ Aut(fT ) such that
H ∼ H1.

Proof. The triangle decomposition H(T (D)) provides x another Riemann surface structure.
Due to the uniqueness of corresponding Belyi pair as coverings, there exists an isomorphism
of Riemann surface F such that fD ◦ F = fH(D). Then H1 = F ◦ H satisfies fT ◦ H1 = fT
and equivalent to H.

Aut(D) can be easily described by Mon(D) as shown next. An element of Aut(D) can be
described by an permutation in Sn. And since it’s a orientation-preserving homeomorphism
preserving the bicolored structure, the corresponding permutation commutes with σ0 and σ1

(σ0 is the rotation positively around white vertex and σ1 around black vertex). Then we’re
going to explain that all the permutations with σ0 and σ1 are in Aut(D).
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Proposition 4.2.4. Assume σ ∈ Sn commutes with σ0 and σ1, then there exists H ∈ Aut(D)
making σ the corresponding permutation.

Proof. Let T be a triangle decomposition associated with the dessin. As before, we first
construct Hδ

i on the triangle T δ
i (δ ∈ {+,−}), and then glue them together to get H. Take

Hδ
i = (f δ

σ(i))
−1 ◦ f δ

i . To check they can glue, it’s enough to check the boundary compatibility

conditions. Take H+
i for instance:

H+
i = H−

i on T+
i ∩ T−

i

H+
i = H−

σ0(i)
on T+

i ∩ T−
σ0(i)

H+
i = H−

σ1(i)
on T+

i ∩ T−
σ1(i)

The first one comes from the compatibility of f+
j and f−

j . The equation

H−
σ0(i)

= (f−
σ(σ0(i))

)−1 ◦ f−
σ0(i)

= (f−
σ0(σ(i))

)−1 ◦ f−
σ0(i)

( on T+
i ∩ T−

σ0(i)
)

= (f+
σ(i))

−1 ◦ f+
i = H+

i

shows the remained ones follow from that σ commutes with σ0 and σ1. Also, this construction
ensured the glued morphism H having the corresponding permutation σ.

Theorem 4.2.5. Aut(D) is isomorphic to Z(Mon(D)), the centralizer of the monodromy
group of D in Sn.

The definition of regular dessin parallels the concept of Galois covering.

Definition 4.2.6. A dessin (X,D) is called regular if Aut(D) acts transitively on the edges
of D.

Theorem 4.2.7. Let (X,D) be a dessin, and (S, f) be the corresponding Belyi pair. The
following statements are equivalent.

(1) D is regular.

(2) f : S → P1
C is a Galois covering.

(3) #Mon(D) = #{edges of D} = deg(f)

From the Proposition 4.2.4, that the dessin is regular is totally the same with that the
corresponding Belyi morphism is a Galois covering. And the last one comes from the results
of Galois covering and is used to identify whether a dessin is regular.

If a dessin is regular, Aut(D) ∼= Z(⟨σ0, σ1⟩) acts transitively on the edges of D, then the
circles of σ0 have the same length, the same for σ0, σ1σ0. So all white vertices of the dessin
have the same degree, and the same is true for black vertices and faces, and with these
propertied a dessin is called uniform. But notice that a uniform dessin is not necessarily
regular.
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5 Galois action on dessins

We examine the action of the absolute Galois group GQ := Gal(Q/Q) on the set of dessins
of genus 0, 1, and ≥ 2, respectively.

We first describe the natural action of GQ on the set of dessins.

Definition 5.0.1 (Transform of a dessin). Let D be a dessin, σ be an element in GQ. Then
the transform (by σ) Dσ of a dessin D is defined by the composition

D

��

// Dσ

(SD, fD)
σ // (Sσ

D, f
σ
D)

OO

where the vertical arrows are given as in Theorem 3.2.3.

The following basic properties of the action are by direct verification.

Proposition 5.0.2. Let D be a dessin. The following quantities of D are invariant under
the action of GQ:

(a) The number of edges.

(b) The number of white vertices, black vertices and faces.

(c) The degree of the white vertices, black vertices and faces.

(d) The genus.

(e) The monodromy group.

(f) The automorphism group.

The main result of this section is the faithfulness of the action of GQ on the set of dessins
of any fixed genus:

Theorem 5.0.3 (Faithfulness of Galois action). For any g ∈ Z≥0, the action of GQ on the
set of dessins of genus g via σ 7→ (D 7→ Dσ) is faithful.

We will examine the three cases g = 0, 1, g ≥ 2 separately.

5.1 Galois action on genus 1 dessins

Recall that the j-invariant classifies Riemann surfaces of genus 1 up to isomorphism, we have

Proposition 5.1.1. The action of Gal(C/Q) on the isomorphism classes of compact Rie-
mann surfaces of genus 1 is faithful.
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Proof. Let σ ∈ Gal(C/Q) be an element not fixing a z ∈ C. Choose a λ with j(λ) = z. Then
Cσ

λ = Cλσ has j-invariant
j(λσ) = j(λ)σ = σ(z) ̸= z,

therefore it cannot be isomorphic to Cλ.

Corollary 5.1.2. The action of GQ on the set of dessins of genus 1 is faithful.

From this we easily deduce:

Theorem 5.1.3. The action of GQ on the fundamental group πét
1 (P1

Q\{0, 1,∞}, x) is faithful.

Corollary 5.1.4. There is an injective homomorphism

ρ : GQ → Out(F̂2),

from the absolute Galois group GQ to the outer automorphism group of the profinite comple-
tion of the free group F2 = ⟨a, b⟩ = ⟨a, b, c | abc = 1⟩.

Proof. By a corollary of Grothendieck’s Riemann existence theorem (see [11]), the étale
fundamental group πét

1 (P1
Q \ {0, 1,∞}, x) is isomorphic to the profinite completion of the

topological fundamental group π1(P1
C \ {0, 1,∞}, x) ≃ F2, now by an easy check on the

action of GQ on the fundamental group πét
1 (P1

Q \ {0, 1,∞}, x), we see that the preimage of

Inn(F̂2) of the embedding
ρ̃ : GQ → Aut(F̂2)

is trivial, giving rise to an embedding

ρ : GQ → Out(F̂2)

as desired.

5.2 Galois action on genus ≥ 2 dessins

We first recall a classical result of Riemann surfaces.

Proposition 5.2.1. Two hyperelliptic Riemann surfaces are isomorphic to each other if and
only if there is a Möbius transformation relating the branch set of the respective hyperelliptic
involutions.

Proof. This follows directly from the fact that the hyperelliptic involution J of a hyperelliptic
Riemann surface S is the only automorphism of order 2 satisfying S/⟨J⟩ ∼= P1.

From this we may even deduce the faithfulness of the action of GQ on the set of hyper-
elliptic curves of genus g.
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Theorem 5.2.2. Let σ ∈ GQ be a nontrivial element in GQ, and α ∈ Q be an algebraic
number not fixed by σ. For an integer n ∈ Z≥0, let Cn be the curve given by

y2 = (x− 1)(x− 2) · · · (x− (2g + 1))(x− (α + n)).

Then, there is an n such that Cσ
n is not isomorphic to Cn.

Sketch of proof. Assume otherwise, then invoking Proposition 5.2.1 gives a family {fn}n∈Z≥0

of Möbius transformations in which only finitely many are distinct. We may choose three
distinct natural numbers ni (i = 1, 2, 3) such that the three fni

are identical (denote by f
from now on) and we have

fni
(α + ni) = σ(α) + ni

for each i. Then the Möbius transformation g(z) := f(α+ z)− σ(α) fixes all the ni hence is
identity, giving

f(z) = z + σ(α)− α.

Now
k + (σ(α)− α) = f(k) = lk ∈ {1, 2, . . . , 2g + 1}

for each k ∈ {1, 2, . . . , 2g + 1}, but then

σ(α)− α = l1 − 1 = l2 − 2 = · · · = l2g+1 − (2g + 1)

must be 0, contradicting σ(α) ̸= α.

Corollary 5.2.3. For any g ≥ 2, the action of GQ on the set of dessins of genus g is faithful.

5.3 Galois action on genus 0 dessins

Notation 5.3.1. We call polynomial Belyi morphisms f : Ĉ → Ĉ Shabat polynomials, as
often used in the literature. Two Shabat polynomials f1, f2 are called linearly equivalent if
they are the same up to a linear change of variables, i.e. f1(x) = f2(ax+b) for some a, b ∈ C.
It is direct to check that two Shabat polynomials are linearly equivalent if and only if they
are in the same PSL2(C)-orbit.

We will use the following elementary technical lemma:

Lemma 5.3.2. (1) Let H1, H2 be two monic polynomials of the same degree whose constant
terms are 0. Assume that there are polynomials G1, G2 with G1 ◦ H1 = G2 ◦ H2. Then
H1 = H2.

(2) Let H1, H2 be arbitrary polynomials of the same degree such that G1 ◦H1 = G2 ◦H2 for
some polynomials G1, G2. Then there are constants c, d such that H2 = cH1 + d.

Proof. See Leila’s paper [8].

Theorem 5.3.3. The action of GQ on the set of linearly equivalent classes of Shabat poly-
nomial is faithful.
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Proof (Lenstra). Let σ ∈ GQ be a nontrivial element in GQ, and α ∈ Q not fixed by σ. Set

fα(x) =

∫
x(x− 1)2(x− α)3 ∈ Q(α)[x],

then fα is a polynomial ramified exactly at {0, 1, α} and the ramification indices are distinct.
Applying Belyi’s algorithm now yields a polynomial g ∈ Q[x] such that hα = g◦fα is a Shabat
polynomial.

Suppose hα and hσ
α are linearly equivalent, then

g(fα(az + b)) = fα(az + b) = fσ
α (z) = g(fσ(α)(z))

for some a, b ∈ C, therefore by Lemma 5.3.2

fα(az + b) = cfσ(α)(z) + d

for some c, d ∈ C. Now by our choice of fα, the map (z − b)/a maps 0, 1, α to 0, 1, σ(α)
respectively, forcing b = 0 and a = 1 therefore σ(α) = α, leading to a contradiction.

Corollary 5.3.4. The action of GQ on the set of dessins of genus 0 is faithful.

6 Examples

Some dessins of genus 0:
All genus 0 Riemann surfaces are isomorphic to Ĉ, then in genus 0 case, we may assume

S = Ĉ.

Example 6.0.1. The two dessins given by f(z) = zn and Chebyshev polynomial f(cos t) =
cos(nt) are star-like and chain-like trees as shown in Figure 6.

Figure 6: Star-like and chain-like trees

Example 6.0.2. The two dessins shown in Figure 7 are both with six edges and white ver-
tices of degrees 2,2,1,1 and black vertices of degrees 4,1,1. The permutation representation
pair of D1 is σ0 = (1, 5)(6, 3) and σ1 = (1, 2, 3, 4). The permutation representation pair of
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Figure 7: D1 and D2

Figure 8: D3 and D4

D2 is σ0 = (1, 5)(6, 4) and σ1 = (1, 2, 3, 4). Then #Mon(D1) = 48, #Mon(D2) = 120, and
Aut(D1) = ⟨(1, 3)(2, 4)(5, 6)⟩, Aut(D2) = ⟨(1)⟩. Since the monodromy group and automor-
phism group are invariants under the action of the absolute Galois group, therefore D1 and
D2 can not be Galois conjugated.

But for dessins D3 and D4 shown in Figure 8, they have the same degree sets and mon-
odromy group and automorphism group. But the monodromy group of Dc

3 and Dc
4 are dif-

ferent, then they are not Galois conjugated.
If R is a Belyi extending, the monodromy group and automorphism group of R◦f are also

invariant under Galois group action. This example shows this method can construct some
new invariants. Finding invariants of dessins which completely identify their Gal(Q/Q)-orbits
is a problem concerned in the theory of dessins d’enfants.

Example 6.0.3. This is an example of calculating the corresponding Belyi function from
the dessin considered in the paper [15]. The dessin D shown in Figure 9 is a clean dessin(all
vertices are the preimages of 0, and there’s a middle point in each edge being a preimage of
1). Since it has three vertices of degree 2 and two vertices of degree 3, the numerator be f
should be of the form:

(x2 + ax+ b)3(x3 + cx2 + dx+ e)2 (6.0.3.1)

The dessin have three faces of valencies 3,4,5, then the denominator of f should be (x −
f)3(x− g)4(x− h)5. As D is clean, 1− f has 6 roots and the multiplicity of each root is 2.
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Figure 9: A dessin with 6 edges

So we have:

f(x) = k
(x2 + ax+ b)3(x3 + cx2 + dx+ e)2

(x− f)3(x− g)4(x− h)5
(6.0.3.2)

f(x)− 1 = k
(x6 +mx5 + nx4 + px3 + qx2 + ux+ v)2

(x− f)3(x− g)4(x− h)5
(6.0.3.3)

The above two equations reaches a system of equations including 15 unknowns and 12
equations. The remaining 3 degrees is because of the automorphism group of P1

C. More the
related results of finding the equation of Belyi function from a clean dessin in genus 0 case
can be found in the article [8]

A dessin of genus 1:

Example 6.0.4. Let S be the Riemann surface {y2 = x(x − 1)(x −
√
2)} ∪ {∞}. By the

method proposed in the proof of (a) ⇒ (b) of Belyi’s theorem, we can construct a Belyi
function on S: f = −4(x2 − 1)/(x2 − 2)2:

x
t7→t2−2−−−−→ x2 − 2

t7→−1/t−−−−→ −1/(x2 − 2)
t7→4t(1−t)−−−−−−→ −4(x2 − 1)/(x2 − 2)2 (6.0.4.1)

By computing the preimage of [0, 1] step by step, the dessin corresponding to f can be
obtained as Figure 10.

The only σ ∈ Gal(C) may act non-trivially on the dessin is σ(
√
2) = −

√
2. Sσ = {y2 =

x(x− 1)(x+
√
2)} ∪ {∞}, fσ = −4(x2− 1)/(x2− 2)2. And we can obtain the corresponding

dessin Dσ by the same means as shown in Figure 11.
The permutation representation pair ofD is σ0 = (1, 7, 5, 3)(4, 8), σ1 = (1, 2, 3, 4, 5, 6, 7, 8).

The permutation representation pair of Dσ is σ0 = (2, 4, 6, 8)(3, 7), σ1 = (1, 2, 3, 4, 5, 6, 7, 8).
They are not conjugate, so D and Dσ are not isomorphic dessin. Actually, j(

√
2) ̸= j(−

√
2)

(j denotes the classical j-invariant) shows that S and Sσ are not isomorphic Riemann surface.
Hence, there are two dessins in the orbit of D.
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Figure 10: The procedure of finding the dessin

Figure 11: Dessin Dσ
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7 Applications

7.1 Minimal degree of f 3 − g2

To state our main result in simpler terms, we introduce the following definitions.

Convention 7.1.1. All graphs are thought to be simple in this section, and by a binary tree
we mean a tree whose vertices are all of degree 1 or 3.

Example 7.1.2. The graph in Figure 12 is a binary tree in the sense of 7.1.1.

Figure 12: A binary tree

Definition 7.1.3 (Tacosad). A graph Γ is a tacosad, if there is a surjection of graphs

π :
∐
i∈I

γi → Γ

that is a bijection on the set of edges, where I is a finite index set, and each γi is isomorphic
to K3, such that any loop of Γ is generated by {π(γi)}i∈I . We call these π(γi) faces of the
tacosad Γ.

Remark 7.1.4. It is straight-forward to check that any tacosad is the dual graph of a binary
tree, and that the dual graph of any binary tree is a tacosad.

Example 7.1.5. The graph in Figure 13 is a tacosad. In fact, it is the dual graph of the
binary tree in Example 7.1.2.

Definition 7.1.6 (Orientation of a tacosad). An orientation of a tacosad Γ is a map that
associates each face of Γ an orientation.

Definition 7.1.7 (Oriented binary tree). An oriented binary tree is a pair (T , φ), where T is
a binary tree, and φ is an orientation of the dual graph of T , in the sense of Definition 7.1.6.
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Figure 13: A tacosad

Figure 14: An oriented binary tree
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Example 7.1.8. The structure in Figure 14 is an oriented binary tree. In fact, its underlying
binary tree is the same as in Figure 12.

Remark 7.1.9. The motivation of Definition 7.1.7 is to keep track of the orientation of
a dessin by adding more structure to the graph. More concretely speaking, the φ in the
definition allow us to draw the tree on a oriented plane (or sphere to be more precise) in a
unique way, namely we flip the faces to the “correct” position according to the orientation.
In this manner we see that, in this specific case for binary trees, the notion of isomorphism
for such clean dessins is actually coherent with the notion of isomorphism for S3-trees, i.e.,
the topological data is of combinatorial nature.

The combinatorial structure Zannier used in his paper [13] is (essentially) the following
more artificial analog of Definition 7.1.7.

Definition 7.1.10 (S3-tree). An S3-tree is a pair (T , σ), where T is a binary tree, and σ is
a map from the set of degree-3 vertices to the set of permutations on the vertices of T , such
that σ(v) non-trivially permutes its three neighbours cyclically and fixes the rest vertices,
for each vertex v of degree 3.

The main result of this section is the following:

Theorem 7.1.11. Let f, g be two coprime complex coefficient polynomials of degree 2n, 3n
respectively. Then

(1) deg(f 3 − g2) ≥ n+ 1;

(2) The equality can be reached for each positive integer n;

(3) The number µn of linearly-equivalent classes of pairs (f, g) obtaining the minimal degree
deg(f 3 − g2) = n + 1 equals the number ϕn of isomorphism classes of oriented binary
trees on 2n vertices; and

(4) We have the following estimation for µn:

c1n
−5/24n < µn < c2n

−3/24n

for some positive reals c1, c2 independent of n.

Remark 7.1.12. The first claim of Theorem 7.1.11 is actually a direct corollary of the
abc conjecture for polynomials (a.k.a. Mason–Stothers theorem), which has a short and
elementary proof. However, our approach here proves both the inequality and the criterion
for equality at one strike.

Proof of Theorem 7.1.11. Let
r : P1

C → P1
C
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be given by the rational function f3

f3−g2
, then r is of degree 6n, and r − 1 is given by the

rational function g2

f3−g2
. Now applying Riemann-Hurwitz formula to r gives

−2 = −12n+
∑
x∈P1

C

νr(x) ≥ −12n+
∑
x∈P1

C
r(x)∈{0,1,∞}

νr(x)

= 6n− (#r−1(0) + #r−1(1) + #r−1(∞))

≥ 6n− (2n+ 3n+ (deg(f 3 − g2) + 1))

= n− 1− deg(f 3 − g2),

i.e., deg(f 3 − g2) ≥ n+ 1. The first claim is proved.
From the chain of inequalities above we see that, deg(f 3 − g2) = n+ 1 if and only if the

following conditions hold:

(a) r is only ramified above 0, 1,∞, i.e., r is a Belyi morphism;

(b) #r−1(0) = 2n, i.e., f has no multiple roots;

(c) #r−1(1) = 3n, i.e., g has no multiple roots;

(d) #r−1(∞) = deg(f 3 − g2) + 1, i.e., f 3 − g2 has no multiple roots.

Now suppose r satisfy the above conditions, then the graph associated to the clean
Belyi morphism r is essentially a tree on 2n vertices (discarding the middle-points and the
self-loops), all of which are of degree 1 or 3. Recall that Theorem 3.2.3 gives us a bijection
between the set of isomorphism classes of clean Belyi morphisms and the set of abstract clean
dessins, and that each isomorphism class of clean Belyi morphisms is just a PSL2(C)-orbit
of the natural action of PSL2(C) on the set of clean Belyi morphisms, therefore non-linearly-
equivalent pairs gives non-isomorphic Belyi morphisms. In conclusion, we have a bijection
between the set of linearly-equivalent classes of pairs (f, g) obtaining the minimal degree
deg(f 3 − g2) = n + 1 and the set of isomorphism classes of oriented binary tree on 2n
vertices, in view of Remark 7.1.9. This completes the proof of the second and third claim.

As for the fourth claim, note that we’ve shown in the above paragraph that µn = ϕn, thus
by applying the estimation B.0.4 for ϕn in Appendix B we obtain the desired estimation.

7.2 The Mordell conjecture is as easy as the abc conjecture1

We will prove that the abc conjecture implies the Mordell conjecture in this section. The
upshot is that validity of the abc conjecture gives us bound on ramifications, forcing the
number of rational points to be finite, via Belyi’s theorem A.0.1.

1This amusing equivalent formulation of Elkies’ original title “ABC implies Mordell” is noted by Don
Zagier, as pointed out by Elkies in [1].
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Convention 7.2.1. Whenever we use the capital H for heights, we mean the exponen-
tial of the corresponding height h defined in Appendix C. Moreover, recall that we have a
homomorphism

WCl(X)→ Pic(X), D 7→ OX(D)

for any variety X, which is an isomorphism if X is non-singular. We will use HD (resp. hD)
to denote the Weil heights HO(D) (resp. hO(D)). We will also use D0(f) (resp. D∞(f)) to
denote the divisor of zeros of f (resp. the divisor of poles of f), i.e., we have

div(f) = D0(f)−D∞(f),

where D0(f) and D∞(f) are effective.

We first recall the abc conjecture and the Mordell conjectures.

Definition 7.2.2. (Conductor on Pn) Let K be a number field. Then the conductor N(x)
of an algebraic point x = (x0, . . . , xn) ∈ PK(K) is given by

N(x) = N(x0, . . . , xn) =
∏

v∈MK,f s.t.
|xi/xj |v>1
for some i,j

N(℘v).

We will use N0(r) (resp. N1(r), N∞(r)) to denote the products of the absolute norms of the
prime ideals at which r (resp. r − 1, 1/r) has positive valuation, then

N(r,−1, 1− r) = N0(r) ·N1(r) ·N∞(r)

by direct verification.

Conjecture 7.2.3 (abc conjecture over K). Let K be a number field. Then

N(a, b, c)≫ϵ H(a, b, c)1−ϵ

for all a, b, c ∈ K× with a+ b+ c = 0, for each ϵ > 0.

Theorem 7.2.4 (Mordell conjecture over K, proved by G. Faltings). Let K be a number
field, C a curve of genus g > 1 over K. Then the set C(K) of rational points of C is finite.

Remark 7.2.5. Fatings’ proof of the Mordell conjecture makes an essential use of height
theory, which is beyond the scope of Appendix C. The idea is that you can define heights
of (not on) any abelian variety, via two approach: one is directly using the integral of a
differential on the abelian variety, obtaining the so-called Faltings height; the other is to view
abelian varieties as points of the Siegel modular variety, which is the moduli space of abelian
varieties added some extra data to shrink the automorphism group. The upshot is that
these two heights are the same up to O(1), giving us Northcott property (see Appendix C
for definitions) for the Faltings height, therefore deduce the finiteness of a certain set of
abelian varieties associated to each abelian variety, which completes the proof of the Mordell
conjecture.
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We also have an effective version of Mordell conjecture.

Conjecture 7.2.6 (Effective Mordell over K). Let X be a projective and smooth curve over
Q of genus g > 1. Then for any d ≥ 1, there exist constants A(X, d) and B(X, d) depending
only on X and d such that for any finite extension K of Q of degree d, we have

h(x) < A(X, d) log |∆K |+B(X, d),

for any x ∈ X(K).

Proposition 7.2.7 (abc implies Mordell). For any number field K, the abc conjecture over
K implies the Mordell conjecture over K.

Remark 7.2.8. In fact, it can be shown that (some version of) the effective Mordell con-
jecture implies (some version of) the abc conjecture. Thus combining with (some version of)
Proposition 7.2.7, these two conjectures are equivalent.

An essential part of the proof is the following observation.

Lemma 7.2.9. Let C be any curve over K and f ∈ K(C) be a rational function of degree
d. Then for any rational point x ∈ C(K) \ f−1(0) we have

logN0(f(x)) < (1− bf (0)

d
) logH(1, f(x)) +O(

√
logH(1, f(x)) + 1).

Proof. Write

D0(f) =
∑
k

mkDk,

where the Dk are distinct irreducible divisors of degrees dk occurring with multiplicities mk

in D0(f). Then

d =
∑
k

mkdk = degD and bf (0) = d−
∑
k

dk = degD0(f)− degD0(f)red,

where D0(f)red denotes the divisor
∑

f(x)=0(x), i.e. D0(f) with all multiplicities removed.
We then have

logH(1, f(x)) = hD0(f)(x) +O(1) =
∑
k

mkhDk
(x) +O(1).

Now note that, a prime occurs in N0(f(x)) if and only if it contributes to hDk
(x) for some

k, except for the primes of bad reduction of C and the primes of good reduction at which f
reduces to the identically zero function. But the total number of these “bad” primes is finite,
giving

logN0(f(x)) <
∑
k

hDk
(x) +O(1) = hD0(f)red(x) +O(1).
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Thus it remains to show

hD0(f)red(x) =
degD0(f)red
degD0(f)

· hD0(f)(x) +O(
√

logH(1, f(x)) + 1),

which is just
h∆(x) = O(

√
logH(1, f(x)) + 1),

where ∆ denotes the degree-zero divisor

∆ = (degD0(f))D0(f)red − (degD0(f)red)D0(f).

Recall that Theorem C.0.20 tells us this is true for any degree-zero divisor, thus invoking
Theorem C.0.20 now completes the proof.

We can now prove Proposition 7.2.7.

Proof of Proposition 7.2.7. By Belyi’s theorem A.0.1, we may choose a rational function
f ∈ K(C) ramified only above 0, 1,∞. Then by Riemann-Hurwitz formula, we have

m := #{x ∈ C(Q) | f(x) ∈ {0, 1,∞}} = deg(f) + 2− 2g < deg(f) =: d.

Now by summing the three inequalities obtained by applying Lemma 7.2.9 to f, f − 1, 1/f
respectively, we see that

logN(f(x),−1, 1− f(x)) <
m

d
logH(1, f(x)) +O(

√
logH(1, f(x)) + 1),

giving a counterexample to the abc conjecture over K for ϵ > 1− (m/d) once H(1, f(x)) =
HD0(f)(x) is large enough, i.e. for all but finitely many x by Northcott property C.0.16. This
completes the proof of abc implies Mordell.

7.3 A characterization for finite image Galois representations

Notation 7.3.1. Let F be any field. For notational convenience, we use GF to denote the
absolute Galois group Gal(F/F ) over F , and CF to denote the class

{V | V appears as a subquotient of Q[πét
1 (P1

F
\ {0, 1,∞}, 0v)] for every v},

if no confusion arises.

The main result in this section the following characterization for finite image Galois
representations.

Theorem 7.3.2. Any continuous finite image representation

ρ : GF → GLn(Q)

can be embedded into the space of locally constant functions

Funcloc.const.(πét
1 (P1

F
\ {0, 1,∞}, 0v),Q),

for any tangential base point 0v.
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A key ingredient of the proof of Theorem 7.3.2 is the following telescopic property of the
fundamental group of P1

F
\ {0, 1,∞}.

Proposition 7.3.3. There exists an open subgroup

Γ ⊂ πét
1 (P1

F
\ {0, 1,∞}, 0v)

stable under GF -action and admitting a GF -equivariant surjection

Γ ↠ πét
1 (P1

F
\ {0, 1,∞}, 0v1)× πét

1 (P1
F
\ {0, 1,∞}, 0v2)

for some tangential base points 0v1 , 0v2 at 0.

Proof. We make use of Belyi’s explicit construction of Belyi morphism.
Consider the degree 3 finite morphism

f : P1
F → P1

F , z 7→ 27

4
z(z − 1)2,

then f is only ramified at 1
3
, 1,∞. Since f(1) = 0, f(1

3
) = 1, f(∞) = ∞ the map f restricts

to a finite étale cover

P1
F \ {0,

1

3
, 1,

4

3
,∞} → P1

F \ {0, 1,∞}.

Moreover, since f is unramified at 0, we may choose a tangential base point 0v1 for the
truncated projective line P1

F \ {0, 13 , 1,
4
3
,∞} such that f(0v1) = 0v.

Let Γ be defined as

Γ := f∗(π
ét
1 (P1

F \ {0,
1

3
, 1,

4

3
,∞}, 0v1)) ⊂ πét

1 (P1
F
\ {0, 1,∞}, 0v).

Then the inclusion maps

i1 : P1
F \ {0,

1

3
, 1,

4

3
,∞} → P1

F \ {0, 1,∞}, i2 : P1
F \ {0,

1

3
, 1,

4

3
,∞} → P1

F \ {0,
1

3
,
4

3
}

induce a surjection

Γ ↠ πét
1 (P1

F
\ {0, 1,∞}, 0v1)× πét

1 (P1
F
\ {0, 1

3
,
4

3
}, 0v1)

by the Seifert-Van Kampen theorem, this then completes the proof of Lemma 7.3.3 since
πét
1 (P1

F
\ {0, 1

3
, 4
3
}, 0v1) can be identified with πét

1 (P1
F
\ {0, 1,∞}, 0v2) via an automorphism of

P1
F , for some tangential base point 0v2 .

From Proposition 7.3.3 we deduce the following lemma to be used in the proof of the
main theorem 7.3.2.

Lemma 7.3.4. For a tangential base point 0v supported at 0 there exist two other tan-
gential base points 0v1 and 0v2 such that, if V1 and V2 are representations of GF appear-
ing as subquotients of Q[πét

1 (P1
F
\ {0, 1,∞}, 0vi)]GF−fin, then V1 ⊗ V2 is a subquotient of

Q[πét
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin.
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Proof. Note that the representation V1 ⊗ V2 is a subquotient of

Q[πét
1 (P1

F
\ {0, 1,∞}, 0v1)]GF−fin ⊗Q[πét

1 (P1
F
\ {0, 1,∞}, 0v2)]GF−fin ⊂ Q[Γ]GF−fin,

and that Q[Γ]GF−fin is a quotient of Q[πét
1 (P1

F
\{0, 1,∞}, 0v)]GF−fin by Grothendieck’s Galois

theory formalism, therefore V1 ⊗ V2 is a subquotient of Q[πét
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin as

desired.

We now prove Theorem 7.3.2.

Proof of Theorem 7.3.2. Since the image of

ρ : GF → GLn(Q)

is finite, it factor through Gal(K/F ) for a finite Galois extension K/F . Now recall that every
faithful representation of a finite group G contains a faithful subrepresentation of dimension
≤ #G, thus if we can show that the space Q[πét

1 (P1
F
\ {0, 1,∞}, 0v)]GF−fin has some faithful

representation Wv of Gal(K/F ) as a subquotient for every tangential base point 0v, then we
may choose the representationsWv in a way that they all belong to finitely many isomorphism
classes, say W1, . . . ,WN . Then by repeatedly applying Lemma 7.3.4, we can conclude that
Q[πét

1 (P1
F
\{0, 1,∞}, 0v)]GF−fin has a subquotient of the form W⊗a1

1 ⊗· · ·⊗W⊗aN
N with ai ≥ d

for at least one i, for any d ≥ 0. Finally, recall that any representation of a finite group
is contained in a large enough tensor power of any faithful representation (†), we see that
Q[πét

1 (P1
F
\{0, 1,∞}, 0v)]GF−fin has a subquotient of the form W⊗b1

1 ⊗· · ·⊗W⊗bN
N with bi ≥ d

for all i, applying (†) again then completes the proof of Theorem 7.3.2. Thus it remains to
show the existence of Wv for any v.

For this, we first choose a smooth proper geometrically connected curve C over K that
does not descend to any proper subfield K ′ ⊂ K. By Belyi’s theorem A.0.1 there exists a
finite map f : C → P1

K that is étale over P1
K \ {0, 1,∞}. Denote by U ⊂ C the preimage

f−1(P1
K \ {0, 1,∞}) of P1

K \ {0, 1,∞}. Choosing a tangential F -base point xw for C \ U
that lies above 0v, we get an open subgroup f∗(π

ét
1 (UK , xw)) ⊂ πét

1 (P1
K
\ {0, 1,∞}, 0v). If an

element σ ∈ GF stabilizes this subgroup, then the scheme UK can be descended to the field
(F )σ=1. Our choice of C then forces the stabilizer of this subgroup to be contained inside
GK ⊂ GF . In particular, there is a finite GF -equivariant quotient π

ét
1 (P1

F
\{0, 1,∞}, 0v) ↠ S

such that the kernel of the action of GF on S is contained in GK . In conclusion, there exists
a GF -equivariant finite quotient π

ét
1 (P1

F
\ {0, 1,∞}, 0)→ X such that the action of GF on X

factors through a faithful action of Gal(K/F ).

Remark 7.3.5. In the same manner we could prove a generalization of Theorem 7.3.2,
in which the étale fundamental group is replaced with its pro-algebraic completion, and
Funcloc.const.(πét

1 (P1
F
\ {0, 1,∞}, 0v),Q) (or equivalently Q[πét

1 (P1
F
\ {0, 1,∞}, 0v)]GF−fin) is

replaced by Qp[π
ét
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin. In fact, it can be shown that every semi-simple

representation coming from geometry appears as a subquotient of the space of functions
on the pro-algebraic completion of πét

1 (P1
F
\ {0, 1,∞}, 0v). This then gives an astounding

reduction of the Fontaine-Mazur conjecture. For details, see [7].
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A Appendix A: The “easy” part of Belyi’s theorem2

We first recall Belyi’s theorem:

Theorem A.0.1 (Belyi). A complex smooth projective curve X is defined over a number
field, if and only if there exists a non-constant morphism f : X → P1

C with at most 3 critical
values.

The “only if” part is proved in Section 3.1, the “if” part follows directly from a theorem
of Weil (Theorem A.0.2), we will give a proof of this theorem in this section, for the sake of
integrity.

Theorem A.0.2 (Weil). Let X/C be a projective smooth algebraic curve. If there is a mor-
phism

f : X → P1
C

such that all branch values lie in Q, then X is defined over Q.

Definition A.0.3 (Closed subgroup). Let K be a field. A subgroup G of Aut(K) is closed,
if there is a subfield k of K with G = Aut(K/k).

We will use the following elementary field-theoretic lemma:

Lemma A.0.4. Let K/k be a field extension. Then,

1. Any automorphism of k can be extended to an automorphism of K. Furthermore, we
have:

KAut(K/k) = k.

2. Let G be a subgroup of Aut(K), and H be a subgroup of G of finite index. Then the
field extension KH/KG is finite. If H is a normal subgroup of G or G is closed, then
we have [KH : KG] ≤ [G : H]. Moreover, the equality holds if H is closed.

We also recall a fundamental result in ramification theory:

Proposition A.0.5. Let S be a finite set of (closed) points of P1
C, and d ≥ 1 be a natural

number. Then there are at most finitely many isomorphism classes of pairs (X, f) where
X/C is a curve and f : X → P1

C is a finite morphism of varieties over C of degree d whose
branch values lie in S.

Proof. By translating to the setting of Riemann surfaces, this reduces to the fact that there
are at most finitely subgroups of index d of the fundamental group π1(P1

C \S), which is true
since π1(P1

C \ S) is finitely generated.

2It should be noted that this part is neither easy nor direct. This reason this part is called easy is historical:
It follows directly from a (hard) theorem of Weil (Theorem A.0.2), which is proved a lot earlier than the
other part of Belyi’s theorem.
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Definition A.0.6 (Moduli field). The moduli field of (X, f) is the field M(X, f) := KU(X,f)

fixed by the group U(X, f) consisting of all σ ∈ Aut(K) such that there exists an isomorphism
σX : Xσ → X of varieties over K such that the following diagram commutes:

Xσ

fσ

��

σX // X

f
��

(P1
K)

σ Proj(σ) // P1
K .

When f = 0, we simply call the field M(X) := M(X, 0) the moduli field of X.

Theorem A.0.2 is then the conjunction of the following two lemmas:

Lemma A.0.7. Let X/C be a curve, let f : X → P1
C be a finite morphism and let k be a

subfield of C such that the branch values of f are k-rational. Then the moduli field of f is
contained in a finite extension of k.

Proof. For any σ ∈ Aut(C/K), the branch values of f(σ) : Xσ tσ−→ (P1
C)

σ Proj(σ)−→ P1
C also

lie in S, and deg f(σ) = deg f . So the Aut(C/K)-orbit of (the isomorphism class of) the pair
(X, f) is finite, by Proposition A.0.5, therefore the stabilizer is of finite index in Aut(C/K).
Now note that the stabilizer is contained in U(X, f), thus the moduli fieldM(X, f) = CU(X,f)

is contained in a finite extension of CAut(C/K) = K, by Lemma A.0.4.

Lemma A.0.8. X and f are defined over a finite extension of M(X, f).

Proof. Choose a Q-rational point y0 ∈ P1
K(Q) \ S, and a point x0 in the fibre f−1(y0). By

Riemann-Roch, there is a meromorphic function g ∈ K(X) \K such that x0 is the only pole
of g. Then we have K(X) = K(f, g) (as the field extension K(X)/K(f, g) is a subextension
of K(X)/K(f) and of K(X)/K(g), hence the corresponding morphism of curves is both
unramified and totally ramified at x0). We assume that we have chosen g in such a way that
the order m of the pole is minimal. Then we have

T := {f ∈ K(X) | ordx0(f) ≥ −m and ordx(f) ≥ 0 for all x ∈ X \ {x0}} = K ⊕Kg;

since for any f1, f2 ∈ T with ordx0(fi) = −m, i = 1, 2, there is a constant α ∈ K with
− ordx0(f1 − αf2) < m, and then f1 − αf2 is a constant function, as m is minimal. By the
choice of y0, the meromorphic function f − y0 on X is a local parameter on X in x0; if
K = C, this means, in the language of Riemann surfaces, that f − y0 yields a chart of X(C)
in a neighborhood of x0 which maps x0 to 0. There is a unique function g′ ∈ T such that the
leading coefficient and the constant coefficient in the Laurent expansion of g′ with respect
to the local parameter f − y0 are equal to 1 and 0, respectively. We then assume that g = g′.
We now claim that the minimal polynomial of g over K(f) has coefficients in k(f) where k
is a finite extension of M(X, t). Then, the field extension K(X)/K(f) is defined over k. By
the dictionary between curves and function fields, this means Lemma A.0.8 is proved.
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As for the proof of the above claim, we denote by U(X, f, x0) the subgroup of U(X, f)
consisting of all σ ∈ Aut(K) such that there is an isomorphism σX : Xσ → X of curves over
K such that the diagram

Xσ

fσ

��

σX // X

f
��

(P1
K)

σ Proj(σ) // P1
K

commutes and such that σX(x
σ
0 ) = x0, where x

σ
0 denotes the point onXσ/K corresponding to

x0. Note that σX is unique since Aut(f) acts freely on the fibre f−1(y0). Thus, mapping σ to
the automorphism of the function field K(X) induced by σX yields an action of U(X, f, x0)
on K(X) by K-semilinear field automorphisms which fix f ∈ K(X). Being the stabilizer
of [x0] under the action (σ, [x0]) 7→ [σX(x

σ
0 )] of U(X, f) on f−1(x0)/Aut(f), the subgroup

U(X, f, x0) has finite index in U(X, f). The meromorphic function g ∈ K(X) and hence
the minimal polynomial of g over K(f) are invariant under the action of U(X, f, x0) defined
above since the image of g under σ ∈ U(X, f, x0) has the same three defining properties
as g. Now applying Lemma A.0.4 completes the proof of the claim (thus also the proof of
Lemma A.0.8).

Remark A.0.9. From the proof we actually see that X and f are defined over M(X, f)
itself provided that f is Galois.

We can now prove Theorem A.0.2.

Proof of Theorem A.0.2. The theorem follows directly from Lemma A.0.7 and Lemma A.0.8.

B Appendix B: Estimation of oriented binary trees

We establish some combinatorial estimations for getting the claimed estimation 7.1.11 in
Section 7.1.

First we recall the definition of oriented binary trees for the sake of integrity.

Definition B.0.1 (Oriented binary tree). An oriented binary tree is a pair (T , φ), where T
is a binary tree, and φ is an orientation of the dual graph of T , in the sense of Definition 7.1.6.

We also have a notion of rooted oriented binary trees:

Definition B.0.2 (Rooted oriented binary tree). An rooted oriented binary tree is a triple
(T , φ, v), where (T , φ) form an oriented binary tree, and v is a degree-1 vertex.

Note that we have natural notions of isomorphism for both oriented binary trees and
rooted oriented binary trees.

Now recall that we want to estimate the number of isomorphism classes of oriented
binary trees on 2n vertices, as Theorem 7.1.11 states that this number is exactly the number
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of linearly-equivalent classes of pairs (f, g) obtaining the minimal degree deg(f 3−g2) = n+1.
For this, we first count the number Fn of isomorphism classes of rooted oriented binary trees
on 2n vertices. It turns out that this number is easier to count directly.

Proposition B.0.3. The number Fn of isomorphism classes of rooted oriented binary trees
on 2n vertices satisfy the following asymptotic formula

Fn ∼ cn−3/24n.

Proof. Note that we may split such a rooted oriented oriented binary tree into a pair of
new (co-)rooted oriented oriented binary trees by taking out the old root, ordered according
to the orientation attached to the face associated to the unique neighbour of the old root,
giving rise to the following recurrence formula

Fn =
∑
i+j=n

FiFj.

Clearly we have F0 = 0, F1 = 1 by definition. Therefore we have the following identity for

the generating function F (x) =
∞∑
n=0

Fnx
n:

F (x) = x+ F 2(x),

thus

F (x) =
1

2
(1−

√
1− 4x),

this tells us

Fn = (−1)n−11

2
4n
(
1/2

n

)
=

(
2n
n

)
2(2n− 1)

∼ cn−3/24n,

for a constant c > 0 independent of n.

We can now estimate the number ϕn of isomorphism classes of oriented binary trees on
2n vertices.

Theorem B.0.4. The number ϕn of isomorphism classes of S3-trees on 2n vertices satisfy
the following inequality

c1n
−5/24n < ϕn < c2n

−3/24n

for some positive reals c1, c2 independent of n.

Proof. Consider the surjective forgetful map from the set of isomorphic classes of rooted
oriented binary trees on 2n to the set of isomorphism classes of oriented binary trees on
2n vertices, then the number of elements of each fiber is between 1 and 2n by definition,
therefore

1

2n
Fn ≤ ϕn ≤ Fn,

applying Proposition B.0.3 then gives the desired inequality

c1n
−5/24n < ϕn < c2n

−3/24n

for some positive reals c1, c2 independent of n.
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C Appendix C: Basic height theory revisited

We recite some basics of the height theory from Diophantine geometry in this section.
Generally speaking, heights are functions from the set of algebraic points on a variety

to R, that allow us to “count” algebraic points on varieties. It possesses a certain finiteness
property which claims that a set of points with bounded height and degree is necessarily
finite.

We first define heights on projective spaces Pn.

Assumption C.0.1. We assume K is one of the following:

• Number field: i.e. a finite extension K/Q;

• Function field: i.e. K = k(B), where k is an arbitrary field, and B is a geometrically
integral smooth projective curve over k.

Remark C.0.2. In some applications (e.g. Mordell-Weil theorem), we also require k is finite.
Then Assumption C.0.1 is just saying K is a global field.

Notation C.0.3 (Valuations and places).

• Number field: LetK/Q be a finite extension. We useMK ,MK,f ,MK,∞ to denote the set
of places of K, the set of finite places of K, the set of infinite places of K, respectively.
Then a finite place v ∈ MK,f corresponds to a prime ideal ℘v ⊂ OK , and the v-adic
norm is given by

|x|v = N(℘v)
− ordv(x),

where
N(℘v) = #(OK/℘v)

denotes the norm of ℘v; and an infinite place v corresponds to an embedding σv : K →
C, and the v-adic norm is given by the restriction of the complex absolute value.

• Function field: Let K = k(B) be a function field over k. We use MK to denote the
set of places of K. Then a place v ∈ MK corresponds to a closed point of B, and the
v-adic norm is given by

|x|v = e− deg(v)·ordv(x)

where
deg(v) = [k(v) : k]

denotes the degree of the residue field at v.

Theorem C.0.4 (Product formula). Let K be a field satisfying Assumption C.0.1, then we
have ∏

v∈MK

|x|v = 1,

for any x ∈ K×.
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Proof. We omit the proof and refer the interested reader to [6].

Remark C.0.5. The product formula C.0.4 plays a fundamental role in Diophantine Ge-
ometry, e.g., in the well-definedness of the naive height on projective space, the development
of intersection theory on arithmetic varieties...

Definition C.0.6 (Naive height on Pn). Let K be a field satisfying Assumption C.0.1, define
the naive height

h = hK : Pn(K)→ R

by

hK(x0, . . . , xn) =
1

[K ′ : K]

∑
v∈MK′

logmax{|x0|v, . . . , |xn|v},

where K ′ is a finite extension of K containing all the coordinates x0, . . . , xn ∈ K.

Remark C.0.7. By a direct computation we may verify that Definition C.0.6 is independent
of the choice of K ′. Independence of coordinates is guaranteed by the product formula C.0.4.

Proposition C.0.8. Let x ∈ Pn(K) be an algebraic point, then

(1) h(x) ≥ 0;

(2) h(x) = 0 if and only if

(3) h(xm
0 , . . . , x

m
n ) = |m| · h(x0, . . . , xn).

Proof. The first claim follows from product formula C.0.4. Number field case of the second
claim is a well-known result, whereas the function field case is by direct verification, so is
the third claim.

The following result ensured that we could use height to “count” algebraic points.

Theorem C.0.9 (Northcott property). Let K be a global field. Then the set

{x ∈ Pn(K) | deg(x) < c1, h(x) < c2}

is finite, for any c1, c2 ∈ R.

Proof. We omit the proof and refer the interested readers to [9].

We can now define heights on general projective varieties.

Convention C.0.10. In our context, a variety is an integral scheme which is separated
and of finite type over the base field; a curve is a 1-dimensional variety; a surface is a
2-dimensional variety.

The upshot is that we embed projective varieties into Pn, and use the heights induced by
the heights C.0.6 on Pn.
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Definition C.0.11 (Naive height on projective varieties). Let X/K be a projective variety,
L an ample line bundle on X, and

i : X → PN
K

a close immersion, with
i∗OPN

K
(1) ∼= mL

for some integer m ≥ 1. Then the height

h(L,m,i) : X(K)→ R

associated to the triple (L,m, i) is the composition of

X(K)
i−→ PN

K(K)
1
m
h
−−→ R,

where h is the naive height on Pn defined in Definition C.0.6.

The following theorem shows that, the height h(L,m,i) in Definition C.0.11 only depends
on L, up to O(1). Moreover, non-ample line bundles can also induce heights in a somewhat
natural way, giving lots of heights on a variety. For this reason, Theorem C.0.12 is called the
height machine.

Theorem C.0.12 (Height machine). Let K be a field satisfying Assumption C.0.1, and
X/K a projective variety. Then there exists a unique homomorphism

H : Pic(X)→ {maps X(K)→ R}/{bounded maps}, L 7→ HL,

such that
HL = h(L,m,i) +O(1),

for any ample line bundle L on X, and close immersion

i : X → Pn

with
i∗OPn(1) ∼= mL.

Remark C.0.13. The uniqueness of H is already contained in the statement of Theo-
rem C.0.12, as any line bundle can be written as a difference of two very ample ones. The
hard part is actually the existence of such an H. As for a complete proof, we refer the
interested readers to [9].

We call the heights given by the height machine C.0.12 Weil heights.

Definition C.0.14 (Weil height). Let K and X/K be as above. For any line bundle L on
X, any function

hL : X(K)→ R

in the class HL is called a Weil height associated to L.
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We have a projection formula for Weil heights.

Corollary C.0.15 (Projection formula). Let K be a field satisfying Assumption C.0.1, and
f : X ′ → X a morphism of varieties over K. Let L ∈ Pic(X) be a line bundle on X. Then

hf∗L = f ∗hL +O(1).

i.e., the following diagram

X ′(K) X(K)

R

f

hf∗L hL

commutes up to O(1).

We also have Northcott property for Weil heights.

Theorem C.0.16 (Northcott property). Let K be a global field, X/K a projective variety,
L an ample line bundle on X, and hL : X(K)→ R the associated Weil height. Then the set

{x ∈ X(K) | deg(x) < c1, h(x) < c2}

is finite, for any c1, c2 ∈ R.

Proof. This follows directly from the Northcott property C.0.9 for the naive height on Pn.

The following interpretation of Weil heights as an intersection number justifies our defi-
nition.

Theorem C.0.17 (Height = intersection number). Let K = k(B) be a function field, where
B is a regular and geometrically integral projective curve. Let

h : Pn(K)→ R

be the naive height on Pn
K
. Then

h(x) =
1

deg(x)
deg(OPn

B
(1)|x̃),

for any x ∈ Pn(K), where x̃ ⊂ Pn
B is the zariski closure of the image of the composition of

SpecK → Pn
K → Pn

B.
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Proof. By base change, we may assume deg(x) = 1, x ∈ Pn(K), and x̃ is the section corre-
sponding to x. Then the equation becomes

h(x) = deg(OPn
B
(1)|x̃).

Note that deg(OPn
B
(1)|x̃) is just the intersection number H · x̃ for any hyperplane section

H of Pn
B, for which we have

H · x̃ =
∑
v∈B

closed point

mv deg(v),

where the mv ≥ 0 are the intersection multiplicities. Now write x = (x0, . . . , xn) with xi ∈ K
and x0 ̸= 0. Then take H = V(x0) in Pn

B. By a direct computation we see that

mv = ordv(xv)− min
0≤i≤n

{ordv(xi)},

for any closed point v ∈ B. This then completes the proof of Theorem C.0.17.

Corollary C.0.18 (General version of Theorem C.0.17). Let K = k(B) be as in Theo-
rem C.0.17, X/K a projective variety, and L a line bundle on X. Let (X ,L) be an integral
model of (X,L) over B. Then the function

hL : X(K)→ R, x 7→ 1

deg(x)
deg(L|x̃)

is a Weil height associated to L, where x̃ is the zariski closure of the image of the composition

SpecK
x−→ X → X .

Remark C.0.19. In the number field (i.e. “arithmetic”) case, by adding Hermitian metrics
as part of the data “at ∞”, and developing intersection theory in parallel, we may obtain a
function (analogous to the one defined above)

hL : X(K)→ R, x→ 1

deg(x)
L · x̃,

where (X ,L) is an “arithmetic model” of (X,L), and x̃ is the zariski closure of the image of
the composition

SpecK
x−→ X → X .

The upshot is that we can use this “height” function to develop height machine in the number
field case in parallel to our original approach. In fact, this is exactly the fundamental idea
of Arakelov theory.

We include the following result used in Section 7.2 for the sake of integrity.

Theorem C.0.20 (Néron). Let X be a non-singular projective variety, L and L1 be two
elements of Pic(X), with degL = 0 and L1 ample. Then we have

|hL(x)| ≤ O(
√

hL1(x) + 1).

Proof. See Serre’s book [9].
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D Appendix D: Étale fundamental group revisited

In the setting of algebraic geometry, the topological fundamental group of the underlying
(Zariski) topological space contains very little information about the scheme, as Zariski
topology is very “coarse” in some sense. The key is to encapsulate the essence of covering
theory in a more categorical way, i.e. the so-called Grothendieck’s Galois theory; and to realize
that, (finite) étale morphisms in algebraic geometry are the analog of (finite) coverings in
classical topology. However, many technical details arise. For example, there are no analog
of universal covering in the setting of schemes, one would have to either choose to interpret
the “algebraic fundamental group” of a scheme as an automorphism group of the category
of finite étale morphisms over the scheme, or enlarge the category of schemes so that an
“universal covering” may exist. Our approach here is the former.

We work under the framework of Grothendieck’s Galois theory formalism. For details,
see [11]. We first recall some notions from this framework, for the sake of integrity.

Definition D.0.1 (Galois category). A Galois category is a pair (C, F ), where C is a category
and F : C → Fin is a functor from C to the category of finite sets, such that

(1) C has finite limits and finite colimits;

(2) Every object in C is a finite coproduct of connected objects in C;

(3) F detects isomorphisms and is exact.

Here an object X in C is called connected if Aut(X) acts freely on X. The functor F is
usually addressed as the fiber functor of the Galois category (C, F ).

Example D.0.2. Take C to be the category of finite coverings of a fixed pointed (locally
simply connected) space, and F to be the literal “fiber” functor. Then (C, F ) form a Galois
category. This is one of the most import examples to keep in mind.

The “universal Galois group” Aut(F ) := lim←−X
Aut(F (X)) in fact determines completely

the structure of C:

Theorem D.0.3. Let C be a Galois category with fiber functor F , and G = Aut(F ) be the
profinite automorphism group of F . Then there is an equivalence of categories between C and
the category GFin of finite G-sets.

After some easy checking, we may obtain:

Proposition D.0.4. Let X be a connected scheme with a geometric point x : Spec k → X.
Then the category FÉtX of finite étale morphisms to X, together with the induced fiber
functor

Fx : FÉtX → Fin, (f : Y → X) 7→ |Yx|,

form a Galois category.
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We can now define the étale fundamental group.

Definition D.0.5 (Étale fundamental group). Let X be a connected scheme with a geomet-
ric point x : Spec k → X, and Fx be as above. Then the étale fundamental group πét

1 (X, x)
of X at x is the automorphism group Aut(Fx) of Fx.

By a routine reduction to curve case, in which we apply Grothendieck’s comparison
theorem along with a result of Shafarevich (see [11]), we see that:

Theorem D.0.6 (Grothendieck). Let X be a smooth projective scheme over an algebraically
closed field k, and x : Spec k → X be a geometric point. Then πét

1 (X, x) is topologically finitely
generated as a profinite group.

Remark D.0.7. The curve case can also be proved by deforming the curve to a curve of
characteristic zero, for which the result follows from Lefschetz principle and the structure of
the topological fundamental group of Riemann surfaces of finite type. Moreover, by applying
de Jong’s theory of alterations, we may only assume X is connected in Theorem D.0.6. Note
that even properness of X is not necessary to deduce topologically finitely generatedness.

It is sometimes of great benefit to also have a notion of étale fundamental groups at
certain “missed” points of a scheme, e.g., the “point” 0 of the truncated projective line
P1
Q \ {0, 1,∞}. This is the so-called “étale fundamental group with tangential basepoints”,

which we will now discuss.

Definition D.0.8 (Tangential basepoint). Let X be an integral proper normal curve over
a field k. A k-rational tangential basepoint of X is just a k((t))-point xv : Spec k((t)) → X
of X.

Remark D.0.9. Let X be the compactification of X, then such a xv in Definition D.0.8
gives a k-rational point x : Spec k → X along with a tangent vector v ∈ TxX given by the
parameter t, hence the name. These data allow us to recover more information from the fiber
over xv compared to x, such as the ramification indices over x.

The following theorem of Deligne allow us to apply Grothendieck’s Galois theory formal-
ism as in Definition D.0.5.

Theorem D.0.10 (Deligne). Let X be an integral normal curve over a field k of charac-
teristic 0, and xv : Spec k((t)) → X be a k-rational tangential basepoint. Then the category
FÉtX of finite étale morphisms to X, together with the induced fiber functor

Fxv : FÉtX → Fin, (f : Y → X) 7→ {(y, e) | y ∈ f
−1
(x), e ∈ f

−1
(v) ∩ TyY },

form a Galois category.

We can now make the following definition.

Definition D.0.11. Let X be an integral normal curve over a field k of characteristic 0,
and xv : Spec k((t)) → X be a k-rational tangential basepoint. Then the étale fundamental
group πét

1 (X, xv) of X at xv is the automorphism group Aut(Fxv) of Fxv .

40

318 



References

[1] N. D. Elkies, ABC implies Mordell. International Mathematics Research Notices, 1991,
no. 7, 99–109.
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The Bott Periodicity Theorem For Complex vector Bundles

温家睿 数学科学学院 2000010859

2022 年 6 月 14 日

Bott Periodicity Theorem was first discribed by Raoul Bott in 1959, in which he estab-
lished a periodicity in the homotopy groups of classical groups. And later in 1964, Atiyah and
Bott noticed that the periodicity theorem is related with K-theory. It was then reformulated
as K(X × S2) = K(X)⊗K(S2), which is a fundamental theorem in K-theory. I’ll introduce
the statement of the periodicity theorem in terms of K-theory, and then offer the proof by
Atiyah and Bott.

1 Preliminaries on vector bundle

As it’s not the main part of our issue, I’ll only present the definitions and theorems without
proof that may be helpful in our discussion of the periodicity theorem.

Definition 1.1. Let B be a topological space, a complex vector bundle over B is a topological
space endowed with:

(1)a continuous map p : E → B (called the projection)
(2)a finite dimensional complex vector space structure in each Eb = p−1(b), b ∈ B. And

these must satisfy the condition of local triviality: For each point b ∈ B, there exists a
neighborhood U ⊂ B, an integer n ≥ 0, and a homeomorphism h : U × Cn → p−1(U), so that
for each b ∈ U , x → h(b, x) is an isomorphism between the vector space Cn and the vector
space p−1(b). Moreover, if U can be chosen to be E itself, then E is called a trivial bundle.

In a vector bundle, B is called the base space, E is the entire space, and for each
b ∈ B, Eb := p−1(b) is called the fiber over b.

In this article, when we say ”vector bundle” we mean the ”complex vector bundle”.

Definition 1.2. A section of a vector bundle E is a continuous map s : B → E with ps = id.
The space of all sections of E is denoted by Γ(E).
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Definition 1.3. If E and F are two vector bundle over X then a homomorphism of E into
F is a continuous map ϕ : E → F commuting with the projections and inducing a vector space
homomorphism ϕx : Ex → Fx for each x ∈ X. If ϕx is an isomorphism for all x, then ϕ is an
isomorphism of E to F . And we will denote the set of isomorphism classes od n-dimensional
complex vector bundles over X by Vectn(B).

The union of all the vector space Hom(Ex, Fx) for each x ∈ X has a natural topology
making it into a vector bundle Hom(E,F ), and a section of Hom(E, f) is a homomorphism of
E into F . Similarly, we have ISO(E,F ).

Hom is an example of natural operations on vector space carrying over to vector bundles.
In addition we can define the direct sum E ⊕ F ,the tensor product E ⊗ F , and the dual E∗.
Canonical isomorphisms also go over to bundles, for instance, Hom(E,F ) ≃ E∗ ⊗ F . And
we’ll denote the iterated tensor product E ⊗ E ⊗ · · · ⊗ E(k times) by Ek. And if L is a line
bundle, i.e. a bundle of dimension one, we shall write L−1 for L∗ and K−k for (L∗)k. Thus
the line-bundles over X can form a multiplicative group with L−1 as the inverse of L, and the
unit of this group is the trivial line-bundle X × C(denoted by 1).

Definition 1.4. Let f : Y → X be a continuous map and let E be a vector bundle over
X, the induced bundle or some called pullback bundle is a vector bundle f∗(E) over
Y that f∗(E) = {(y, v) ∈ Y × E|f(y) = p(v)} with projection p′(y, v) = y. It shows that
f∗ : Vectn(X) → Vectn(Y ) is a pullback of f : Y → X.

Remark. Note that if f : Y → X is the inclusion map of Y ⊂ X, then f∗(Y ) ≃ E|Y .

Here comes an important proposition:

Proposition 1.1. Let Y be a compact space, ft : Y → X a homotopy (0 ≤ t ≤ 1) and E a
vector bundle over X. Then f∗

0E ≃ f∗
1E.

Vector bundles are frequently constructed by a clutching construction. Let X = X1 ∪
X2,A = X1∩X2, and suppose all those spaces are compact. Assume that Ei is a vector bundle
over Xi (i = 1, 2), and ϕ : E1|A → E2|A is an isomorphism. Then we define the vector bundle
E1 ∪ϕ E2 on X to be the quotient of E1 ⊔ E2 by the equivalence relation which identifies
e1 ∈ E1|A with ϕ(e1) ∈ E2|A. It’s easy to verify that E1 ∪ϕ E2 is a vector bundle over X.

Here are some properties of this construction:

Proposition 1.2. If E is a bundle over X and Ei = E|Xi, then the identify defines an
isomorphism 1A : E1|A → E2|A, and E1 ∪1A E2 ≃ E.
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Proposition 1.3. If βi : Ei → E′
i are isomorphisms on Xi and ϕ′β1 = β2ϕ, then E1 ∪ϕ E2 ≃

E′
1 ∪ϕ′ E′

2

Proposition 1.4.

E1 ∪ϕ E2 ⊕ E′
1 ∪ϕ′ E′

2 ≃ E1 ⊕ E′
1 ∪ϕ⊕ϕ′ E2 ⊕ E′

2,

E1 ∪ϕ E2 ⊗ E′
1 ∪ϕ′ E′

2 ≃ E1 ⊗ E′
1 ∪ϕ⊗ϕ′ E2 ⊗ E′

2,

(E1 ∪ϕ E2)
∗ ≃ E∗

1 ∪(ϕ∗)−1 E∗
2 .

And the following is the most important proposition in our proof of the periodicity theo-
rem.

Proposition 1.5. The iso morphism class of E1 ∪ϕ E2 depends only on the homotopy class
of the isomorphism ϕ : E1|A → E2|A.

And here are two facts we might use in our proof:

Proposition 1.6. If P is a projection operator for a vector bundle E, namely, P is an
endomorphism with P 2 = P , then PE and (1− P )E have an induced vector bundle structure
and PE ⊕ (1− P )E = E.

Proposition 1.7. A metric on E is a section of End(E) which is positive define Hermitian
for each x ∈ X. If X is a compact space, then the metric on E always exists.

Finally, we come to the definition of K-group K(X). Let X be a compact space. First we
note that the isomorphic classes of vector bundles over X form an abelian semigroup with the
option ⊕. By taking a generator a in a semigroup, and adding relations [a] = [b]+[c] whenever
a = b + c, we can obtain an abelian group from the semigroup we have. And the group we
get from the isomorphic classes of vector bundles over X is denoted by K(X). Further more,
the operation otimes induces a multiplication in K(X) turning it into a commutative ring. A
continuous map f : Y → X also induces a ring homomorphism f∗ : K(X) → K(Y ) where
f∗[E] = [f∗E]. And obviously, if X is a point then K(X) ≃ Z.

2 Statement of the periodicity theorem

Atiyah and Bott actually proved a little further than K(X) ⊗K(S2) ≃ K(X × S2), the
statement is established as follows.
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If E is a vector bundle, then by deleting the 0-section and dividing out by the action of
non-zero scalars we obtain a space P (E) called the projection bundle of E. There is a natural
map P (E) → X and the inverse image of x ∈ X denoted by P (Ex) is the complex projective
space. If we assign to each y ∈ P (Ex) the one-dimensional subspace of Ex which corresponds
to it, we obtain a line-bundle over P (E), and this line-bundle is denoted by H∗, while its
dual is defined by H. In addition, the projection P (E) → X induces a ring homomorphism
K(X) → K(P (E)), thus K(P (E)) becomes a K(X)-algebra. The periodicity theorem claims
the structure of this algebra:

Theorem 2.1. Let L be a line-bundle over a compact space X, and H be the line-bundle over
P (L ⊕ 1) defined above. Then,as a K(X)-algebra, K(P (L ⊕ 1)) is generated by [H] with a
single relation ([H]− [1])([L][H]− [1]) = 0.

Note that if X is a point, then P (L⊕ 1) ≃ CP1 ≃ S2 and theorem 2.1 implies that K(S2)

is generated by [1] and [H] with relation ([H]− 1)2 = 0. Hence in the case when L is trivial,
P (L⊕ 1) ≃ X × S2 and we have:

Corollary 2.1. Let π1 : X × S2 → X, π2 : X × S2 → S2 denote the projections. Then the
homomorphism

f : K(X)⊗K(S2) → K(X × S2)

f(a⊗ b) = π∗
1(a)π

∗
2(b) is a ring isomorphism.

The idea of the proof comes from a basic observation. Since S2 can be written as the
union of its upper and lower hemispheres D+ and D− with D+ ∩D− =. A clutching function
on D− ∪ D+ can construct a vector bundle on S2, since D− and D+ are contractible hence
having trivial vector bundle. And by proposition 1.2 such a clutching function only depends
on the homotopy classes of itself, thus an element in the homotopy classes [S1, GLn(C)] can
define an element in Vectn(S2) and in fact it is an isomorphism.

We want to do the same for bundles over P (L⊕1). For any x there is a natural embedding
Lx → P (L ⊕ 1)x given by y → (y ⊕ 1). In this way P (L ⊕ 1)x can be regarded as the
compactification of Lx by adding ”the point at infinity”. Therefore, we get an embedding of
L in P = P (L ⊕ 1) by adding the ”section at infinity”. Since there’s a metric in L, we can
choose a unit circle bundle S ⊂ L in this metric. We identify L with a subspace of P so that
P = P 0 ∪ P∞, S = P 0 ∩ P∞, where P 0 is the closed disc bundle interior of S which contains
the 0-section and P∞ is the closed disc bundle exterior to S containing the ∞-section. And
we’ll denote the projections S → X, P 0 → X, P∞ → X respectively by π,π0,π∞.
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Suppose that E0 and E∞ are two vector bundles over X and that f ∈ Iso(π∗E0, π∗e∞).

Then we can construct the vector bundle π∗
0E

0∪f π
∗
∞E∞ over P . And we’ll denote this bundle

by (E0, f, E∞). Actually, any vector bundles over P can be constructed in such way, and this
is shown by the following lemma.

Lemma 2.1. Let E be any vector bundle over P and let E0, E∞ be the vector bundles over X

induced by the 0 -section and ∞-section respectively. Then there exists f ∈ ISO(π∗E0, π∗E∞)

such that E ∼= (E0, f, E∞). And it’s uniquely defined up to homotopy.

Proof. Let s0 : X → P 0 be the 0 -section. Then s0π0 is homotopic to the identity map of P 0,
and so by Proposition 1.1 we have an isomorphism

f0 : E | P 0 → π∗
0E

0.

Similarly we can do the same for E|P∞. And the lemma follows from taking f = f∞f−1
0 .

The simplest bundle constructed in this way is (F, 1, F ), which is the bundle over P

induced by projection P → X. And written this in K(P ) we have [(F, 1, F )] = [F ][1], where
the multiplication on the right-hand side is the module multiplication of K(X) in K(P ).

In the remaining part of the proof, we’ll try to simplify the clutching function as possible.
The first thing we do is approaching it by a Laurent series.

3 Laurent cluntching function

When L is the trivial line-bundle over X, S is the trivial circle bundle X × S1 so the
points of S are represented by pairs (x, z) with x ∈ X and z ∈ C with |z| = 1. Thus z

can be regarded as a function on S, so is z−1. Generally, we define z to be a section in
π∗(L) defined by the inclusion S → L. Then we may regard zk as the section of π∗(Lk).
If ak ∈ ΓHom(Lk ⊗ E0, E∞), then akz

k := π∗(ak)z
k ∈ ΓHom(π∗E0, π∗E∞) is a clutching

function for (E0, E∞). Thus we can write a finite sum f =
n∑
−n

akz
k ∈ ΓHom(π∗E0, π∗E∞)

and we call this a finite Laurent series for (E0, E∞). If f ∈ Γ Iso(π∗E0, π∗E∞) then it defines
a clutching function and we call this a Laurent clutching function for (E0, E∞). Now we’ll
consider a simplest clutching function f = z and (E0, E∞) = (1, L).

Lemma 3.1. H∗ can be represented as (1, z, L).
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Proof. Since for y ∈ P (L⊕1)x, H∗
y is the complex line through y, we have H∗

0 = 0⊕1 ∼= 1 and
H∗

∞ = L⊕0 ∼= L. Thus projection L⊕1 → 1, defines an isomorphism f0 : H
∗|P 0 → π∗

0(1) and
L⊕ 1 → L defines an isomorphism f∞ : H∗|P∞ → π∞(L). Hence f = f∞f−1

0 is the clutching
function for H∗, and we can see that f is exactly our section z.

And from proposition 1.4 we have Hk ∼= (1, z−k, L−k) for any integer k.
Suppose f ∈ ΓHom(π∗E0, π∗E∞) is any section, then we define Fourier coefficients ak ∈

ΓHom(Lk ⊗ E0, E∞) by ak(x) = 1
2πi

∫
Sx

fxz
−k−1
x dzx. Where fx shall be regarded as the

matrix so that the integral is reasonable. Now let sn =
n∑
−n

akz
k and we define the Cesaro

means fn = 1
n

n∑
0

sk as we did in Fourier extension. Moreover, we can do the same as in
Fourier extension thus we have

Lemma 3.2. Let f be any clutching function for (E0, E∞), fn the sequence of Cesaro means.
Then fn converges uniformly to f and hence is a Laurent clutching function homotopic to f

for all sufficiently large n.

This lemma enables us to consider only the case when f is a Laurent clutching function.

4 Linearization

We’ll handle the case when the Laurent clutching function is a polynomial first. Let
p =

n∑
k=0

akz
k be a polynomial clutching function for (E0, E∞). consider the homomorphism

Ln(p) : π∗(
n∑

k=0

Lk ⊗ E0) → π∗(E∞ ⊕
n∑

k=1

Lk ⊗ E0) given by the matrix

Ln(p) =



a0 a1 a2 . . . an

−z 1

−z 1
. . . . . .

−z 1
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Since the elementary transformation of Ln(p) is homotopy to Ln(p), so we can find a homotopy
from Ln(p) to matrix 

p

1

1
. . .

1


by doing elementary transformations. Along with proposition 1.3, we have

Proposition 4.1.

(E0, p, E∞)⊕ (
n∑

k=1

Lk ⊗ E0, 1,
n∑

k=1

Lk ⊗ E0) ∼= (
n∑

k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0)

This proposition enables us to change a polynomial p into something linear in z. And for
brevity we now write Ln(E0, p, E∞) for the bundle (

n∑
k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0).

Proposition 4.2. Let p be a polynomial clutching function of degree ≤ n for (E0, E∞). Then

Ln+1(E0, p, E∞) ∼= Ln(E0, p, E∞)⊕ (Ln+1 ⊗ E0, 1, Ln+1 ⊗ E0)

and
Ln+1(L−1 ⊗ E0, zp, E∞) ∼= Ln(E0, p, E∞)⊕ (L−1 ⊗ E0, z, E0)

.

Proof. The proof is similar to the proof of proposition 4.1. Since

Ln+1(p) =

(
Ln(p) 0

0 . . .− z 1

)
,

we can do elementary transformations to kill the bottom z, and then we get a homotopy from
Ln+1(p) to Ln(p)⊕ 1.

7

326 



Similarly,

Ln+1(zp) =



0 a0 a1 . . . an

−z 1

−z 1
. . . . . .

−z 1


is homotopic to 

0 a0 a1 . . . an

−z 0

−z 1
. . . . . .

−z 1


. Namely, Ln+1(zp) is homotopic to Ln(p)⊕−z. And the proposition follows.

From the above propositions we can establish a formula in K(p). For convenience we
write [E0, p, E∞] for [(E0, p, E∞)] in K(P ).

Proposition 4.3. For any clutching function p for (E0, E∞) we have

([E0, p, E∞]− [E0, 1, E0])([L][H]− [1]) = 0

Proof. On one hand, by proposition 4.1,

Ln+1(L−1 ⊗ E0, zp, E∞) ∼= (L−1 ⊗ E0, zp, E∞)⊕ (
n∑

k=0

Lk ⊗ E0, 1,
n∑

k=0

Lk ⊗ E0).

And on the other hand, by proposition 4.2

Ln+1(L−1 ⊗ E0, zp, E∞) ∼= Ln(E0, p, E∞)⊕ (L−1 ⊗ E0, z, E0)

∼= (E0, p, E∞)⊕ (
n∑

k=1

Lk ⊗ E0, 1,
n∑

k=1

Lk ⊗ E0)⊕ (L−1 ⊗ E0, z, E0).
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So we have

(L−1 ⊗ E0, zp, E∞)⊕(
n∑

k=0

Lk ⊗ E0, 1,
n∑

k=0

Lk ⊗ E0)

∼= (E0, p, E∞)⊕ (
n∑

k=1

Lk ⊗ E0, 1,
n∑

k=1

Lk ⊗ E0)⊕ (L−1 ⊗ E0, z, E0)

Write this in K(P ), and with lemma 3.1 we get

[L−1][H−1][E0, p, E∞] + [E0, 1, E0] = [E0, p, E∞] + [L−1][H−1]⊕ [E0, 1, E0]

and the result follows.

Putting E0 = 1, p = z, E∞ = L in the proposition, we obtain

Corollary 4.1.
([H]− [1])([L][H]− [1]) = 0

which is the relation we require in theorem 2.1.

5 Linear clutching functions

Though we’ve change the polynomial clutching function into a linear one, but we have to
throw away the redundant parts we added to linearize the polynomial.

Now we note some facts in linear algebra. Suppose T is an endomorphism of a finite
dimensional complex vector space E, and let S be a circle in the complex plain that does not
pass through any eigenvalue of T . Then let

Q =
1

2πi

∫
S

(z − T )−1dz

be a projection operator in E which commutes with T (consider the integral acts on the
eigenvalue of T ). Thus, we get an decomposition E = E+ ⊕ E− where E+ = QE and E− =

(1−Q)E is invariant under T , so we can decompose T = T+⊕T−. Then T+ has all eigenvalues
inside S while T− has all eigenvalues outside S.

We want to extend this spectral decomposition to vector bundles. Suppose p = az + b is
a linear clutching function for (E0, E∞). We have the following proposition:

9
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Proposition 5.1. Define Qi ∈ End(Ei)(i = 0,∞) by Q0
x = 1

2πi

∫
Sx

p−1
x dpx and Q∞

x =
1

2πi

∫
Sx

dpxp
−1
x . Then Q0 and Q∞ are projection operators and pQ0 = Q∞p. Let E+i =

QiEi, Ei
− = (1 − Qi)Ei(i = 0,∞), so that Ei = Ei

+ ⊕ Ei
−. And we have decomposition

p = p+ ⊕ p−, where p+ is an isomorphism outside S, and p− is an isomorphism inside S.

Proof. We only need to vertify the statements point-wise for each x ∈ X. Since p(z) is an
isomorphism for |z| = 1 we can find a real number α > 1 so that p(α) : E0 → E∞ is an
isomorphism. We can and do suppose that p(α) = 1. Consider the conformal transformation
ω = 1−αz

z−α
which preserve the unit disc. By simple calculation we have p(z) = ω−T

ω+α
where

T = a+ bα ∈ EndE0. Hence

Q0 =
1

2πi

∫
|z|=1

p−1dp

=
1

2πi

∫
|ω|=1

[−(ω + α)−1 + (ω − T )−1]dω

=
1

2πi

∫
|ω|=1

(ω − T )−1dω

= Q∞.

So all the statements follow from what we have asserted above in the discussion of linear
transformation.

Corollary 5.1. For linear clutching function p, we have

(E0, p, E∞) ∼= (E0
+, z, L⊗ E0

+)⊕ (E0
−, 1, E

0
−).

Proof. Suppose p = p+ ⊕ p− and p+ = a+z + b+, p− = a−z + b−. We construct homotopy
pt = pt+ ⊕ pt− where pt+ = a+z + tb+, pt− = taz + b− 0 ≤ t ≤ 1. It’s well defined homotopy by
the last statement in proposition 5.1. And with proposition 1.4 and 1.3 we have

(E0, p, E∞) ∼= (E0, p0, E∞)

∼= (E0
+, a+z, E

∞
+ )⊕ (E0

−, 1, E
0
−)

∼= (E0
+, z, L⊗ E0

+)⊕ (E0
−, 1, E

0
−).

10

329 



Now we’ll apply this corollary to L(p). Let p be a polynomial clutching function of degree
⩽ n for (E0, E∞) then Ln(p) is a linear clutching function for (V 0, V ∞) where

V 0 =
n∑

k=0

Lk ⊗ E0, V ∞ = E∞ ⊕
n∑

k=1

Lk ⊗ E0.

Hence it defines a decompositionV 0 = V 0
+ ⊕ V 0

−. Write V 0
+ = Vn(E

0, p, E∞).

Do decomposition on the two sides of the formulas in proposition 4.2, we have

Vn+1(E
0, p, E∞) ∼= Vn(E

0, p, E∞),

Vn+1(L
−1 ⊗ E0, zp, E∞) ∼= Vn(E

0, p, E∞)⊕ (L−1 ⊗ E0)

and the second formula can be expressed as

Vn+1(E
0, zp, L⊗ E∞) ∼= L⊗ Vn(E

0, p, E∞)⊕ E0.

Finally, we apply corollary 5.1 to proposition 4.1 in K(P ) and obtain

[E0, p, E∞] + {
n∑

k=1

[Lk ⊗E0]}[1] = [Vn(E
0, p, E∞)][H−1] + {

n∑
k=0

[Lk ⊗E0]− [Vn(E
0, p, E∞)]}[1]

and hence
[E0, p, E∞] = [Vn(E

0, p, E∞)]([H−1]− [1]) + [E0][1].

6 Proof of Theorem 2.1

Finally we come to the proof of theorem 2.1. Since we have the relation in corollary 4.1,
we can define a K(X)-algebra homomorphism

µ : K(X)[t]/(t− 1)([L]t− 1) → K(P )

by mapping t → [H]. We only need to show that µ is an isomorphism. We’ll do this by
constructing an inverse.

Let f be a clutching function for (E0, E∞) and fn be the Cesaro means of its Fourier
series. Let pn = znfn. Then for sufficiently large n, p is a polynomial clutching function of
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degree ≤ 2n for (E0, Ln ⊗ E∞). We define

νn(f) = [V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn ∈ K(X)[t]/(t− 1)([L]t− 1).

Note that for sufficiently large n, pn+1 and zpn are homotopic. And by the formulas we
acquired in the last section, we have

V2n+2(E
0, pn+1, L

n+1 ⊗ E∞) ∼= V2n+2(E
0, zpn, L

n+1 ⊗ E∞)

∼= V2n+1(E
0, zpn, L

n+1 ⊗ E∞)

∼= L⊗ V2n(E
0, pn, L

n ⊗ E∞)⊕ E0

Hence

νn+1(f) = {[L][V2n(E
0, pn, L

n ⊗ E∞)] + [E0]}(tn − tn+1) + [E0]tn+1 = νn(f).

Thus νn(f) is independent of n for sufficiently large n, and we can write it as ν(f). Since f

uniquely determines the bundle E in the sense of homotopy, we can write ν(E) = ν(f). Since
ν(E) is additive for ⊕, it induces a homomorphism

ν : K(P ) → K(X)[t]/(t− 1)([L]t− 1)

. Now we only need to check that µν and νµ are identity of K(P ) and K(X)[t]/(t−1)([L]t−1).

µν[E] = µ{[V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn}

= [V2n(E
0, pn, L

n ⊗ E∞)]([H]n−1 − [Hn]) + [E0][H]n

= [E0, pn, L
n ⊗ E∞][H]n

= [E0, fn, E
∞]

= [E]
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And for νµ we only need to check the generators tn.

νµ(tn) = ν[Hn]

= ν[1, z−1, L−n]

= [V2n(1, 1, 1)](t
n−1 − tn) + [1]tn

= fn

This completes the proof of Theorem 2.1.

Reference

[1] Atiyah M, Bott R. On the periodicity theorem for complex vector bundles[J].
Acta Mathematica, 1964, 112(1): 229-247

[2] Hatcher A. Vector bundles and K-theory[J]. Im Internet under
https://pi.math.cornell.edu/ hatcher/VBKT/VB.pdf, 2017

13

332 



Bott Periodicity Theorem and Introduction to Topological
K-Theory

Zheng Zhi

June 2022

1 Introduction
This article is a reading report of the paper On the Periodicity Theorem for Complex Vector
Bundles by M.Atiyah and R.Bott, which provides a quite accessible proof of the complex case
of Bott periodicity theorem. Bott’s original proof1 uses Morse theory to state that πk(U) =
πk+2(U), πk(O) = πk+4(Sp), πk(Sp) = πk+4(O), while this paper uses K-theory and polynomial
approximation and then applies basic linear algebra.

2 Some basic definitions and lemmas
We first review some basic notions of vector bundles.

Definition 2.1. A complex vector bundle is a map p : E → X together with a complex vector
space structure on p−1(x) for each x ∈ X, which is locally isomorphic to the product of the
base space with a complex vector space. It is called a line bundle if the dimension of its fiber
is 1. A section Γ(E) is a continuously map s : X → E with ps = id.

We can extend some constructions on vector spaces to vector bundles. Given two vector
bundles E → X,F → X, we can define hom(E,F ) (resp. E ⊕ F,E ⊗ F,E∗) as the union of
hom(Ex, Fx) (resp. Ex ⊕ Fx, Ex ⊗ Fx, E

∗
x) for all x ∈ X, and define the natural topology on

them using local trivializations. Besides, given a bundle E → X and a map Y → X, we define
the pullback bundle f ∗(E)→ Y as the pullback of E −→ X ←− Y .

Let X = X1 ∪ X2, A = X1 ∩ X2, and assume we have two bundles E1 → X1, E2 → X2

with an isomorphism φ : E1|A → E2|A. Then we can glue them together by the clutching
construction E1 ∪f E2, which is the quotient of E1 tE2 by the equivalence relation induced by
φ.

The direct sum makes the set of vector bundles of X into a commutative semi-group, and
we denote the corresponding Grothendieck group as K(X). In fact, the tensor product makes

1R.Bott, The Stable Homotopy of the Classical Groups, Ann. of Math., 70(1959), 313-337
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K(X) into a ring, so K(−) is a contravariant functor from the category of topological spaces
to the category of rings. The kernel of K(X)→ K(x0) is denoted by K̃(X).

3 Statement of the periodicity theorem
Associated with a bundle E → X, there is a projective (fiber) bundle P (E)→ X, whose fiber
as x ∈ X is the space of all lines through the origin of Ex. If we assign to each y ∈ P (Ex) the
1− dim subspace Ex corresponding to it, we obtain a canonical line bundle over P (E), which
is denoted by H∗.

We can present the main theorem now.

Theorem 3.1. Let L be a line bundle over the compact space X, H∗ the canonical line bundle
over P (L ⊕ 1). Then, as a K(X)-algebra, K(P (L ⊕ 1)) is generated by [H] subject to the
relation

([H]− [1])([L][H]− [1]) = 0,

i.e.
K(P (L⊕ 1)) ∼= K(X)[H]/([H]− 1)([L][H]− [1]).

In particular, if X is a point, the theorem implies K(S2) ∼= Z[H]/([H]2− [1]). Let L be the
trivial bundle, we deduce the following important result.

Corollary 3.2. For any compact space X,

K(X)⊗K(S2) ∼= K(X × S2).

Now we turn to the proof of the theorem.

4 Clutching functions
For any x ∈ X, P (L ⊕ 1)x is the compactification of Lx by adding the point at infinity, so
P = P (L ⊕ 1) is the compactification of L by adding the section at infinity. Choosing an
arbitrary metric in L and let S ∈ L be the unit circle bundle, so that

P = P 0 ∪ P∞, S = P 0 ∩ P∞,

where P 0(P∞) is the closed disk bundle interior (exterior) to S. Denote the projection S →
X,P 0 → X,P∞ → X by π, π0, π∞ respectively.

Let E0, E∞ be two vector bundles over X and f ∈ Iso(π∗E0, π∗E∞). Then we can form
the vector bundle π∗

0E
0∪f π∗

∞E∞ over P , denoted by (E0, f, E∞), and we denote its equivalent
class in K(P ) by [E0, f, E∞]. In fact, every bundle on P is of this form.

2

334 



Proposition 4.1. Let E be any vector bundle over P , and E0, E∞ is induced by the 0-section
and ∞-section. Then there exists f ∈ Iso(π∗E0, π∗E∞) such that

E ∼= (E0, f, E∞).

the isomorphism being the obvious one on the 0-section and ∞-section. Moreover f is unique
up to homotopy.

Proof. Let s0 : X → P 0 be the 0-section. Then s0π0 is homotopic to the identity map of P0,
so we have an isomorphism f0 : E|P 0 → π∗

0E
0, which is unique up to homotopy. Similarly we

have f∞ : E|P∞ → π∗
∞E∞, and we can simply take f = f∞f−1

0 .

Remark 4.2. Let F be a vector bundle over X, obviously (F, 1, F ) is the pullback bundle
induced from the projection P → X, which can be written as [F, 1, F ] = [F ][1].

The idea of the proof of the theorem is to simplify the clutching function f . First we focus
on a simple function z and polynomials of z.

When L is the trivial line bundle X × C, S is X × S1, so points of S are represented by
pairs (x, z), x ∈ X, |z| = 1. In other words, z is a function on S, so is z−1 and finite Laurent
series

∑n
k=−n ak(x)z

k.
For example, consider the most simple case: L is the trivial line bundle over a single point.

Then P = CP 1 = S2, and S = S1. Every point of P is denoted by the equivalent class
[z0, z1] ∈ CP 1 or z = z0

z1
∈ C ∪ {∞} = S2. Therefore every point in the disk D2

0 can be
expressed by [z, 1] with |z| ≤ 1, and every point in the disk D2

∞ can be expressed by [1, z−1]
with |z−1| ≤ 1. Let E be the canonical line bundle over CP 1. Over D2

0 a section of E is given
by [z, 1] 7→ (z, 1), and over D2

∞ a section of E is given by [1, z−1] 7→ (1, z−1). Then over their
common boundary S, we can pass from D2

∞ to D2
0 by multiplying by z.

When L is not trivial, there are only some notational difficulties. Recall that we have the
projection π : S → X, so π∗(L) is a line bundle over S. We can define a section by S →
π∗(L), (x, z) 7→ (x, z, z) (using local coordinates), and we denote this section by z. Similarly,
zk is a section of π∗(Lk). If ak ∈ Γ hom(Lk ⊗ E0, E∞), then

akz
k := π∗(ak)⊗ zk ∈ Γ hom(π∗E0, π∗E∞),

and we can define
f =

n∑
k=−n

ak(x)z
k ∈ Γ hom(π∗E0, π∗E∞).

When f ∈ Iso(π∗E0, π∗E∞), we call it a Laurent clutching function.
In fact, the bundle (1, z, L) is just H∗ defined in the theorem. Recall for each y ∈ P (L⊕1)x,

H∗
y is a subspace of (L⊕ 1)x and H∗

y = Lx⊕ 0 when y =∞, H∗
y = 0⊕ 1x when y = 0. So there

are isomorphisms f0 : H∗|P 0 → π∗
0(1) and f∞ : H∗|P∞ → π∗

∞(L). Moreover, the clutching

3
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function is f = f∞f−1
0 = z : π∗(1)→ π∗(L), because for y ∈ Sx, H∗

y is the subspace of Lx ⊕ 1x
spanned by y ⊕ 1. Thus

H∗ ∼= (1, z, L)

and
Hk ∼= (1, z−k, L−k).

The first simplification is to approximate an arbitrary clutching function f by Laurent
clutching functions, which is an exercise of complex analysis. Define

ak(x) =
1

2πi

∫
Sx

fxz
−k−1
x dzx, sn =

n∑
−n

akz
k.

Then define the Cesaro means
fn =

1

n

n∑
0

sk.

Lemma 4.3. fn converges uniformly to f and is a Laurent clutching function for sufficiently
large n.

5 Linearization
In this section we describe a linearization procedure for a polynomial clutching function p =∑n

k=0 akz
k. Consider

Ln(p) : π∗(
n∑

k=0

Lk ⊗ E0)→ π∗(E∞ ⊕
n∑

k=1

Lk ⊗ E0)

given by

Ln(p) =


a0 a1 . . . an
−z 1

−z 1
. .

. .
−z 1

 .

It is linear in z. By elementary matrix operations, it is equivalent to diag(p, 1, . . . , 1). More
specifically, Ln(p) = (1 + N1)(p ⊕ 1)(1 + N2), where N1 is strictly upper triangular and N2 is
strictly lower triangular. Since 1 + tN gives a homotopy of isomorphisms for N nilpotent, we
have the following proposition.

Proposition 5.1. Ln(p) and p⊕ 1 defines isomorphic bundles on P , i.e.

(E0, p, E∞)⊕ (
n∑

k=1

Lk ⊗ E0, 1,
n∑

k=1

Lk ⊗ E0) ∼= (
n∑

k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0).
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For brevity, write Ln(E0, p, E∞) for the bundle defined in the proposition. By elementary
matrix operations we have the following proposition.
Proposition 5.2. Let p be a polynomial clutching function of degree ≤ n for (E0, E∞). Then

Ln+1(E0, p, E∞) ∼= Ln(E0, p, E∞)⊕ (Ln+1 ⊗ E0, 1, Ln+1 ⊗ E0),

Ln+1(L−1 ⊗ E0, zp, E∞) ∼= Ln(E0, p, E∞)⊕ (L−1 ⊗ E0, z, E0).

Proof. We have

Ln+1(p) =


0

Ln(p)
...
0

0 . . . −z 1

 '


0

Ln(p)
...
0

0 . . . 0 1

 = Ln(p)⊕ 1.

Similarly,

Ln+1(zp) =



0 a0 a1 . . . an
−z 1

−z 1
. .

. .
. .
−z 1


'



0 a0 a1 . . . an
−z 0

−z 1
. .

. .
. .
−z 1


= Ln(p)⊕−z.

Using the above two propositions, we can establish a simple algebraic formula in K(P ).
Proposition 5.3. For any polynomial clutching function p for (E0, E∞), we have

([E0, p, E∞]− [E0, 1, E0])([L][H]− [1]) = 0.

Proof. By the previous lemma,

(L−1 ⊗ E0, zp, E∞)⊕ (
n∑

k=0

Lk ⊗ E0, 1,
n∑

k=0

Lk ⊗ E0) ∼= Ln+1(L−1 ⊗ E0, zp, E∞) ∼=

Ln(E0, p, E∞)⊕(L−1⊗E0, z, E0) ∼= (E0, p, E∞)⊕(
n∑

k=1

Lk⊗E0, 1,
n∑

k=1

Lk⊗E0)⊕(L−1⊗E0, z, E0).

Passing to K(P ), we have
[L−1][H−1][E0, p, E∞] + [E0, 1, E0] = [E0, p, E∞] + [L−1][H−1][E0, 1, E0],

and the result follows.

Let E0 = 1, p = z, E∞ = L, we obtain part of the main theorem:
([H]− [1])([L][H]− [1]) = 0.
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6 Linear clutching functions
We review some basic facts about linear algebra. Suppose T : E → E is a linear transformation
with no eigenvalue on S1. Then there is a unique decomposition E = E+ ⊕ E−, such that the
eigenvalues of T |E+ are outside S1 and the eigenvalues of T |E− are inside S1. Explicitly,

Q =
1

2πi

∫
S1

(z − T )−1dz

is a projection operator in E and commutes with T , and we can take E = E+ ⊕ E−, E+ =
QE,E− = (1−Q)E. Now we extend this decomposition to vector bundles.

Proposition 6.1. Given (E0, p, E∞), p = az+b, there are decompositions E0 = E0
+⊕E0

−, E
∞ =

E∞
+ ⊕ E∞

− , p = p+ ⊕ p−, such that p+ is an isomorphism outside S, and p− is an isomorphism
inside S.

Proof. Define endomorphisms Q0, Q∞ of E0, E∞ by

Q0
x =

1

2πi

∫
Sx

p−1
x dpx, Q

∞
x =

1

2πi

∫
Sx

pxdp
−1
x .

We want to show they are the projection operators we needed, and we only need to verify it
pointwisely. In other words, we may assume X is a point, L = C and z is just a complex
number. Since p(z) is an isomorphism for |z| = 1, we can find α > 1 such that p(α) : E0 → E∞

is an isomorphism, and we identify them by this isomorphism, i.e. p(α) = 1. Let w = 1−αz
z−α

,
then p(z) = w−T

w+α
, where T = a+ αb is a linear transformation of E0. Then

Q0 =
1

2πi

∫
|z|=1

p−1dp =
1

2πi

∫
|w|=1

(−(w + α)−1dw + (w − T )−1dw) =
1

2πi

∫
|w|=1

(w − T )−1dw.

Similarly,
Q∞ =

1

2πi

∫
|w|=1

(w − T )−1dw.

Then the conclusion follows from the discussion at the beginning of the section.

Proposition 6.2. Using the notation in the previous lemma, we have

(E0, p, E∞) ∼= (E0
+, z, L⊗ E0

+)⊕ (E0
−, 1, E

0
−).

Proof. Write p+ = a+z+b+, p− = a−z+b−, and define pt+ = a+z+tb+, p
t
− = ta−z+b−, 0 ≤ t ≤ 1.

By the previous lemma, pt+ and pt− are isomorphisms. Therefore p is homotopic to a+z ⊕ b−,
i.e.

(E0, p, E∞) ∼= (E0
+, a+z, E

∞
+ )⊕ (E0

−, b−, E
∞
− ) ∼= (E0

+, z, L⊗ E0
+)⊕ (E0

−, 1, E
0
−),

since a+ : L⊗ E0
+ → E∞

+ , b− : E0
− → E∞

− are isomorphisms.
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Let p be a polynomial clutching function of degree ≤ n for (E0, E∞). Then Ln(p) is a linear
clutching function for (V 0, V ∞), where

V 0 =
n∑

k=0

Lk ⊗ E0, V ∞ = E∞ ⊕
n∑

k=1

Lk ⊗ E0.

Then we have a decomposition V 0 = V 0
+ ⊕ V 0

−. To express the dependence of V 0
+ on p and n,

we write
V 0
+ = Vn(E

0, p, E∞).

Using the results from proposition 5.2, we have:

Proposition 6.3.
Vn+1(E

0, p, E∞) ∼= Vn(E
0, p, E∞),

Vn+1(E
0, zp, L⊗ E∞) ∼= L⊗ Vn(E

0, p, E∞)⊕ E0.

Besides, by proposition 5.1,

[E0, p, E∞] +
n∑

k=1

[Lk ⊗ E0][1] = [Vn(E
0, p, E∞)][H−1] + (

n∑
k=0

[Lk ⊗ E0]− [Vn(E
0, p, E∞)])[1].

Then we can establish another formula in K(P ), which shows that elements in K(P ) with
polynomial clutching functions can be generated by [H−1] with coefficients in K(X).

Proposition 6.4. With the above notation,

[E0, p, E∞] = [Vn(E
0, p, E∞)]([H]− [1]) + [E0][1].

7 Proof of the main theorem
Finally we prove the main theorem. We already have an homomorphism

µ : K(X)[t]/(t− 1)([L]t− 1)→ K(P ), t 7→ H.

Now we construct an inverse v.
Let f be any clutching function and fn be its Cesaro means. Define pn = znfn. Then pn is

a polynomial clutching function. Define

νn(f) = [V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn ∈ K(X)[t]/(t− 1)([L]t− 1).

For sufficiently large n, the linear segment joining pn+1 and zpn provides a homotopy of
polynomial clutching function of degree ≤ 2(n+ 1). Then by proposition 6.3,

V2n+2(E
0, pn+1, L

n+1 ⊗ E∞) ∼= V2n+2(E
0, zpn, L

n+1 ⊗ E∞) ∼= V2n+1(E
0, pn+1, L

n+1 ⊗ E∞)
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∼= L⊗ V2n(E
0, pn, L

n ⊗ E∞)⊕ E0.

Therefore

νn+1(f) = ([L][V2n(E
0, pn, L

n ⊗ E∞)] + [E0])(tn − tn+1) + [E0]tn+1 = νn(f)

because (t− 1)([L]t− 1) = 0.
Therefore, νn(f) is independent of n when n is large, so we can write it as ν(f). Besides,

if f and g are sufficiently close, then for sufficiently large n, fn and gn are also homotopic, so
ν(f) = νn(f) = νn(g) = ν(g). So ν(f) only depends on the homotopy class of f , and we can
define ν(E) = ν(f), where f is a clutching function of E. By definition, ν is additive and only
depend on the isomorphism class of E.

Now we check that ν is the inverse of µ. On the one hand, by proposition 6.4,

µν[E] = [V2n(E
0, pn, L

n⊗E∞)]([H]n−1−[H]n)+[E0][H]n = [E0, pn, L
n⊗E∞][H]n = [E0, fn, E

∞]

= [E0, f, E∞] = [E].

On the other hand,

νµ(tn) = ν[1, z−n, L−n] = [V2n(1, 1, 1)](t
n−1 − tn) + [1]tn = tn.

Then we prove the theorem.

8 More about topological K-theory
K-theory forms a generalized cohomology theory as follows. Given a pair of compact space
(X,A), the natural map sequence A → X → X/A induces an exact sequence K̃(X/A) →
K̃(X)→ K̃(A). Moreover, we have the coexact Puppe sequence

A→ X → X/A→ SA→ SX → . . . ,

which gives rise to a long exact sequence

· · · → K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A).

In particular, consider the pair (X × Y,X ∨ Y ). Since we have a map

K̃(X ∨ Y ) = K̃(X)⊕ K̃(Y )→ K̃(X × Y ), (a, b) 7→ p∗1(a) + p∗2(b),

where p1, p2 are projections, thus the sequence splits, i.e.

K̃(X × Y ) = K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

8
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We can also consider the external product

K̃(X)⊗ K̃(Y )→ K̃(X × Y ), (a, b) 7→ a ∗ b := p∗1(a)p
∗
2(b).

In fact, a ∗ b lies in K̃(X ∧Y ), which defines the external product K̃(X)⊗ K̃(Y )→ K̃(X ∧Y ).
This is because p∗1(a) is zero in K(Y ) and p∗2(b) is zero in K(X). It can also be deduced from
the unreduced external product K(X)⊗K(Y )→ K(X × Y ) since

K(X)⊗K(Y ) = (K̃(X)⊗ K̃(Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z

and
K(X × Y ) = K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z.

Proposition 8.1. For any compact space X,

K̃(X) ∼= K̃(S2X).

In particular,
K̃(S2n+1) = 0, K̃(S2n) ∼= Z.

Proof. Notice that SnX is homotopy equivalent to its quotient space ΣnX = Sn ∧ X, and
K̃(S2) = Z is generated by [H]− 1, thus by the periodicity theorem we have the isomorphism

K̃(X) ∼= K̃(S2)⊗ K̃(X) ∼= K̃(S2 ∧X) ∼= K̃(S2X).

Define K̃−n(X) = K̃(SnX) and K̃−n(X,A) = K̃(Sn(X/A)). By the periodicity theorem,
we have K̃2i(X) = K̃(X) and K̃2i+1(X) = K̃(SX). Then there is a six-term exact sequence:

K̃0(X,A) K̃0(X) K̃0(A)

K̃1(A) K̃1(X) K̃1(X,A)

The unreduced version is similar by defining Kn(X) = K̃n(X+), where X+ is X with a disjointed
basepoint.

Define K̃∗(X) = K̃0(X) ⊕ K̃1(X). It has a ring structure defined by K̃∗(X) ⊗ K̃∗(X) →
K̃∗(X ∧X)→ K̃∗(X), where the second map is induced by the diagonal map X → X ∧X, x 7→
(x, x). We have the following two proposition.

Proposition 8.2. αβ = (−1)ijβα for α ∈ K̃i(X) and β ∈ K̃j(X).

Proposition 8.3. There is an exact sequence of K̃∗(X)-modules:

9
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K̃∗(X,A) K̃∗(X)

K̃∗(A)

The above two propositions also hold for the unreduced version K∗(X).
We list some further theorems and applications in topological K-theory.

Theorem 8.4 (Leray-Hirsch theorem). Let p : E → B be a fiber bundle with E and B compact
and with fiber F such that K∗(F ) is free. Suppose that there exist classes c1, . . . , ck ∈ K∗(E)
that restrict to a basis for K∗(F ) in each fiber F . If either

(a) B is a finite cell complex, or
(b) F is a finite cell complex having all cells of even dimension,
then K∗(E), as a module over K∗(B), is free with basis {c1, . . . , ck}.

Theorem 8.5 (the splitting principle). Given a vector bundle E over compact space X, there
is a compact space F (E) and a map p : F (E) → X such that p∗ : K∗(X) → K∗(F (E)) is
injective and p∗(E) splits as a sum of line bundles.

Theorem 8.6. The following statements are true only for n = 1, 2, 4, 8:
(a) Rn is a division algebra.
(b) Sn−1 is parallelizable, i.e. there exist n − 1 tangent vector fields to Sn−1 which are

linearly independent at each point, i.e. the tangent bundle to Sn−1 is trivial.

Remark 8.7. The Frobenius theorem states that there are only three finite-dimensional asso-
ciative division algebras over R: R,C,H. For the non-associative case, Hopf proved that the
dimension must be a power of 2. He also proved that every finite-dimensional real commutative
division algebra is either 1- or 2-dimensional, and no direct algebraic proof is known. The result
in the previous theorem was independently proved by Michel Kervaire and John Milnor in 1958.

9 Reference
[1] M.Atiyah and R.Bott, On the Periodicity Theorem for Complex Vector Bundles, Acta Math.,
112 (1964), 229-247

[2] A.Hatcher, Vector Bundles and K-Theory
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1 Introduction

Volume conjecture is a profound topic in the research of 3-manifolds, which is related to a combi-
nation of low dimensional topology, hyperbolic geometry, quantum field theory etc.
This paper will provide a brief insight in one of the motivations of the Chen-Yang’s Reshetikhin-
Turaev type Volume Conjecture (Conjecture 5.2) [2]. The motivation is based on the important
way of constructing and studying 3-manifolds, called Dehn surgery, which can be realized in both
a topological point of view and a geometrical point of view.
The key relation between these two point of views is Proposition 4.5, which states that the com-
pletion of an incomplete hyperbolic manifold under the conditions given by Hyperbolic Glueing
Equation (4.1) and (4.2) is topologically equivalent to a Dehn filling (surgery).
Furthermore, Dehn surgery along links in S3 studied in the topological method can induce quantum
topological invariants, while studied in the geometrical method can induce hyperbolic geometrical
invariants. The connection between these two invariants of 3-manifolds is given by Volume conjec-
ture.
In this paper, we will review a calculative proof due to T. Ohtsuki [6] that deals with special cases
of Chen-Yang’s volume conjecture. The part of Ohtsuki’s result which is discussed in this paper is
stated in Theorem 6.1, and our proof will be based on complex analysis methods, including Poisson
Summation and Saddle Point Method. The most valuable result of this proof is that the critical
function coincides with the Hyperbolic Glueing Equation (4.3), demonstrated in Proposition 6.2.
The author would like to thank Professor Yang Tian for his report at Hua Loo-Keng Key Laboratory
of Mathematics in 2021.

2 Topological Backgrounds

2.1 Dehn Surgery

We first consider the topological method to construct and study 3-manifolds, a typical method of
obtaining new 3-manifolds from given 3-manifolds is Dehn surgery, relative works are mainly due
to Lickorish, Wallace, and Kirby. Reference [8] provides a collection of these results.

Definition 2.1 (Dehn Surgery). Suppose M is a 3-manifold, and N is an embedded solid torus.
Let N ′ be a copy of N , a Dehn Surgery on M along N is a new manifold M ′ obtained through:

M ′ = (M \ N̊) ∪h N ′

where h is a orientation-preserving homeomorphism: h : ∂N ′ → ∂N

Proposition 2.1. Under the assumption of Definition 2.1, suppose m is a meridian of N ′, and l
is one of the longitudes of N ′, then:

(1) The image of m and l in H1(∂N) determines h up to isotopy

(2) The image of m in H1(∂N) determines M ′ up to homeomorphism

Proof:

(1) Suppose ∂N and ∂N ′ are both given by universal covering R2/Z2.
By Map Lifting Theorem, we can lift h to a homeomorphism h̃ : R2 → R2.
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Obviously, h̃ is istopic to a standard map with the image of Z2 fixed, through translation on
each coordinate.

(2) Suppose h and h′ are two orientation preserving homeomorphisms between ∂N ′ and ∂N .

Take a basis m̄, l̄ of H1(∂N), and suppose h∗

(
m
l

)
=

(
p q
r s

)(
m̄
l̄

)
, h′∗

(
m
l

)
=

(
p q
r′ s′

)(
m̄
l̄

)
.

p, q, r, s, r′, s′ ∈ Z.

Since h, h′ are orientation preserving homeomorphisms, we have

∣∣∣∣p q
r s

∣∣∣∣ = ∣∣∣∣p q
r′ s′

∣∣∣∣ = 1.

Then p and q are coprime, hence ∃k ∈ Z, such that

(
p q
r′ s′

)
=

(
1 0
k 1

)(
p q
r s

)
.

Notice that there exists a self-homeomorphism φ : N ′ → N ′ such that φ∗(l) = km+ l.

Then (h ◦ φ)∗
(
m
l

)
=

(
1 0
k 1

)(
p q
r s

)(
m̄
l̄

)
=

(
p q
r′ s′

)(
m̄
l̄

)
.

By (1), h ◦ φ and h′ are isotopic.
Hence (M \ N̊) ∪h N ′ ∼= (M \ N̊) ∪h◦φ N ′ ∼= (M \ N̊) ∪h′ N ′.

□
Especially, it is natural to consider Dehn Surgery in S3, where the solid tori are given by regular
neighbourhoods of components of a link.

Definition 2.2 (Linking Number). Suppose J , K are two embedded (oriented) S1 in S3

By Alexander Duality, H1(S
3 \K) ∼= Z lk(J,K) := image of [J ] in H1(S

3 \K) ∼= Z
The linking number may vary between a positive or negative sign, which can be determined by the

orientation given:

K

J

, lk(J,K) = 1

Proposition 2.2. By Tubular Neighbourhood Theorem, every embedded S1 in S3 has a tubular
neighbourhood N .
There is a unqiue meridian and a unique preferred longitude in H1(∂N)
The meridian m̄ is the meridian of the solid torus N , and the longitude l̄ is the only one of the
longitudes with linking number 0 with the core.

Proof: The conclusion is obvious since l̄ can be replaced by km̄ + l̄, and m̄ is a generator of
H1(S

3 \K). □

Definition 2.3 (Dehn Surgery Coefficients). Suppose L = K1 ⊔ ... ⊔Kn are embedded S1’s in S3.
Ni are their disjoint tubular neighbourhoods.
m̄i, l̄i are their meridians and preferred longitudes, oriented so that they have +1 linking number.
M ′ = S3 \ (N̊1 ∪ ... ∪ N̊n) ∪h1,...,hn

(N ′
1 ∪ ... ∪N ′

n) is a Dehn surgery.
Suppose mi are the meridians of N ′

i , and hi∗([mi]) = pi[m̄i] + qi[l̄i].
(pi, qi) are co-prime integer pairs.
Then M ′ is uniquely determined up to homeomorphism by the link L and the surgery coefficients
p1

q1
,...,pn

qn
.

The surgery coefficients p
q is a rational number including ∞.

3
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Remark 2.1. The surgery coefficients are independent from the orientation of the link, because
−p
−q = p

q .

We have a more simple explanation for Dehn surgery with integral coefficients.

Proposition 2.3. If M is obtained through Dehn surgery along a link in S3 with integral coef-
ficients, then M can be realized through the boundary of the manifold constructed through pasting
2−handles to D4

Proof: Suppose X = D4 ∪f1,...,fn (D2 ×D2 ⊔ ... ⊔D2 ×D2)
fi : D

2 × S1 → ∂D4, such that:

• f : D2 × S1 → Ni is a homeomorphism

• f |S1×S1 : S1 × S1 → ∂N
maps S1 × {0} to m̄i and maps {0} × S1 to pm̄i + l̄i

Then we take M = ∂X. □

Dehn surgery along links in S3 is a complete explanation of closed, orientable 3-manifolds, which is
because of the theorem provided by Lickorish and Wallace which states that all closed, orientable
3-manifolds can be obtained through this method.

Theorem 2.1 (Lickorish[1962], Wallace[1960]). Every closed, orientable, connected 3-manifold can
by obtained through Dehn Surgery with integral coefficients on a link in S3.
Moreover, the surgery presentation can be constructed such that all components of the link are
unknotted, and all surgery coefficients are ±1.

Proof: Suppose M is a closed, orientable 3-manifold. We consider a Heggard Splitting of M :
M = H ∪f H ′, where H and H ′ are handle-bodies of genus g.
Let Σ = ∂H and Σ′ = ∂H ′, f : Σ→ Σ′ is an orientation-preserving homeomorphism.
Then there exists a standard homeomorphism f0 : Σ→ Σ′, such that H ∪f0 H ′ = S3.
According to Lickorish Twist Lemma, h = f0

−1 ◦ f : Σ→ Σ, up to isotopy, is a finite composition
of twist homeomorphisms along the 3g − 1 curves demonstrated in Figure 1.

Figure 1: Twist Homeomorphisms along 3g − 1 Curves [8]

f = f0 ◦ h can be extended to a neighbourhood Σ × [0, 1], and obviously, as is shown in Figure 2,
each twist operation can be realized up to a homeomorphism of the 3-manifold through a Dehn
surgery of coefficient ±1 along a tubular neighbourhood of a paralled copy of one of the 3g−1 curves.
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Figure 2: Twist Operation Realized through Dehn Surgery [8]

Moreover, the 3g − 1 curves either bounds a disk in H or H ′ hence is an unknot in S3. □

2.2 Kirby Moves

Theorem 2.1 shows that every closed orientable 3-manifold has a surgery representation, it is natural
to consider when two surgery representation will provide two homeomorphic manifolds. Relative
results are due to Kirby.

Theorem 2.2 (Kirby[1976])(Dehn Surgery Version). Two surgery presentations of two links yield
homeomorphic 3-manifolds if and only if one of the surgery presentations can be transferred into
the other through finite steps of Kirby Moves:

(1) Add or delete an unknotted component with coefficient ∞

(2) Find an unknotted component Li and perform t right-hand twists to its complement (t ∈ Z),
changing the coefficients by ri

′ = 1
t+ 1

ri

, and r′j = rj + t(lk(Li, Lj))
2 (j ̸= i)

Proof: Sufficiency: The first Kirby move is simply pasting back a solid torus the same way as it
is removed, hence yields a homeomorphic manifold.
The second Kirby move is to re-picture a cylinder area of the manifold, shown in Figure 3, and
tracking the image of meridians directly yields the change of the coefficients.

5
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Figure 3: The Second Kirby Move

Necessity: The necessity part is due to Cerf’s Theory based on characterizing singularities of the
Morse function. Readers can check [4] for more details. □

Theorem 2.3 (Kirby[1978])(Handle Version). Two surgery presentations with integral coefficients
of two links yield homeomorphic 3-manifolds if and only if one of the surgery presentations can be
transferred into the other through finite steps of Kirby Handle Moves:

(1) Add or delete an unknotted component with coefficient ±1, where this unknotted component lies
in a smoothly embedded B3 disjoint from other components.

(2) Choose two different components Li, Lj, and let L′
j be the curve (up to isotopy) on the boundary

of the tubular neighbourhood of Lj to which the meredian of the replacing solid torus is attached.
Replace Li with a band sum of Li and L

′
j, and change the coefficient to r′i = ri+rj±2lk(Li, Lj),

± depends on the choice of the orientation of the band sum.

Proof: Sufficiency: The first Kirby handle move is a connected sum with the lens space
L(1,±1) ∼= S3, which yields a homeomorphic manifold.
The second Kirby handle move is based on the model of pasting handles onto D4. In fact, the
second Kirby move is the move on the boundary of a handle slid, demonstrated in Figure 4.

Figure 4: Handle Slid

Necessity: The necessity part is again due to Cerf’s Theory. Readers can check [4] for more details.
□
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Remark 2.2. In this section, we have successfully established a one-to-one correspondence:

Links in S3 + Surgery Coefficients ∈ Q ∪ {∞} (Z)
Kirby (handle) moves

Closed, orientable 3-manifolds
1 : 1

3 Knot (Link) Invariants

Through Section 2, we have completely transferred the study of closed, oriented 3-manifolds to the
study of links (with coefficients, or equivalently a framing) in S3. It is natural to follow similar
ideas in algebraic topology, which is to find invariants for links (or framed links) in S3.
Classical topological invariants of links in S3 include complement space, knot group, Seifert surface,
Alexander invariants, etc.
However, the link invariants which come up to have close relationship with hyperbolic volume of
manifolds are quantum topological invariants, which originate mainly from quantum topological
group theory and physics.

Example 3.1. Jones Polynomial (Jones[1985]) and Colored Jones Polynomial

{Knots (or Oriented Links)} → Z
[
A±]

Example 3.2. Witten’s Quantum Invariants (Witten[1989])
A part of its mathematical requirements include:

F : {Closed, Oriented 3-Manifolds} → C (or CN)

(1) F (M1#M2) = F (M1) · F (M2)

(2) F (−M) = F (M)
(3) F (S3) = 1

This paper will focus on Reshetikhin-Turaev invariants, which is one of the mathematical realiza-
tions of Witten’s quantum invariants.
A skein theoretical approach of constructing Reshetikhin-Turaev invariants is based on a cabling
method of Kauffman brackets, which is a generalization of the approach in constructing the colored
Jones polynomials.
The definition of Reshetikhin-Turaev invariants is based on the approach due to Masbaum and his
co-authors [1].

3.1 Reidemeister Move and Kauffman Bracket

Theorem 3.1 (Reidemeister[1927]). Two links in S3 are isotopy equivalent, if and only if a regular
projection of one link can be obtained from a regular projection of the other link through finite steps
of Reidemeister move I, II, III:

Reidemeister move I: ←→ ←→

7
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Reidemeister move II: ←→ ←→

Reidemeister move III: ←→

Definition 3.1 (Framed Link). A framed link L̃ is an embedding S1× [0, 1]⊔ ...⊔S1× [0, 1] ↪→ S3.
The two boundary components of each annulus, S1 × {0} and S1 × {1} are denoted by Ki and K

′
i

respectively. K ′
i is called the paralleled copy of Ki.

The writhe of Ki is defined by lk (Ki,K
′
i).

Note 3.1. Isotopy between framed links denotes the isotopy between the embedding maps.

Definition 3.2 (Blackboard Framing). A regular projection of a framed link is called standard or
blackboard framing, if each K ′

i is paralleled to Ki in the projection image.

Definition 3.3. Kauffman Bracket is a map:

⟨·⟩ : Link Diagrams→ Z
[
A±]

defined through skein theoretical relations:

(i)
〈 〉

= A

〈 〉
+A−1

〈 〉

(ii)

〈
L ⊔

〉
= (−A2 −A−2) ⟨L⟩

(iii)
〈 〉

= −A2 −A−2

Theorem 3.2 (Kauffman[1987]). Kauffman Bracket is invariant under Reidemeister move II and
III.

Proof:〈 〉
= A

〈 〉
+A−1

〈 〉

= A

A〈 〉
+A−1

〈 〉+A−1

A〈 〉
+A−1

〈 〉
= (A2 +A−2)

〈 〉
− (A2 +A−2)

〈 〉
+

〈 〉

=

〈 〉

8
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〈 〉
= A

〈 〉
+A−1

〈 〉
=

〈 〉

□

Remark 3.1. Unfortunately, Kauffman bracket is not invariant under Reidemeister move I, so it
is not an invariant of links under isotopy equivalence.
However, it is noticable that Reidemeister move I is different from Reidemeister move II and III
when we consider framed links.
Reidemeister move II and III yield isotopic blackboard framing of the link diagram, but Reidemeister
move I change the linking number between the component and its blackboard paralleled copy by ±1.
It is natural to suggest that Reidemeister move I can be completely reflected by a choice of framing.
The following Proposition gives an explanation for the relation between the special Reidemeister
move I and framed links.

Proposition 3.1. We introduce a Move I’ (paired Reidemeister move I) defined by:

Move I’: ←→

Then: two framed links in S3 are isotopy equivalent, if and only if a standard (blackboard) regular
projection of one framed link can be obtained from a standard (blackboard) regular projection of the
other framed link through finite steps of Move I’,and Reidemeister move II, III.

Proof: Sufficiency is obvious, we will now show the necessity.
By isotopy equivalence of the two framed links, the S1 × {0} components are also isotopy equiva-
lent.
According to Theorem 3.1, one diagram can be obtained from the other through finite steps of
Reidemeister move I, II, III.
For each component, pick a local part that is not influenced by any Reidemeister move I operations.
Then for each Reidemeister move I, we replace it by a Move I’, retain the half part consistent with
the Reidemeister move I, contract the reversed part to be small enough, and push the reversed
part along the component towards the local part we have chosen that is not influenced by any
Reidemeister move I operations.
It is obvious that the pushing process only include finite steps of Reidemeister move II and III.
Thus through Move I, Reidemeister move II and III, we obtained a link diagram with only a slight
difference with the target: for every component, there is a local part including some extra twists.
Notice that the blackboard framing of the two link diagrams are isotopic, thus the linking number of
the link components and their paralleled copies are consistent. A twist in one or the other direction
will change the linking number between the component and its blackboard paralleled copy by ±1.
Hence the number twists in the two directions are equal for each local part of the components.
These twist can be combined into pairs one by one from inside to the outside, and can be cancelled
out by finite steps of Move I’. □

Proposition 3.2. Kauffman Bracket is invariant under Move I’.

9
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Proof:

〈 〉
= (−A3)(−A−3)

〈 〉
=

〈 〉
□

Corollary 3.1. Kauffman bracket is an invariant for framed links.

Proof: This is a direct corollary from Proposition 3.1, Theorem 3.2 and Theorem 3.2. □

Definition 3.4 (Framing Presentation of Dehn Surgery). A Dehn surgery along a link in S3 with
integral coefficients can be denoted by a framed link, in which the paralleled copy of each component
coincides with the image of the pasted meridian in the boundary of its tubular neighbourhood.

3.2 Coloring of Framed Links

In order to obtain an invariant of Dehn surgery, it is equivalent to consider invariants of framed
links which are stable under Kirby moves. A natural method of obtaining more information is
to add patterns on the annuli defined by the framed link, and derive invariants for the patterned
framed link. This method is called coloring.
The natural method is to cable some new knots onto the annuli, hence we would like to first study
the knot diagrams in an annulus (or equivalently, knots in S1 × [0, 1]× [0, 1])

Definition 3.5. By tensor product with the coefficient ring,
Z [A±]⊗{isotopy classes of link diagrams in an annulus}, quotient the following relations, the iso-
topy classes of link diagrams in an annulus form a commutative Z [A±]-algebra, denoted by B.
The relations are:

• Z [A±]-module relations:

(1) = A +A−1

(2) L ⊔ = (−A2 −A−2)L

• Multiplication relations:

L1

·
L2

=

L1

L2

Remark 3.2. B is commutative, because switching L1 and L2 in the annulus requires only finite
steps of Reidemeister move II and III (switching line segments and striding over crossings).
And Reidemeister move II and III will not change the element quotient the Z [A±]-module relations
(1) and (2), for completely the same reason of Theorem 3.2.
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Remark 3.3. The empty diagram ∅ is the identity element of B.

Proposition 3.3.

B ∼= Z
[
A±] [z]

Where z defines an essential curve in the annulus.

Proof: We first define Φ : B → Z [A±] [z].
By Z [A±]-module relations, any link diagram in the annulus can be disassembled as follows:
First, cancel out all the crossings according to relation (1).
Then we get a link diagram with no crossings, every component must be a simple S1 in the pro-
jected diagram.
In the annlus, every simple S1 is either essential or contractible.
We can remove all contractible simple S1’s one by one from inside to the outside according to
relation (2).
All remainings are a Z [A±]-linear combination of link diagrams consisting of finitely many simple
essential curves.
Since every essential curve divides the annulus into two path components, all these essential curves
can be arranged up to isotopy one by one from inside to the outside.
Let z denote a simple essential curve, then the aforementioned diagram is denoted by zn according
to the multiplication relation, as is shown in Figure 5.

Figure 5: The image of zn

Thus, we have defined the image of a link diagram in the annulus to be a Z [A±]-linear combination
of zn’s.
Conversely, we define Ψ : Z [A±] [z] → B, by directly assigning each zn to n paralled copies of
essential curves.
Clearly, Φ and Ψ are Z [A±]-algebra homomorphisms, and that Φ ◦ Ψ = id, Ψ ◦ Φ = id, hence
B ∼= Z [A±] [z] □

The Kauffman bracket, or the Z [A±]-module relations are designed to be stable under Reidemeister
move II and III. The remaining question is how to deal with Reidemeister move I. In the framed link
model (annulus link diagram model), Reidemeister move I is depicted by twist operations defined
as follows.
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Definition 3.6. t± defines a Z [A±]-linear map B → B, called twist operation:

t+ : −→

t− : −→

In order to define an invariant under Reidemeister move I, we would like to find elements that
are fixed under the twist operations. But unfortunately, no elements except for Z [A±] (elements
without z) are fixed.
For a substitute, we would like to find the eigenvectors for t±.

Definition 3.7 (Second Type Chebyshev Polynomials).

e0 = 1 e1 = z

en+1 = zen − en−1

defines en ∈ Z[z], which is called the second type Chebyshev polynomials.

Proposition 3.4. The second type Chebyshev polynomials en ∈ Z[z] are eigenvectors for twist
operation.

t+(en) = (−1)nAn2+2n · en
t−(en) = (−1)nA−n2−2n · en

Remark 3.4. Proposition 3.4 is not essential in our following proofs, readers can check [1] for its
proof.

On the other hand, if we want to construct invariants for Dehn surgery, we have to consider
invariants for framed links under Kirby moves.
The first Kirby move is relatively easy. The main problem lies in the second Kirby move, which
includes a common twist around a link and an unknotted component.
Hence, we would like to calculate the Kauffman bracket of link (with coefficients in Z [A±]) derived
from cabling elements of B onto a framed link in S3, so that the common twist operation is relatively
simple.
In fact, we will construct a coloring such that the Kauffman bracket of the twisted link is simply
derived from multiplying an item to the original Kauffman bracket.
Unfortunately, this cannot be realized unless A is an element of finite order. Thus, we will take A
to be a root of unity. Under this assumption, such requirements can be realized through the Kirby
coloring.

Definition 3.8 (Kirby Coloring). The Kirby coloring is defined as:

ωr =

r−2∑
n=0

(−1)nA
2n+2 −A−2n−2

A2 −A−2
en ∈ B
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ωr is also called the quantum Chebyshev polynomial.

The skein theoretical theorem of Masbaum [1] guarantees a simple formula for the common twist
operation.

Theorem 3.3 (Masbaum[1991]). If A = e
πi
r , and r ≥ 3 is an odd integer, then ωr is an orthogonnal

vector satisfying:

• ⟨t±(Oωr
), t±(Kb)⟩ = ⟨t±(Oωr

)⟩ ⟨Kb⟩ , ∀b ∈ B , for O and K being the two components of a
standard 0-framing of a Hopf link.

• ⟨t±(Oωr
)⟩ ≠ 0, where O denotes the standard 0-framing of an unknot.

the Kauffman bracket calculates the link diagram consisting of the annulus link diagrams cabled on
a blackboard framing of the links.

Note 3.2. The adoption of blackboard framing is unnecessary, since it can be replaced by calculating
the Kauffman bracket of framed links cabled in the thickened original framed link.
Yet, for simplicity of link diagrams, we will not mess the diagram up with all the paralleled copies of
link components, and instead always refer to a blackboard framing, and mark the coloring (cabling)
of each framed component with a polynomial beside.

Remark 3.5. The proof for Theorem 3.3 is rather complicated, readers may check [1] for details.

3.3 Reshetikhin-Turaev Invariants

Based on these results, Masbaum and his co-authors [1] were able to define an invariant of framed
links under Kirby moves. which is consistant with the Reshetikhin-Turaev invariants defined by
Reshetikhin and Turaev in reference [7].

Definition 3.9 (Linking Matrix). Suppose L = K1(K
′
1) ⊔ ... ⊔Kn(K

′
n) is an oriented framed link

in S3

The linking matrix LK(L) is defined to be:

LK(L) ∈ Zn×n

LKi,j = lk(Ki,Kj)

LKi,i = lk(Ki,K
′
i)

Remark 3.6. Obviously, LK(L) is a symmetric matrix with entries in Z.

Definition 3.10 (Reshetikhin-Turaev Invariants[1991]). SupposeM is a closed, oriented 3-manifold
obtained through Dehn surgery along a link L in S3 with integral surgery coefficients.
The link L is oriented according to the orientation of M .
L can be framed so that the paralleled copy of each component correspond to the image of the pasted
meridian in the boundary of its tubular neighbourhood.
Suppose the link diagram of L is a blackboard framing, without loss of generality.
Let r ≥ 3 be an odd number, then:

RTr(M) = ⟨ωr, ..., ωr⟩L
〈
t+(Oωr

)
〉−b+ 〈

t−(Oωr
)
〉−b−

b+, b− are the number of positive and negative eigenvalues of LK(L)

RTr(M) valued at A = e
πi
r , defines an invariant in C for M .
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Proof: Notice that according to Theorem 3.3, ⟨t+(Oωr )⟩ and ⟨t−(Oωr )⟩ are non-zero, thus the
division is well defined.
We will now show that RTr(M) is an invariant.
First, according to Corollary 3.1, the kauffman bracket is independent from the choice of the
standard (blackboard) regular projection diagram.
Second, we will show RTr(M) is consistent under the first and second Kirby handle moves.

By the first Kirby handle move, the change in the linking matrix will be

(
LK(L) 0

0 ±1

)
←→(

LK(L)
)
, which is to say the number of positive (or negative) eigenvalues is altered by one. And

the change in the Kauffman bracket will be
〈
Lωr,...,ωr

⊔O±
ωr

〉
= ⟨Lωr,...,ωr

⟩ ·
〈
O±

ωr

〉
, where ⊔ denotes

a seperation between two link parts by a smooth S2. The extra
〈
O±

ωr

〉
is cancelled out with the

change of the number of positive (or negative) eigenvalues.
The second Kirby handle move can be decomposed into four steps:

(a) Introduce an unknotted component seperated by a smooth S2.

(b) Twist one component with the added component in one direction.

(c) Twist another component with the added component in the other direction.

(d) Remove the unknot.

According to the result we have proved for the first Kirby handle move, step (a) and (d) altogether
will not change the number of positive and negative eigenvalues, and will keep RTr(M) consistent,
hence also keeps the Kauffman bracket consistent.
The change in the linking matrix through the entire second Kirby handle move given by a band sum

and r′i = ri+rj±2lk(Li, Lj) can be expressed in matrix by

1 ±1
1

. . .

LK(L)

 1
±1 1

. . .

←→
LK(L). This will not change the number of positive and negative eigenvalues.

Step (b) and (c) will not alter the kauffman bracket when valued at A = e
πi
r , which is directly

obtained from Theorem 3.3. □

Proposition 3.5. The Reshetikhin-Turaev Invariants coincide with the mathematical requirements
for Witten’s quantum invariants in Example 3.2.

Proof:

(1) RTr(M1#M2) = RTr(M1) ·RTr(M2)
Suppose M1,2 are obtained from Dehn surgery with integral coefficients along links L1,2 in S3.
Then M1#M2 is obtained from Dehn surgery with the same coefficients along links L1 ⊔ L2.
The result is direct by noticing ⟨L1ωr

⊔ L2ωr
⟩ = ⟨L1ωr

⟩ · ⟨L2ωr
⟩ and

LK(L1 ⊔ L2) =

(
LK(L1)

LK(L2)

)
.

(2) RTr(−M) = RTr(M)
To change the orientation of M , it suffices to change the orientation of S3 when performing
the Dehn surgery, which is equivalent with substituting A with A−1 in the skein theoretical
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calculation.
Notice that A is the only complex valued item in the calculation and when A = e

πi
r , A−1 = A

(3) RTr(S
3) = 1

Notice that S3 is obtained through Dehn surgery along an empty link.

□

Remark 3.7. Through section 2 and 3, we transferred closed, oriented 3-manifolds into a repre-
sentation of framed links, and use the results inspired by quantum topology, and finally obtained a
series of complex valued invariants for framed links under Kirby moves, or equivalently, for closed,
oriented 3-manifolds.

4 Hyperbolic Geometry and Dehn Filling

Besides topological and quantum topological methods in studying 3-manifolds, there is another
method which endues and studies geometrical structures on 3-manifolds. Relative results are mainly
due to Thurston (reference [9]).

4.1 Motivation

Theorem 4.1 (Jaco–Shalen–Johannson Decomposition[1979]). Suppose that 3-manifold M is ori-
entable, compact, irreducible, and ∂−irreducible with boundary consisting of tori. Take a disjoint
collection {T1, ..., Tn} of canonical tori inM , such that no two of them are parallel and the collection
is maximal.
Then M is fibered by the tori into M = (⊔Hi) ⊔ (⊔Ej), with Hi hyperbolic and Ej Seifert-fibered,
and the decomposition is unique.

Piecewise linear, irreducible knot or link complements in S3 are typical examples of 3-manifolds
satisfying the conditions of JSJ-Decomposition. So it is natural to study the geometrical structures,
especially hyperbolic geometrical structures, of kont or link complements.

Corollary 4.1 (Thurston[1979]). A piecewise linear knot complement is hyperbolic if and only if
it contains no essential spheres or essential tori.

Proof: Since there are no essential spheres, the connected sum decomposition of the knot com-
plement is trivial, hence the knot complement is irreducible.
Then we adapt JSJ-decomposition to the knot complement, there are no essential tori, hence the
JSJ-decomposition is also trivial.
Hence the knot complement has only one piece of geometrical structure, obviously it cannot be
seifert fibered, hence is hyperbolic. □

Definition 4.1 (Dehn Filling). Suppose M is a 3-manifold with a torus boundary T .
Then M ∪f D2 × S1, f : S1 × S1 → T homeomorphism, implies a Dehn filling.
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Example 4.1. Riley [1979] calculated that the fundamental group of the figure-8 knot complement
can be embedded into PSL(2,C), which indicates that the figure-8 knot complement has a hyperbolic
structure.
An important type of examples of knot complement yielding hyperbolic structure on its complement
S3 \K is whitehead doubled knots with twist number ̸= 0

Figure 6: Whitehead Doubled Knots

Figure-8 knot is an easiest example of whitehead doubled knots.

4.2 Hyperbolic Manifolds

Now we turn to the process of constructing hyperbolic maifolds.
There are two equivalent definitions for a hyperbolic n−manifold

Definition 4.2. A metric space (M,d) is a hyperbolic n−manifold, if and only if ∀x ∈M , ∃U an
open neighbourhood of x, such that U is isometric with an open disc D ⊂ Hn

Definition 4.3. A topological spaceM is a hyperbolic n−manifold, if there exists an atlas {(Ui, ϕi)}i,
such that:

(1) ϕi : Ui → Di is a homeomorphism, where Di ⊂ Hn is an open disc

(2)
⋃
i

Ui =M

(3) Transition maps ϕjϕ
−1
i are isometries

Proposition 4.1. Definition 4.2 and 4.3 are equivalent.

Proof: IfM satisfies Definition 4.2, we can directly choose the atlas {(Ux, ϕx)|x ∈M,ϕx : Ux → Dx},
where ϕx : Ux → Dx ⊂ Hn is the isometry map.
For each Ui ∩ Uj ̸= ∅, ϕjϕi

−1 is an isometry map restricted on ϕi(Ui ∩ Uj) ⊂ Hn.
The isometry map on an open sub set of Hn can be extended to the whole space Hn according to
the classification of isometry maps in Hn.
If M satisfies Definition 4.3, for any piecewise smooth path α ⊂M , there is a finite covering of the
atlas:

⋃
1≤i≤n

Ui ⊃ α. Devide α into segments α = ⊔
1≤j≤m

αj , such that αj ⊂ Ui(j).

Define ∥α∥ =
∑

1≤j≤m

LenHn(ϕi(j)(αj)).

Since the transition maps are isometry, ∥α∥ is independent with the choice of Ui and division αj .
For ∀x, y ∈M , we define d(x, y) = inf

α: x→y
∥α∥.
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This is a metric on M which induces small isometric discs near any point. □

Corollary 4.2. The universal covering of a hyperbolic manifold is a hyperbolic manifold.

Corollary 4.3. If M is a hyperbolic n-manifold, then lifting to its universal covering M̃ enduces
a devloping map and a holonomy with covariant isometric action:

Dev : M̃ Hn

Hol : π1(M) Isom(Hn)

Especially, Dev is a local isometry.

Proof: Corollary 4.2 and 4.3 are direct results from Definition 4.3. □

Definition 4.4. A hyperbolic manifold is called complete, if it is a complete metric space according
to Definition 4.2.

Remark 4.1. A compact hyperbolic manifold is obviously complete.

Corollary 4.4. IfM is a complete hyperbolic n-manifold. Then the developing map Dev is an isom-

etry, and the universal covering M̃ is a subset of Hn. As a consequence,M ∼= Dev(M̃)

/
Hol(π1(M)).

Proof: Local isometry map of a connected complete metric space is an isometry.
Thus, Dev is an isometry, and as a consequence an injection and an open map.
Hence M̃ ∼= Dev(M̃) is a subset of Hn. □

4.3 Hyperbolic Ideal Tetrahedrons

We will follow a topological method of constructing hyperbolic 3-manifolds, which is to combine
simplexes through pasting maps.
The simplexes of hyperbolic 3-manifolds are ideal hyperbolic tetrahedrons.
Ideal hyperbolic triangles and ideal hyperbolic tetrahedrons (with geodesic boundaries) have special
rigid properties.

Proposition 4.2. Hyperbolic ideal triangle is rigid, i.e. orientation preserving isometry between
any two hyperbolic ideal triangles exists and is unique up to a rotation of vertices.

Proof: Take the standard ideal triangle to be the one with ideal vertices 0, 1,∞ ∈ Ĉ in the
upper-half space model.
On one hand, for any ideal triangle with ideal vertices a, b, c ∈ Ĉ, there is an orientation-preserving
isometry that maps a, b, c to 0, 1,∞ respectively.
First, take an elliptic element (a rotation) f1 to map c to ∞.
Then, take a parabolic element (a translation on C) f2 to map f1(a) to 0.
Finally, take a loxodromic element (a similarity transformation on C) f3 which fixes 0 and ∞ to
map f2(f1(b)) to 1.

17

360 



f3f2f1 is an orientation-preserving isometry that maps the ideal triangle to the standard one.
On the other hand, it suffices to show that if f is an orientation-preserving isometry that preserves
the standard ideal triangle (with ideal vertices fixed), f can only be the identity map.
This is because f preserves ∞, so it must be a similarity transformation on C. f preserves 0 and
1, so the similarity coefficient must be 1, hence an isometry on C. The orientation-preserving iso-
mentry on the plane has two fixed points, and hence must be identity. □

Definition 4.5. Hyperbolic ideal tetrahedron is characterised by one complex parameter, called the
dihedral angle parameter, defined as follows:
Choose one geodesic edge of the hyperbolic ideal tetrahedron.
Then, map one of the adjacent facet of this edge to the standard ideal triangle, such that: the chosen
edge is map to the geodesic connecting 0 and ∞, and the fourth ideal vertex is mapped to w ∈ C
with Imw > 0.

Figure 7: Hyperbolic Ideal Tetrahedron with Dihedral Angle Parameter w

Remark 4.2. The dihedral angle parameter is well-defined, i.e. independent with which of the two
ideal vertexes of the chosen edge is mapped to ∞, and which one is mapped to 0.
This is because an orientation-preserving isometry induced thourgh Poincaré extension of z 7→ w

z
alters the two cenarios.

Remark 4.3. One can also refer the dihedral angle parameter to the complex cross ratio of the
four ideal vertices in Ĉ.

Proposition 4.3. (1) The dihedral angle parameters of the three edges around one ideal vertex are
w, 1

1−w , w−1
w counterclockwise.

(2) The dihedral angle parameters of opposite edges are equal.

Proof:

(1) Calculate directly the quotient of the vectors connecting 0, 1 and w.
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(2) This is directly derived from (1), for example:
1

1−w−1
1

1−w

= w.

□

4.4 Hyperbolic Gluing Equations

Theorem 4.2. Pasting hyperbolic ideal tetrahedrons through hyperbolic isometry between facets
yields a hyperbolic 3-manifold if and only if the Thurston’s Equation holds:∏

zi = 1 (4.1)

which denotes that the product of all dihedral angle parameters around each edge equals 1

Proof: The neighbourhood of each interior point of the ideal tetrahedrons is obviously hyperbolic
manifold. The only issue relates with points on the boundary or edges of the ideal tetrahedrons.
The conditions are necessary and sufficient, if the dihedral angles around each edge sum up to 2π,
and each point on the facet are precisely maped back to themselves through a series of pasting
isometry maps.
Placing the tetrahedrons in the upper-half space model, and without loss of generality, suppose the
considered edge is the geodesic connecting 0 and ∞.
Then the conditions hold if and only if the isometry mappings yield the vertical-viewed image shown
in Figure 8.

Figure 8: Thurston’s Equation — Vertical View

This is equivalent the product of all dihedral angle parameters around each edge equals 1. □

Though Thurston’s equation provides an equivalent condition that ensures the pasting process
yields a manifold, it is not guaranteed whether the manifold is complete.
We provide a 2-dimensional example to demonstrate this subtle difference:

Example 4.2. Figure 9 shows complete and incomplete hyperbolic 2-manifolds.
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Figure 9: Complete and Incomplete Hyperbolic 2-manifolds

Notice that the compact neighbourhoods of any interior point is obviously complete, so incomplete-
ness originates from the metric structure near the ideal vertices.
We first provide a topological view of the manifold near the ideal vertices.

Proposition 4.4 (Structure of the Link of Ideal Points).

(1) If an orientable hyperbolic 3-manifold is obtained by gluing finitely many hyperbolic tetrahedrons,
then we can lift the manifold to its universal covering and visualize as its image under the
developing map in H3, and move the ideal vertex v to ∞

(2) The link of the ideal point Lk(v) is topologically an orientable closed surface. It is realized by
gluing a fundamental domain (which is a polygon in C) by side pairings equal to the hyperbolic
isometry maps between tetrahedron facets given by similarity transformations on C

(3) The hyperbolic structure is complete, if and only if for any ideal point, the side pairings are
isometric transformations on C

Proof: On one hand, when the side pairings are isometric transformations on C, then all levels
of link are flat, and can pave the full plane.
Thus, the developing map is an injection near v, and all geodesics in the neighbourhood of v goes
straight towards ∞, hence is complete.
On the other hand, when there exists a side pairing f with similarity coefficient ̸= 1. We may
assume the similarity coefficient of f is less than one, otherwise we consider f−1. Take a point
a which is the projection of a point in the fundamental domain on C. Then fn(a) is a Cauchy
sequence, it converges to a point z0 ∈ C.
Then the geodesic connecting z0 and ∞ is a set of limit points, i.e. a set of points outside the
devloping image of the universal covering, but with Cauchy sequences in the manifold converging
to it.
Hence, the manifold is incomplete. □

It is natural to consider the completion of an incomplete hyperbolic manifold to obtain a com-
pact space, but it is not always guaranteed that the completion yields a manifold (it is possible to
obtain a one-point compactification which there is no hyperbolic structure near the infinity point,
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Figure 10: The Fundamental Domain

and it is also possible to obtain an orbifold).
However, the following conditions ensures that the completion yields a hyperbolic manifold, and
furthermore provides results closely related to Dehn filling or Dehn surgery introduced in Section
2.

Proposition 4.5. Let M be the hyperbolic manifold obtained through pasting ideal tetrahedrons by
isometry maps between facets.
If the link of an ideal vertex v of the hyperbolic manifold M is a torus with incomplete hyperbolic
structure, and v is moved to ∞ in the developing image. Pick a meridian m and a longitude l of the
torus and a fundamental domain with sides m and l (possibly broken segments instead of a straight
segment).
Let H ′(m) and H ′(l) be the complex similarity coefficient (its absolute value being the real scaling
coefficient and the argument corresponding to a rotation) of the side pairing translation along m
and l.
If the Dehn Filling Equation holds:

H ′(m)pH ′(l)q = 1 (p, q) is a comprime integer pair (4.2)

Then the completion of M near v yields a complete hyperbolic 3-manifold, the image of the regular
neighbourhood under covering is topologically a solid torus, and the completion near this vertex is
topologically equivalent to a Dehn filling with coefficients (p, q):

M \N(v) ∪f D2 × S1

Proof: The projection of the fundamental domain on C is a quadrilateral with vertices z1, z2,
z3, z4 as shown in Figure 10.
Since there are non-C-isometries in the side pairings, the quadrilateral is not a parallelogram.
Then the holonomy H(l) is a linear function, mapping z1 7→ z4, z2 7→ z3. Hence the fixed point of
H(l) is z0 = z1z3−z2z4

z1+z3−z2−z4
.

Similarly, the holonomy H(m) is a linear function, mapping z1 7→ z2, z4 7→ z3. Hence the fixed
point of H(m) is also z0 = z1z3−z2z4

z1+z3−z2−z4
.

Without loss of generality, we may assume z0 = 0.
Consider the group G = ⟨H(m), H(l)⟩ < Isom+(H3).
Then H(m) and H(l) are commutative, and satisfy a relation H(m)pH(l)q = id.
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By Bezout’s Theorem, ∃u, v ∈ Z, such that up+ vq = 1.
Let ϕ = H(m)−vH(l)−u

Then ϕ is a loxodromic element and a generator of G, ϕ−q = H(m), ϕp = H(l).
G is a loxodromic type elementary group, and z0 = 0 is an isolated limit point.
The image of the fundamental domain under translation through side pairings are depicted in Fig-
ure 11.

Figure 11: Side Parings of the Fundamental Domain and the Meridian Loop

It is clear that in H3, the geodesic connecting z0 = 0 and ∞ is the set of limit points. And the

neighbourhood of the ideal vertex v is given by H3

/
G.

Completion of the manifold is equivalent to the completion of its universal covering. Thus, the
completion process is to paste the image of a regular neighbourhood of the 0−−∞ geodesic to the
original manifold.
The regular neighbourhood of the 0 − −∞ geodesic is a standard cone N in H3, shown in Figure

12. The G-action on N is a loxodromic action, hence N

/
G ∼= D2 × S1.
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Figure 12: The Regular Neighbourhood of the Limit Set

The completion process is to paste the D2 × S1 to the neighbourhood of the ideal vertex, which is
obviously a Dehn filling.
The Dehn filling coefficients are shown in Figure 11 by tracking the image of the meridian S1 × 0,
the meridian is consistent up to homotopy with mplq. It remains to clarify that the loop mplq is a
simple closed curve with winding number ±1 respect to z0 = 0.
First, the winding number cannot be zero, since the paving pattern of the fundamental domain in
a simply connect domain without z0 = 0 is flat, mplq yields a closed curve if and only if p = q = 0,
a contradiction.
Second, the pictured curve mplq must be a simple curve, for if it intersects itself, the intersection
must occur on the vertices. Hence, we obtained two integers p′, q′ ∈ Z, |p′| ≤ |p|, |q′| ≤ |q|, the
equivalence cannot hold simultaneously, such that H(m)p

′
H(l)q

′
= id.

But H(m) = ϕ−q, H(l) = ϕp, and ϕ being a loxodromic element has infinite order.
Thus −qp′ + pq′ = 0.
Because p and q are coprime, there exists k ∈ Z such that p′ = kp, q′ = kq.
By the inequalities, k = 0, a contradiction.
Hence, mplq is a simple closed curve, and a simple closed curve in a plane has winding number at
most 1 respect to any point. □

Remark 4.4. The equations (4.1) and (4.2) together are named the Hyperbolic Gluing Equations.

Example 4.3. If a knot (link) complement has a hyperbolic structure given by pasting ideal tetrahe-
drons, then the neighbourhood of the ideal vertices are the tubular neighbourhoods of the knot (link)
components, the link of the ideal vertices are tori.
Choose meridians and preferred longitudes for the link components, then if the Hyperbolic Gluing
Equations (4.1) and (4.2) hold, then a completion of this hyperbolic structure yields a Dehn filling
to the knot (link) complement.
This is equivalent to a Dehn surgery along the knot (link) in S3.
Hence, the completion of incomplete hyperbolic structure of knot (link) complements under con-
ditions of Hyperbolic Gluing Equations is a geometrical realization of Dehn Surgery introduced in
Section 2.
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Example 4.4. We will calculate a specific example of the figure-8 knot: .

The figure-8 knot complement S3 \K is heomeomorphic to the manifold obtained by gluing two ideal
tetrahedrons as shown in Figure 13.

Figure 13: S3 \K consists of two ideal tetrahedrons
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Figure 14: Hyperbolic Structure of Figure-8 Knot Complement

The link of the ideal vertex is a torus which is triangulated as is shown in Figure 15.
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Figure 15: Triangulation of the Link of the Ideal Vertex

The preferred longitude is marked by a2b
−1
1 d3c

−1
2 , and the meridian is marked by d2. If we define a

hyperbolic structure on the knot complement S3 \K, by determining the dihedral angle parameters

of the two ideal tetrahedrons, then we can calculate H ′(l) =
(

1
w(1−w)

)2
, H ′(m) = 1

w(1−z) .

The Hyperbolic Gluing Equation for a p
q Dehn surgery is:

Thurston’s Equation: z(z − 1)w(w − 1) = 1
Dehn Filling Equation: ( 1

w(1−z) )
p( 1

w(1−w) )
2q = 1

(4.3)

Theorem 4.3 (Thurston[1979]). The Hyperbolic Gluing Equation (4.3) has a unique solution
(z, w), with Im(z) > 0, Im(w) > 0, for q = 1, p ≥ 5, p ∈ Z

Corollary 4.5. 3-manifolds obtained through Dehn surgery along the figure-8 knot in S3 with
surgery coefficient p ≥ 5, p ∈ Z, admits a complete hyperbolic structure.

Remark 4.5. The proof for Theorem 4.3 is based on direct calculation, readers may check [9] for
details.

4.5 Hyperbolic Volume as an invariant

Obtaining a geometrical explanation of the 3-manifold enables us to obtain a geometrical invariant
of the 3-manifold.
The most typical result of geometrical invariants is the hyperbolic volume.

Theorem 4.4 (Mostow’s Rigidity Theorem[1973]). Suppose n ≥ 3, Mn
1 and Mn

2 are complete
hyperbolic n-manifolds with finite total volume. If π1(M1) and π1(M2) are isomorphic, then M1

and M2 are isometric.

Corollary 4.6. Homeomorphic complete hyperbolic 3-manifolds are isometric, hence hyperbolic
volume is an invariant for complete hyperbolic 3-manifolds.

The hyperbolic volume can be generalized to deal with 3-manifolds that are not (as a whole) a
hyperbolic manifold, the ideas are closely related with Thurston’s Geometrization Conjecture.
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Definition 4.6. Suppose that M is an orientable, closed 3-manifold. We define the Gromov Norm
of M be:

∥M∥ = 1

v3

∑
V ol(Hi)

Where Hi are all the hyperbolic components of M obtained by connected-sum decomposition and
JSJ-decomposition, v3 is the volume of the regular hyperbolic ideal tetrahedron.
The Gromov Norm is an invariant for orientable, closed 3-manifolds.

Proposition 4.6.

F : {Closed, Oriented 3-Manifolds} → C
M 7→ e∥M∥

Satisfies Witten’s mathematical requirements in Example 3.2.

Proof: This is direct from ∥S3∥ = 0, and V ol(B3) = 0. □

According to our methods in constructing hyperbolic 3-manifolds, we are essentially concerned
with the hyperbolic volume of the ideal tetrahedrons.
We provide a direct formula in calculating the hyperbolic volume of ideal tetrahedrons.

Theorem 4.5 (Hyperbolic Volume of Ideal Tetrahedron).
Suppose z is one dihedral angle parameter of an ideal tetrahedron ∆, then:

V ol(∆) = Λ(arg(z)) + Λ(arg(
1

1− z
)) + Λ(arg(

z − 1

z
))

= D2(z) = D2(
1

1− z
) = D2(

z − 1

z
) <∞

Λ(θ) = −
∫ θ

0
log |2 sin t|dt is the Lobachevsky function.

D2(z) = ImLi2(z) + arg(1− z) log |z| is the Bloch-Wigner function.

Proof: Through an orientation-preserving isometry, we may suppose one of the ideal vertices of
∆ is ∞.
We divide ∆ into six parts, shown in Figure 16, without loss of generality O = 0 is the circumcenter
of the three ideal vertices.
By a hyperbolic isometry (similarity transformation on C), we suppose the radius of the circum-
center is 1.
Write α = arg(z), then:

V ol(V1) =

∫ cosα

x=0

∫ x tanα

y=0

∫ +∞

z=
√

1−x2−y2

dxdydz

z3

=

∫ cosα

x=0

∫ x tanα

y=0

dxdy

2(1− x2 − y2)

=

∫ cosα

x=0

∫ α

θ=0

x 1
cos2 θdxdθ

2
(
1− x2

cos2 θ

)
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Figure 16: Division of ∆ into Six Parts

=

∫ cosα

x=0

∫ α

θ=0

xdxdθ

2 (x2 − cos2 θ)

=− 1

4

∫ α

θ=0

(
log
∣∣cos2 θ − cos2 α

∣∣− log
∣∣cos2 θ∣∣)dθ

=− 1

4

∫ α

θ=0

(
log

∣∣∣∣4 sin θ + α

2
sin

θ − α
2

cos
θ + α

2
cos

θ − α
2

∣∣∣∣− 2 log |cos θ|
)
dθ

=− 1

4
(2

∫ α

0

log 2dθ + 2

∫ α

α
2

log |sin θ|dθ + 2

∫ 0

−α
2

log |sin θ|dθ + 2

∫ α

α
2

log |cos θ|dθ

+ 2

∫ 0

−α
2

log |cos θ|dθ − 2

∫ α

0

log |cos θ|dθ)

=− 1

2

∫ α

0

log |2 sin θ|dθ

=
1

2
Λ(α)

=
1

2
Λ(arg(z))

Similarly, V ol(V2) =
1
2Λ(arg(

1
1−z )), and V ol(V3) =

1
2Λ(arg(

z−1
z )).

Thus, V ol(∆) = 2V ol(V1) + 2V ol(V2) + 2V ol(V3) = Λ(arg(z)) + Λ(arg( 1
1−z )) + Λ(arg( z−1

z )).

Next, we consider the Bloch-Wigner function, suppose z = reiθ, θ ∈ (0, π), then:

ImLi2(z) =− Im

∫ r

0

log(1− ξeiθ)
ξ

dξ

=

∫ r

0

arctan

(
ξ sin θ

1− ξ cos θ

)
dξ

ξ(
substitute:

ξ sin θ

1− ξ cos θ
= t

)
=

∫ r sin θ
1−r cos θ

0

arctan(t)

(
1

t
− 1

t+ tan θ

)
dt

(substitute: t = tanϕ , and let ω = −arg(1− z))
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=

∫ ω

0

ϕ
sin θ

sinϕ sin(ϕ+ θ)
dθ

=

∫ ω

0

ϕ d (log sinϕ− log sin(ϕ+ θ))

=ω log
sinω

sin(ω + θ)
−
∫ ω

0

log sinϕdϕ+

∫ ω

0

log sin(ϕ+ θ)dϕ

=ω log
sinω

sin(ω + θ)
−
∫ ω

0

log(2 sinϕ)dϕ+

∫ ω

0

log(2 sin(ϕ+ θ))dϕ

=ω log r + Λ(ω)− Λ(θ + ω) + Λ(θ)

=− arg(1− z) log |z|+ Λ(ω) + Λ(π − θ − ω) + Λ(θ)

=− arg(1− z) log |z|+ Λ(arg(z)) + Λ(arg(
1

1− z
)) + Λ(arg(

z − 1

z
))

=− arg(1− z) log |z|+ V ol(∆)

Hence, V ol(∆) = D2(z).
Similarly, V ol(∆) = D2(z) = D2(

1
1−z ) = D2(

z−1
z ). □

5 Volume Conjectures

We have now introduced a quantum topological method and a geometrical method in obtaining
invariants for closed, oriented three manifolds. The relationship between these two invariants is the
volume conjecture.

Closed, Oriented 3-Manifolds

Geometrical Structures

Hyperbolic Volume
Gromov Norm

Dehn Surgery with Integral
Coefficients along Links in S3

Knot (Link) Invariants

Lickorish

Quantum
Topological
Invariants

Thurston

Geometrical
Invariants

Volume Conjecture

The most famous volume conjecture is due to Kashaev, which relates colored Jones polynomials
with the hyperbolic volume of knot complements.

Conjecture 5.1 (Kashaev[1997], H. Murakami-J. Murakami[2001]).

lim
n→∞

2π

n
log |Vn(K, e

2πi
n )| = v3 · ∥S3 \K∥
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Note: If K is a hyperbolic knot, then v3 · ∥S3 \K∥ = V ol(S3 \K)

In this paper, we will focus on Chen-Yang’s volume conjecture (reference [2]) , which relates
Reshetikhin-Turaev invariants with the hyperbolic volume of closed, oriented 3-manifolds.
The complete version of Chen-Yang’s Volume Conjecture is as follows:

Conjecture 5.2 (Chen-Yang[2018]). Suppose M is a closed, oriented 3-manifold. Let RTr(M)

denote the r-th Reshetikhin-Turaev invariant evaluated at q = e
2πi
r , then when r is an odd positive

integer:

RTr(M) =
Cr

2

1√
Tor(M,Adρ)

e
r
4π (v3·∥M∥+iCS(M))(1 +O(

1

r
))

Cr is a constant of norm 1 independent of M .

In this paper, we will only deal with a simple version of this conjecture:

Conjecture 5.3 (Simple Version of Chen-Yang’s volume conjecture). Suppose M is a closed,
oriented hyperbolic 3-manifold. Let r ≥ 3 be an odd integer, RTr(M) denotes the r-th Reshetikhin-

Turaev invariant evaluated at A = e
πi
r , then:

lim
r→+∞
r odd

4π

r
log |RTr(M)| = V ol(M)

Remark 5.1. Ohtsuki’s method is probably effective when applied to manifolds obtained through
Dehn surgery along Whitehead twisted knots.
However, existing proofs for special cases of Chen-Yang’s volume conjecture are all, to some extent,
based on specific calculations to express the Reshetikhin-Turaev invariants.
Since the topological essence of Kauffman Bracket is still not clearly explained, Chen-Yang’s volume
conjecture becomes further more difficult concerning links or 3-manifolds whose Kauffman bracket
is difficult to compute.
However, Chen-Yang’s volume conjecture contains some information beyond Witten’s quantum
group, which is still inspiring in the field of physics.

6 Ohtsuki’s Method on Figure-8 Knot

In this section, we will sketch the framework of Ohtsuki’s work on special cases of Chen-Yang’s
volume conjecture (reference [6]). We will only review a part of Ohtsuki’s results. This part of
proof includes all the essential methods used by Ohtsuki, and can possibly be generalized to the
cases of Whitehead twisted knots.
We will give a proof of the following theorem:

Theorem 6.1 (T. Ohtsuki[2018]). For integers p ≥ 6, let Mp denote the 3-manifold obtained

through Dehn surgery with coefficient p along the figure-8 knot K = .

30

373 



Let RTr(Mp) denote the Reshetikhin-Turaev invariant of Mp valued at t = A4 = e
4πi
r .

Then Mp is a closed, orientable hyperbolic 3-manifold, and Chen-Yang’s Conjecture holds:

lim
r→+∞
r odd

4π

r
log |RTr(Mp)| = V ol(Mp)

Notation 6.1. In Section 6, we will use the following quantum notaions:

t = e
4πi
r

[n ] =
t
n
2 − t−n

2

t
1
2 − t− 1

2

{n } = t
n
2 − t−n

2

{n }! =
n∏

k=1

{k}

(t)n =

n∏
k=1

(1− tk)

Notation 6.2. In Section 6, Kauffman bracket for cabled (colored) links implicitly denotes the
cabling on the blackboard framing to avoid over-complicated link diagrams.

Notation 6.3. In Section 6, we will use O(·) to indicate remainders that can be uniformly controlled
on any compact subset.

6.1 Direct Calculation of the Reshetikhin-Turaev Invariants

We first calculate the Reshetikhin-Turaev invariant of Mp.

Lemma 6.1 (Habiro’s Formula (K. Habiro[2000])).

〈 en〉
=

(−1)n

{1}

n∑
m=0

{n+ 1 +m}!
{n−m}!

The knot diagram denotes a Chebyshev cabling on the figure-8 knot.

Remark 6.1. For a skein theoretical proof of Lemma 6.1, readers can check up in reference [5].

Corollary 6.1. We can obtain a concrete expression of RTr(Mp) from Lemma 6.1:

RTr(Mp) = cr
′

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

[n]t
pn2

4 −mn−n
2
(t)r−1−m−n

(t)m−n

The coefficient |cr ′| = | cr{1} |, and cr =

〈 ωr〉−1
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Proof: When t = e
4πi
r , then {r} = 0, and we have:

〈 en〉
=
(−1)n+1

{1}

min{n,r−2−n}∑
m=0

t−(n+1)(m+ 1
2 )
(t)n+1+m

(t)n−m

RTr(Mp) =

〈 ωr
〉〈 ωr〉−1

=cr

r−2∑
n=0

(−1)n[n+ 1]

〈 en
〉

=cr

r−2∑
n=0

(−1)n[n+ 1]

〈
(t+)p


en


〉

(By Proposition 3.4)

=cr

r−2∑
n=0

(−1)n[n+ 1]((−1)nt
n2+2n

4 )p

〈 en〉

=
cr
{1}

r−2∑
n=0

min{n,r−2−n}∑
m=0

(−1)np+1[n+ 1]t
pn(n+2)

4 −(n+1)(m+ 1
2 )
(t)n+1+m

(t)n−m

(Substitute n′ =
r − 2

2
− n , m′ =

r − 2

2
−m)

=
cr
{1}

r−2
2∑

n′=− r−2
2

r−2
2∑

m′=|n|

(−1)
r−2
2 p−n′p+1 t

r
2
−n′

2 − t−
r
2
−n′

2

t
1
2 − t− 1

2

t
pn′2

4 −m′n′−n′
2

t
p
4

r2−4
4 − r(r−1)

4 (−1)−n′p+2 (t)r−1−m′−n′

(t)m′−n′

=cr
′

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

[n]t
pn2

4 −mn−n
2
(t)r−1−m−n

(t)m−n

□
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Lemma 6.2.

lim
r→∞
r odd

1

r
log |cr ′| = 0

Proof: First, by induction on the Chebyshev polynomials, it is obvious that:

(i) en(−z) = (−1)nen(z)

(ii) en(2 cos θ) =
sin((n+1)θ)

sin θ

Hence, when r is odd:〈 ωr〉
=

r−2∑
n=0

(−1)n [n+ 1]

〈 en〉

=

r−2∑
n=0

(−1)n [n+ 1] (−1)nt
n2+2n

4 ⟨en⟩

=

r−2∑
n=0

(−1)n [n+ 1] (−1)nt
n2+2n

4 en(−e
2pi
r − e−

2pi
r )

=

r−2∑
n=0

[n+ 1] t
n2+2n

4 en(−2 cos
2π

r
)

=

r−2∑
n=0

(−1)n [n+ 1] t
n2+2n

4
sin 2(n+1)π

r

sin 2π
r

=
1

4(sin 2π
r )2

r−1∑
n=0

(−1)n(tn
2 − t−n

2 )2t
n2−1

4

=
t−

1
4

4(sin 2π
r )2

r−1∑
n=0

(−1)n
2
(
e

πi
r (n−2)2t−1 − 2e

πi
r n2

+ e
πi
r (n+2)2t−1

)
=
t−

1
4 (t−1 − 1)

2(sin 2π
r )2

r−1∑
n=0

(−eπi
r )n

2

=
t−

1
4 (t−1 − 1)

2(sin 2π
r )2

(−i)
r−1
2
√
r

lim
r→∞
r odd

1

r
log |cr| = lim

r→∞
r odd

− 3
2 log r

r
= 0

lim
r→∞
r odd

1

r
log | {1} | = lim

r→∞
r odd

− log r

r
= 0

Hence, lim
r→∞
r odd

1
r log |cr

′| = 0 □

Now, what we are concerned with RTr(Mp) is essentially the sum of quantum values at half integer
points, Ohtsuki’s method is aimed to estimate such expressions.
Ohtsuki’s method can be divided into three steps:
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Step 1. Write RTr(Mp) as sum of values of a holomorphic function at (half) integral points:

RTr(Mp) = c1
∑

(m,n)∈Z2

f(m,n) + c2

Step 2. Use Poisson Summation Formula to write RTr(Mp) in the form of integrations:∑
(m,n)∈Z2

f(m,n) =
∑

(m,n)∈Z2

f̂(m,n)

Step 3. Use Saddle Point Method to calculate the limit of the integral through its critical value.

6.2 Step 1 of Ohtsuki’s Method — Sum of values at integral points

For Step 1, we introduce Faddev’s quantum dilogarithm function to simplify the expressions.

Definition 6.1 (Quantum Dilogarithm Function (Faddev[1995], Kashaev[2001])).

φr(z) =
4πi

r

∫
γ

e(2z−π)x

4x sinh(πx) sinh(2πxr )
dx (r ≥ 3)

γ = (−∞,−ε] ∪ {z ∈ C|Im(z) ≥ 0, |z| = ε} ∪ [ε,+∞)

γ

ε ∈ (0, 1)

φr(z) is holomorphic in
{
z ∈ C | − π

r < Rez < π + π
r

}
, by comparing the exponents.

Lemma 6.3 (Functional Properties of Quantum Dilogarithm Function).

(1) For 0 < Rez < π:

1− e2iz = e
r

4πi (φr(z−π
r )−φr(z+

π
r ))

(2) For −π
r < Rez < π

r :

1 + eriz = e
r

4πi (φr(z)−φr(z+π))

Proof: Since the functions are all holomorphic, it suffices to prove the situation when z ∈ R.
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(1) By definition:

r

4πi
(φr(z −

π

r
)− φr(z +

π

r
)) =−

∫
γ

e(2z−π)x

2x sinh(πx)
dx

Notice that, by Dominated Convergence Theorem:

lim sup
N→∞

∣∣∣∣∣
∫

|x|=N+1
2

Im(x)>0

e(2z−π)x

2x sinh(πx)
dx

∣∣∣∣∣ = lim sup
N→∞

∣∣∣∣∣
∫ π

0

e(2z−π)(N+ 1
2 )e

iθ

2 sinh(π(N + 1
2 )e

iθ)
dθ

∣∣∣∣∣ = 0

Take ΓN = [−(N+ 1
2 ),−ε]∪{z ∈ C|Im(z) ≥ 0, |z| = ε}∪[ε,N+ 1

2 ]∪
{
z ∈ C|Im(z) ≥ 0, |z| = N + 1

2

}
.

Then, by Cauchy’s Theorem and Residue Theorem:∫
γ

−e(2z−π)x

2x sinh(πx)
dx = lim

N→∞

∫
ΓN

−e(2z−π)x

2x sinh(πx)
dx

=2πi

∞∑
n=1

Resni

(
−e(2z−π)x

2x sinh(πx)

)

=− 2πi

∞∑
n=1

e(2z−π)ni

2niπ cosh(πni)

=− 2πi

∞∑
n=1

e2zin(−1)n

2niπ(−1)n

=−
∞∑

n=1

e2zin

n

= log(1− e2iz)

(2) By definition:

r

4πi
(φr(z)− φr(z + π)) =−

∫
γ

e2zx

2x sinh( 2πxr )
dx

Again, by Dominated Convergence Theorem:

lim sup
N→∞

∣∣∣∣∣
∫

|x|= r
2
(N+1

2
)

Im(x)>0

e2zx

2x sinh( 2πxr )
dx

∣∣∣∣∣ = 0

Hence: ∫
γ

−e2zx

2x sinh( 2πxr )
dx =2πi

∞∑
n=1

Res r
2ni

(
−e2zx

2x sinh( 2πxr )

)

=− 2πi

∞∑
n=1

ezrin

rni 2πr cosh(πni)
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=

∞∑
n=1

(−1)n+1erizn

n

= log(1 + eriz)

□

Remark 6.2. The functional properties indicate an analytic continuation for φr.
φr is a meromorphic function on C, with poles: (a+ 1)π + bπ

r and −aπ − bπ
r (a, b ∈ N, b odd).

Corollary 6.2. For r ≥ 3 an odd number, and 0 ≤ n ≤ r − 1

(t)n = e
r

4πi (φr(
π
r )−φr(

2nπ
r +π

r ))

Proof:

(t)n =

n∏
k=1

(1− tk)

=

n∏
k=1

(1− e 4ikπ
r )

=

n∏
k=1

e
r

4πi (φr(
2kπ
r −π

r )−φr(
2kπ
r +π

r ))

=e
r

4πi (φr(
π
r )−φr(

2nπ
r +π

r ))

Notice that the condition r is odd ensures that we will not encounter singularities in this calculation.
□

Corollary 6.3. Let r ≥ 3 be an odd number.

RTr(Mp) =
2cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

gr(
2nπ

r
,
2mπ

r
)

The function gr is defined as follows:

gr(x, y) = sinx e−ixe
r

4πiVr(x,y)

Vr(x, y) = −px2 + 4xy + φr(y − x+
π

r
)− φr(π − x− y −

π

r
)

Write cr
′′ = 2cr

′

sin 2π
r

Proof: According to Corollary 6.1, and Corollary 6.2:

RTr(Mp) =cr
′

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

[n]t
pn2

4 −mn−n
2
(t)r−1−m−n

(t)m−n
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=
cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

sin(
2nπ

r
)e

4πi
r ( pn2

4 −mn−n
2 )e

r
4πi (φr(

2(m−n)π
r +π

r )−φr(
2(r−1−m−n)π

r +π
r ))

=
cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

sin(
2nπ

r
)e

4πi
r ( pn2

4 −mn−n
2 )e

r
4πi (φr(

2(m−n)π
r +π

r )−φr(
(r−2−2m−2n)π

r +π
r ))

(1 + eri(
(r−2−2m−2n)π

r +π
r ))

=
2cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

sin(
2nπ

r
)e

4πi
r ( pn2

4 −mn−n
2 )e

r
4πi (φr(

2(m−n)π
r +π

r )−φr(
(r−2−2m−2n)π

r +π
r ))

=
2cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

gr(
2nπ

r
,
2mπ

r
)

□

Lemma 6.4. For 0 < Rez < π:

φr(z) = Li2(e
2iz) +O(

1

r2
)

Proof: Suppose z = a+ bi, a, b ∈ R, 0 < a < π.
Then:

Li2(e
2iz) =−

∫ e2iz

0

log(1− ξ)
ξ

dξ

=

∫ +∞

b

(−2) log(1− e2i(a+yi))dy

=

∫ +∞

b

(−2) r

4πi
(φr(a+ yi− π

r
)− φr(a+ yi+

π

r
))dy

=
r

2π
lim

R→+∞

(∫ a−π
r +Ri

a−π
r +bi

φr(w)dw −
∫ a+π

r +Ri

a+π
r +bi

φr(w)dw

)
(By Cauchy’s Theorem)

=
r

2π
lim

R→+∞

(∫ z+π
r

z−π
r

φr(w)dw −
∫ a+π

r +Ri

a−π
r +Ri

φr(w)dw

)
(By Dominated Convergence Theorem)

=
r

2π

∫ z+π
r

z−π
r

φr(w)dw

=φr(z) +O(
1

r2
)
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Because the order-1 term in the Taylor expansion are cancelled out, and the remainder is controlled
on any compact subset. □

Remark 6.3. Lemma 6.4 is the reason why φr is referred to as the quantum dilogarithm function.

Lemma 6.5. For θ ∈ R:

ImLi2(e
2iθ) = 2Λ(θ)

Proof:

ImLi2(e
2iθ) =Im

(
−
∫ e2iθ

0

log(1− ξ)
ξ

dξ

)

=Im

(
−
∫ 1

0

log(1− ξ)
ξ

dξ −
∫ e2iθ

1

log(1− ξ)
ξ

dξ

)

=Im

∫ θ

0

2i log(1− e2it)dt

=2Re

∫ θ

0

log(1− e2it)dt

=2Re

∫ θ

0

log |2 sin t|dt

=2Λ(θ)

□

Corollary 6.4.

ImVr(x, y) = 2Λ(y + x) + 2Λ(y − x) +O(
1

r2
)

Proof: This is direct from Lemma 6.4 and 6.5. □

6.3 Step 2 of Ohtsuki’s Method — Poisson Summation

Now we are able to move on to Step 2, which is to transform RTr(Mp) through Poisson summation.
First, we can further simplify the summation.

Notation 6.4. For δ ≥ 0, define:
Dδ =

{
(x, y) ∈ R2|δ < x+ y < π

2 − δ, δ < y − x < π
2 − δ

}
Dδ

′ =
{
(x, y) ∈ R2|δ < x+ y < π

2 − δ, π + δ < y − x < 3π
2 − δ

}
Dδ

′′ =
{
(x, y) ∈ R2|π + δ < x+ y < 3π

2 − δ, δ < y − x < π
2 − δ

}
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Figure 17: Image of D, D′ and D′′ [10]

Lemma 6.6. If p ≥ 6, then for fixed ε > 0, there exists δ > 0, such that:

ImVr(
2πn

r
,
2πm

r
) < V ol(Mp)− ε

For ∀( 2πnr , 2πmr ) /∈ Dδ ∪Dδ
′ ∪Dδ

′′ and ∀r >> 0

Proof: According to Corollary 6.4, when (2πnr , 2πmr ) /∈ Dδ ∪Dδ
′ ∪Dδ

′′, then

ImVr(
2πn

r
,
2πm

r
) = 2Λ

(
2πm

r
+

2πn

r

)
+ 2Λ

(
2πm

r
− 2πn

r

)
+O

(
1

r2

)
< 2Λ(

π

6
) +O

(
1

r2

)
=

1

2
V ol(S3 \K) +O

(
1

r2

)
< V ol(Mp)− ε+O

(
1

r2

)
□

Notation 6.5. Write Ωδ = Dδ ∪Dδ
′ ∪Dδ

′′

Now we take a real C∞ bump function ψ on R2, such that: ψ(x, y) = 1 if (x, y) ∈ Ωδ

ψ(x, y) ∈ (0, 1) if (x, y) ∈ Ωδ/2 \ Ωδ

ψ(x, y) = 0 if (x, y) /∈ Ωδ/2

And set fr(x, y) = ψ(x, y)gr(x, y)
Then fr(x, y) is in the Schwarz space of R2

Proposition 6.1 (Poisson Summation of RTr(Mp)).

RTr(Mp) = cr
′′
∑

(a,b)∈Z2

f̂r(a, b) +O(e
r
4π (V ol(Mp)−ε))

f̂r is defined to be:

f̂r(a, b) = (−1)a+b(
r

2π
)2
∫
Ωδ/2

ψ(x, y) sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy
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Proof: By Lemma 6.6 and Poisson Summation Formula for functions in the Schwarz space:

RTr(Mp) =
2cr

′

sin 2π
r

r−2
2∑

n=− r−2
2

r−2
2∑

m=|n|

gr(
2nπ

r
,
2mπ

r
)

= cr
′′

∑
(m,n)∈(Z+ 1

2 )
2

fr(
2nπ

r
,
2mπ

r
) +O(e

r
4π (V ol(Mp)−ε))

= cr
′′
∑

(a,b)∈Z2

f̂r(a, b) +O(e
r
4π (V ol(Mp)−ε))

□

6.4 Step 3 of Ohtsuki’s Method — Saddle Point Method

We are now facing a typical form of integration:

I(r) =

∫
Ω

g(x)erf(x)dx

We are going to estimate the behaviour of I(r) as r → +∞, this leads us to Step 3 to adapt the
Saddle Point Method (reference [3] ).

Theorem 6.2 (Saddle Point Method — Real Version). Suppose Ω is a bounded, closed region in
Rn, f, g ∈ C3(Ω→ R).
If x0 ∈ Ω̊, such that:

(i) f ′(x0) = 0

(ii) Hess f(x0) is non-singular

(iii) f(x) < f(x0), ∀x ∈ Ω \ {x0}

(iv) g(x0) ̸= 0

Then: ∫
Ω

g(x)erf(x)dx =

(
2π

r

)n
2 1√
−detHess f(x0)

g(x0)e
rf(x0)

(
1 +O

(
1

r

))
Proof: For any ϵ > 0,

∫
Ω\B̄(x0,ϵ)

g(x)erf(x)dx = O(erM ), whereM = sup
Ω\B̄(x0,ϵ)

f , is a lower term.

Hence, it suffices to consider Ω = B̄(x, ϵ), with 0 < ϵ << 1.
Write Σ = Hess f(x0).∫

Ω

g(x)erf(x)dx =

∫
Ω

g(x0)(1 +O(ϵ))erf(x0)e
r
2 (x−x0)

TΣ(x−x0)+rO(|x−x0|3)dx

=
erf(x0)

√
r
n

∫
B̄(0,

√
rϵ)

g(x0)(1 +O(ϵ))e
1
2x

TΣx+ 1√
r
O(|x|3)

dx
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(Take ϵ ∼ 1

r
→ 0, and by Gauss Integration)

=

(
2π

r

)n
2 1√
−detΣ

g(x0)e
rf(x0)

(
1 +O

(
1

r

))
□

Theorem 6.3 (Saddle Point Method — Complex Version). Suppose S is a smoothly embedded
closed disk Dn of real dimension n in Cn, f, fr, g are holomorphic in a neighbourhood of S.
If z0 ∈ S̊, such that:

(i) f ′(z0) = 0

(ii) Hess f(z0) is non-singular

(iii) Ref(z) < Ref(z0), ∀z in a neighbourhood of S \ {z0}

(iv) g(z0) ̸= 0

(v) fr(z) = f(z) + vr(z)
r2 , where |vr(z)| is uniformly bounded in a neighbourhood of S

Then: ∫
S

g(z)erfr(z)dz =

(
2π

r

)n
2 1√
−detHess f(z0)

g(z0)e
rf(z0)

(
1 +O

(
1

r

))
Proof: By a change of coordinates, we may assume Hess f(z0) = −I.
Then the neighbourhood N of S \ {z0}, such that Ref(z) < Ref(z0), ∀z ∈ N , can be pictured as
shown in Figure 18.

Figure 18: Deformation of Integration Area [10]

41

384 



Choose a real closed ϵ-disk D ⊂ Rn, 0 < ϵ << 1, and let S0 ⊂ S be the connected component of z0
in {z ∈ S|Re(z) ∈ D}, such that S0 has a positive distance with ∂S.
We replace S by S \ S0 ∪D ∪ S′, where S′ = {Rez+ tiImz|z ∈ S0, Rez ∈ ∂D, t ∈ [0, 1]}
Then S′ \D has a positive distance δ with z0.
By Cauchy’s Theorem, the deformation from S to S′ will not change the result of the integration,
and we can adapt Theorem 6.2 to the integration on D.
Hence:∫

S

g(z)erfr(z)dz =

∫
S

g(z)erf(z)dz

(
1 +O

(
1

r

))
=

∫ ′

S

g(z)erf(z)dz

(
1 +O

(
1

r

))
=

(∫
D

g(z)erf(z)dz+

∫
S′\D

g(z)erf(z)dz

)(
1 +O

(
1

r

))
(By Theorem 6.2)

=

((
2π

r

)n
2 1√
−detHess f(z0)

g(z0)e
rf(z0) +O(er supN′ Ref

)(
1 +O

(
1

r

))

=

(
2π

r

)n
2 1√
−detHess f(z0)

g(z0)e
rf(z0)

(
1 +O

(
1

r

))
Where N ′ is a compact subset of N containing S \ B̄(z0, δ). □
Use saddle point method, we can estimate each Fourier coefficient f̂(a, b).

Notation 6.6. Define V (x, y) = −px2 + 4xy − Li2
(
e−2i(y+x)

)
+ Li2

(
e2i(y−x)

)
Then according to Lemma 6.4, Vr(x, y) = V (x, y) +O

(
1
r2

)
Set Va,b(x, y) = V (x, y)− 4πax− 4πbx
Then,

f̂r(a, b) =(−1)a+b(
r

2π
)2
∫
Ωδ/2

ψ(x, y) sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy

=(−1)a+b(
r

2π
)2
∫
Ωδ

sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy +O
(
e

r
4π (V ol(Mp)−ε′)

)
=(−1)a+b(

r

2π
)2
∫
Ωδ

sinx e−ixe
r

4πi (Va,b(x,y)+O( 1
r2
)dxdy +O

(
e

r
4π (V ol(Mp)−ε′)

)

To apply Saddle Point Method, we need to calculate the critical point and critical values, and to
find an appropriate integration area.
The most surprising result is that the critical equation of Va,b is completely consistent with the hy-
perbolic gluing equation (4.3) for the Figure-8 knot with surgery coefficient p, yet this phenomenon
still cannot be clearly explained.
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Proposition 6.2. If (x0, y0) is a critical point of Va,b, then by a change of variables:

1− e2i(y0−x0) =
1

z
, 1− e−2i(y0+x0) =

1

1− w

And an appropriate choice of solution such that (Rex,Rey) ∈ Dδ and Imz, Imw > 0, then the
critical equation for (x0, y0) is equivalent to the hyperbolic gluing equation (4.3) of figure-8 knot
with coefficient (p, 1).
Specifically:

(1) If (x0, y0) is an appropriate critical point of Va,b

then z and w are the solution for

{
z(z − 1)w(w − 1) = 1
( 1
w(1−z) )

p( 1
w(1−w) )

2 = 1

(2) If z and w are the solution for

{
z(z − 1)w(w − 1) = 1
( 1
w(1−z) )

p( 1
w(1−w) )

2 = 1

then (x0, y0) =
(

log w−1
w −log z−1

z

4i ,
log w−1

w +log z−1
z

4i

)
by choosing the main branch of logarithm

(argument ∈ (0, 2π) ), is a critical point for V0,0.

Proof: (1) The critical equation is

∂Va,b
∂x

= −2px+ 4y + 2i log (1− e2i(y−x))− 2i log (1− e−2i(y+x))− 4πa = 0

∂Va,b
∂y

= 4x− 2i log (1− e2i(y−x))− 2i log (1− e−2i(y+x))− 4πb

Notice that e4iy0 = w−1
w

z−1
z and e4ix0 = w−1

w
z

z−1

∂Va,b
∂y

= 0⇒ exp

(
i
∂Va,b
∂y

)
= 1

⇔ z(z − 1)w(w − 1) = 1 (Thurston’s Equation)

⇒ e2ix = w(1− z)
∂Va,b
∂x

= 0⇒ exp

(
i
∂Va,b
∂x

)
= 1

⇔ (w(1− z))p w(w − 1)

z(z − 1)
= 1

⇔
(

1

w(1− z)

)p(
1

w(w − 1)

)2

= 1 (Dehn Filling Equation)

(2) follows from (1) by checking the arguments. □

Now the critical point of V is related with the dihedral parameters of the hyperbolic geometri-
cal structure of Mp, it is natural that the critical value is also relavent with the geometry.

Proposition 6.3. The critical value of V0,0 coincides with the hyperbolic volume ofMp, specifically:

ImV0,0(x0, y0) = V ol(Mp)
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Proof:

ImV0,0(x0, y0) =Im
(
−px20 + 4x0y0 − Li2

(
e−2i(y0+x0)

)
+ Li2

(
e2i(y0−x0)

))
= D(

z − 1

z
)−D(

w

w − 1
)

= D(
z − 1

z
) +D(

w − 1

w
)

= V ol(∆1) + V ol(∆2)

= V ol(Mp)

∆1 and ∆2 are the two hyperbolic ideal tetrahedrons making up Mp under completion ,i.e. two
hyperbolic ideal tetrahedrons satisfying the Hyperbolic Gluing Equation (4.3).
Notice that in the completion process, the limit points added into the manifold form a 1-dimensional
sub-object which is the image of the “z-axis” under the covering map.
Thus, considered as a metric space (with local hyperbolic metrics), the limit points do not contribute
to the hyperbolic volume.
Thus V ol(Mp) = V ol(∆1) + V ol(∆2). □
In order to apply Saddle Point Method, we should have the integration area pass through the critical
point.

Notation 6.7. We define a new integration area for the Fourier coefficient f̂r, the new area is
constructed by pushing the original Dδ towards an imaginary direction to pass the critical point.

Stop = {(x+ iImx0, y + iImy0) | (x, y) ∈ Dδ}
Sside = {(x+ tiImx0, y + tiImy0) | (x, y) ∈ ∂Dδ, t ∈ [0, 1]}
S = Stop ∪ Sside, ∂S = ∂Dδ

Figure 19: Deformed Integration Area [10]

Lemma 6.7. (1) ImV (x, y) is strictly concave on Stop

(2) ImV (x, y) is strictly convex on Sside

(3) detHess V (x0, y0) ̸= 0
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Proof: By direct calculation:

Hess(Re(x),Re(y))(ImV ) =

(
− 4Ime2i(y+x)

|1−e2i(y+x)|2 −
4Ime2i(y−x)

|1−e2i(y−x)|2 − 4Ime2i(y+x)

|1−e2i(y+x)|2 + 4Ime2i(y−x)

|1−e2i(y−x)|2

− 4Ime2i(y+x)

|1−e2i(y+x)|2 + 4Ime2i(y−x)

|1−e2i(y−x)|2 − 4Ime2i(y+x)

|1−e2i(y+x)|2 −
4Ime2i(y−x)

|1−e2i(y−x)|2

)

= −
(
2 −2
2 2

)( Ime2i(y+x)

|1−e2i(y+x)|2 0

0 Ime2i(y−x)

|1−e2i(y−x)|2

)(
2 2
−2 2

)

When (Re(x),Re(y)) ∈ Ω0,
Ime2i(y+x)

|1−e2i(y+x)|2 > 0, Ime2i(y−x)

|1−e2i(y−x)|2 > 0.

Thus ImV is strictly concave about (Re(x),Re(y)).
Furthermore, because ImV is a harmonic function, so ImV is strictly convex about (Im(x), Im(y)).
Especially, Stop only concerns the (Re(x),Re(y)) part, and Sside only concerns the (Im(x), Im(y))-
part.
Hence (1) and (2) holds. And (3) is obvious due to the above calculation. □

Corollary 6.5. ∣∣∣∣∫
Dδ

sinx e−ixe
r

4πi (Vr(x,y))dxdy

∣∣∣∣ = P (r)e
r
4πV ol(Mp)

(
1 +O

(
1

r

))
P (r) is a rational function of r.

Proof: Because sinx e−ixe
r

4πi (V (x,y)−4πax−4πby) is a holomorphic function for (Rex,Rey) ∈ Ωδ,
by Cauchy’s Theorem:∣∣∣∣∫

Dδ

sinx e−ixe
r

4πi (Vr(x,y))dxdy

∣∣∣∣ = ∣∣∣∣∫
S

sinx e−ixe
r

4πi (Vr(x,y))dxdy

∣∣∣∣
Lemma 6.7 (1) and (2) guarantess that ImV (x0, y0) is a maximal point on S.
Lemma 6.7 (3) guarantess that the Hessian matrix is non-singular.
Obviously, sin(x0)e

−ix0 ̸= 0.
By Notation 6.6, Vr(x, y) = V (x, y) +O

(
1
r2

)
.

Hence, all conditions are satisfied for applying Saddle Point Method (Theorem 6.3).∣∣∣∣∫
S

sinx e−ixe
r

4πi (Vr(x,y))dxdy

∣∣∣∣ = P (r)e
r
4πV ol(Mp)

(
1 +O

(
1

r

))
P (r) is a rational function of r. □

Lemma 6.8 (Functional property of Li2). For (Rex,Rey) ∈ Ω0:

−Li2
(
e−2i(y±x)

)
= Li2

(
e2i(y±x)

)
+
π2

6
+

1

2

(
log
(
−e2i(y±x)

))2
= Li2

(
e2i(y+x)

)
+
π2

6
− 1

2
(2(y ± x)− π)2
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Proof: Consider F (z) = Li2(z) + Li2(z
−1) + π2

6 + 1
2 (log (−z))

2
.

Then F ′(z) = 1
z

(
log
(
1− 1

z

)
− log(1− z) + log(−z)

)
= 0.

And F (1) = 2Li2(1) +
π2

6 + 1
2 (log (−z))

2
= 2π2

6 + π2

6 −
1
2π

2 = 0.
Hence F ≡ 0, so the first equation holds.
The second equation is derived from the first equation by checking the arguments. □

Corollary 6.6.

f̂r(0, 0) = f̂r(1, 0)(1 +O
(
e

1
r

)
)

Proof: Change the variable from x to −x, and this is direct from Lemma 6.8. □

Proposition 6.4.∣∣∣∣∣
∫
D′

δ

sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy

∣∣∣∣∣ = O
(
e

r
4π (V ol(Mp)−ε)

)
∀(a, b)∣∣∣∣∣

∫
D′′

δ

sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy

∣∣∣∣∣ = O
(
e

r
4π (V ol(Mp)−ε)

)
∀(a, b)∣∣∣∣∫

Dδ

sinx e−ixe
r

4πi (Vr(x,y)−4πax−4πby)dxdy

∣∣∣∣ = O
(
e

r
4π (V ol(Mp)−ε)

)
(a, b) ̸= (0, 0), (0, 1)

Proof: By completely the same method, Ohtsuki [6] calculated that the relavent critical values
are smaller for (a, b) ̸= (0, 0), (0, 1) or Dδ is replaced by Dδ

′, Dδ
′′.

Hence the result is given by Saddle Point Method (Theorem 6.3). □

Proof of Theorem 6.1:
Because the Fourier transformation on the Schwarz space converges locally uniformly, and a poly-
nomial order of sum of lower exponential terms provide lower exponential terms.
Hence,

lim
r→+∞
rodd

4π

r
log |RTr(Mp)|

= lim
r→+∞
rodd

4π

r
log

∣∣∣∣∣∣cr ′′
∑

(a,b)∈Z2

f̂r(a, b) +O(e
r
4π (V ol(Mp)−ε))

∣∣∣∣∣∣
= lim

r→+∞
rodd

4π

r
log

∣∣∣∣R(r)e r
4πV ol(Mp)

(
1 +O

(
1

r

))∣∣∣∣
=V ol(Mp)

Q.E.D.
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1 Abstract

We’ll introduce an identity on a hyperbolic once punctured torus given by summing a func-
tion of the length over all closed simple geodesics. McShane discovered the constant in his
Doctoral thesis and later gave a generalization about it and Mirzakhani generalize the iden-
tity to apply it to calculate the Weil-Petersson volume of the moduli space of curves with
marked points. We will introduce the proof of the identities basically following McShane
and Mirzakhani and then study the integration over moduli space. Ultimately we give a few
examples to calculate their volumes to illustrate in general case how to operate.

2 Introduction

In the celebrated paper by Mirzakhani, a generalized McShane’s identity is obtained and
applied to calculate the volumes of moduli space. That is an amazing method that provide
an effective way to calculate the volume of all moduli spaces of hyperbolic surfaces with
marked points without finding the fundamental domain which is much more difficult.

That paper is divided to two parts. One is to generalize McShane’s amazing identity
from punctured hyperbolic surface to hyperbolic surface with geodesic boundaries which has
finite area. The other is to give a method to integrate over moduli space of curves with
marked points. Then combining the two aspects an algorithm can be attained to calculate
the volumes by not very complicate integral.

Our article is a reading report of Mirzakhani’s paper and we also get some ideas from the
papers of McShane’s. It also consist of the two parts and at last we calculate some examples
to illustrate how to combine the two aspects.

Remark 2.0.1 (Remark of the McShane’s identity). There are some important factors
in the proof of the identities. The behavior of geodesics near geodesic boundaries is just like
a Cantor set with isolated points. The first is the Birman-Series theorem. Then the proof of
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all forms of the identities consist of the structure theorem of the simple geodesics to classify
them in the above intersection. Then we calculate the lengths of the gaps to get the formula.

On the structure of this article, in §3 we state the notations and review the basic facts
in hyperbolic geometry and have an intuitive impression about a minimal lamination. It’s
crucial to realize the structure of pants and the geodesics on it. In §4 we state 3 versions
of McShane’s identities and prove the main theorem about the structure of the geodesics
then obtain the identity. In §5 we recall the concepts about the Teichmüller space and
introduce forms on some space which have close relations to our problem. In §6 we give an
intuitive explanation of the formula of some functions integrating over moduli space. In §7
we combine the generalized McShane’s identity and the integration formula to calculate the
basic examples.

3 Preliminaries

To prove the identity, first we should study the structure of a hyperbolic punctured torus,
especially the simple geodesics on it.

3.1 hyperbolic surface

Definition 3.1. A hyperbolic surface M is a surface admitting a hyperbolic structure, which
is to say, M has an atlas A = {(U, ϕU : U → H2)} so that the transition map ϕUϕ

−1
V is

isometry on ϕV (U ∩ V ).

Remark 3.1.1. a hyperbolic surface has universal covering H2 since we can construct it
explicitly. So it admits a canonical complex structure. So a hyperbolic surface is exactly a
Riemann surface with uniformization H2.

Remark 3.1.2. We sometimes also treat a hyperbolic surface with geodesic boundary as a
hyperbolic surface.

Remark 3.1.3. We call M is complete if it is complete as a Riemannian manifold.

Punctured torus on the left. Pair of pants on the right.

Definition 3.2. A cusp region of a hyperbolic surface M is a subsurface P of M isometric
to the quotient H2 ⊃ {z : Imz > 1}/[z 7→ z + l], l ∈ R+ is the length of the horocycle
(boundary of the cusp region).
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3.2 pair of pants

Pants decomposition is powerful in the classification of hyperbolic surfaces. A closed hy-
perbolic surface of genus g has at most 3g − 3 disjoint simple geodesics. And They cut the
surface into 2g − 2 pair of pants.

Definition 3.3. A hyperbolic pair of pants is a hyperbolic surface which is topologically
homeomorphic to a 3 punctured sphere with 3 geodesic boundaries of length |α|, |β|, |γ|.

Remark 3.3.1. Such pants is unique up to isometry. In fact, it can be uniquely decomposed
into 2 identical hyperbolic right-angle hexagon with 3 edges known, which is unique by easy
calculation.

Remark 3.3.2. when |α| = 0, such boundary becomes a cusp. We also regard these surface
as pair of pants with some boundary length 0.

Remark 3.3.3. Only finitely many geodesics containing in a hyperbolic pair of pants are
simple. In particular, There are exactly 8 simple geodesics starting from one of the boundary
components, which can be seen in the figure above.
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Marking the three boundary with β1, β2, β3 and their lengths are x1, x2, x3. The geodesic
perpendicular to β1 twice intersect β1 at point w1, w2. The two geodesics spiral to β3 is per-
pendicular to β1 at points y1, y2 respectively. The two geodesics spiral to β2 is perpendicular
to β1 at points z1, yz respectively.

Geometry on pants. In [Mir07a], Mirzakhani introduce two length function playing
crucial pole in the calculation of the volumes. As the picture showed.

Define D(x1, x2, x3) as the geodesic length of the interval (y1, y2) which contains the
points w1, w2. Let R(x1, x2, x3) denote the length of the sum of two interval (y1, z1) and
(y2, z2) with equal length. It is easy to see x1 +R(x1, x2, x3) = D(x1, x2, x3) +D(x1, x3, x2).

Actually, from hyperbolic geometry on the universal covering, the explicit formula can get:

D(x, y, z) = 2 log

(
e

x
2 + e

y+z
2

e−
x
2 + e

y+z
2

)
.

R(x, y, z) = x− log

(
cosh(y

2
) + cosh(x−z

2
)

cosh(y
2
) + cosh(x+z

2
)

)
.

with derivatives
∂

∂x
D(x, y, z) = H(y + z, x),

∂

∂x
R(x, y, z) =

1

2
(H(z, x + y) + H(z, x − y))

where

H(x, y) =
1

1 + e
x+y
2

+
1

1 + e
x−y
2

.

3.3 quasi-geodesic

Definition 3.4. A (λ, c) quasi-geodesic from x to y in complete Riemannian manifold M is
a path γ : [0, t] → M , parameterized by arclength, such that for any u, v ∈ [0, t],

1

λ
d(γ(u), γ(v))− c ≤ |u− v| ≤ λd(γ(u), γ(v)) + c.
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Remark 3.4.1. In hyperbolic space Hn, a lemma of Morse indicates that a quasi geodesic
cannot goes too far away from a geodesic. There’s a constant D = D(λ, c) such that a (λ, c)
quasi-geodesic from x to y is contained in the D-neighborhood of the geodesic [x, y].

Therefore, we can prove that a quasi-geodesic ray (has infinite length and locally AC) in
Hn must converge into a unique point of ∂Hn. As a corollary, a closed piecewise geodesic
curve (not contractable or peripheral) γ in a hyperbolic surface M lift to some quasi-geodesic
lines in H2. Each component corresponds to an unique geodesic, which is invariant under
the action of [γ] ∈ π1(M). So it project to a closed geodesic γ̃. So we have the lemma

Lemma 3.5. A closed piecewise geodesic curve (not contractable or peripheral) γ on a hy-
perbolic surface is free homotopic to a unique closed geodesic γ̃. Furthermore, if γ is simple,
then γ̃ is also simple.

3.4 geodesic lamination

To study simple geodesics on a hyperbolic plane, Thurston introduced the conception of
lamination in [Thu] and its structure can be classified into several classes.

Definition 3.6. A geodesic lamination λ on a hyperbolic surface M is the union of some
disjoint complete simple geodesics, which is closed as a subset of M .

Remark 3.6.1. For convenience, we will use lamination instead of geodesic lamination on
this article, and our lamination is always on a hyperbolic surface. A minimal lamination is
a lamination which has no nontrivial sublamination. It is known that

Lemma 3.7. a minimal lamination λ is either

1. a complete simple geodesic or

2. has uncountably many leaves(geodesics) and for any transverse segment τ , τ ∩ λ is a
Cantor set.
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Example 3.8. A minimal lamination which is not a simple geodesic.
First, we construct a series of closed simple curve Γ. As in the picture, choose a hexagonal

fundamental domain D of a standard punctured torus. Red edges are the lift of a simple
closed geodesic c. Assume |c| = 1. Let α be a irrational number, x+α be the translation of
length α along c. γx be a simple geodesic other than c from x ∈ c to x+ α. Then γx can be
moved continuously to γy for any y ∈ [x, x + 1) ∈ c(γy may not be continuous at x). Then
Γ = {γy : y ∈ c} is what we wanted. (blue segments on the picture)

Then Γ lift to a series of complete quasi-geodesic Γ′ = {γ′
y} crossing D in H2. Each γ′

y

represents an unique geodesic µy in H2. Since γ′
y’s are simple and disjoint, we see µy’s are

also simple and disjoint. It’s easy to see the closure of each µy is exactly the union of all the
µy’s. Thus this is a nontrivial minimal lamination.

Remark 3.8.1. I constructed this example by referring [Bon98]. He introduced a more
general method to construct a family of nontrivial laminations using interval exchange maps.

4 Generalized McShane’s Identity

In this section, we consider the general case when M is a hyperbolic surface with geodesic
boundaries β1, · · · , βn of length l1, · · · , ln which has finite area. If li = 0, then βi represents
a cusp.

4.1 3 versions of Mcshane’s identity

The first identity was introduced by McShane in his doctoral thesis [Mcs91].

Theorem 4.1. Let M be a once punctured torus then∑
γ

1

1 + exp |γ|
=

1

2
,
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where the sum is over all closed simple geodesics γ on M .

And the second identity was generalized by McShane himself in [Mcs98].

Theorem 4.2. Let M be hyperbolic surface which has finite area with a cusp and without
boundary,then ∑ 1

1 + exp 1
2
(|α|+ |γ|)

=
1

2
,

where the sum is over all pairs of closed simple geodesics α, γ which bound an embedded pair
of pants containing the cusp point.

Mirzakhani further generalized the identity in general hyperbolic surface.
And introduced the viewpoint of coarse geometry to explain and generalize the structure

theorem of McShane in [Mir07a]. Based on the boarder structure theorem, she gave the
further generalized version of Mcshane’s identity

Theorem 4.3. For any hyperbolic surface M with n geodesic boundary components β1, · · · , βn

of lengths L1, · · · , Ln , we have

∑
{α1,α2}∈F1

D(L1, lα1(M), lα2(M)) +
n∑

i=2

∑
γ∈F1,i

R(L1, Li, lγ(M)) = L1.

where F1 consists unordered pairs of simple closed geodesics (possibly same) which bound a
pair of pants with β1; F1,i consists simple closed geodesics which bounds a pair of pants with
β1, βi. And for a geodesic α on hyperbolic surface M , function ℓα(M) denote the hyperbolic
length of α on M . Notice that because D(x, y, z) is symmetric on y, z the left side of above
identity is well-defined.

To prove the identity, first we will study simple geodesics which intersects the boundary βi

perpendicularly (If βi represents a cusp, then it should intersect the sufficiently small cusp
region).
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4.2 simple geodesics

4.2.1 case of only one cusp

This case is studied by Mcshane in [Mcs98].

Remark 4.3.1. In our context, simple geodesic in hyperbolic surface with geodesic boundary
is a geodesic with both end either complete or intersects boundary component perpendicu-
larly and also simple.

Simple geodesics was classified in [CEG87]. However, here we have a slightly different
version.

Lemma 4.4. Complete simple geodesics has 3 types

1. it has both end up a cusp or intersects boundary;

2. it has one end up a cusp or intersects boundary and another end spiraling to a compact
lamination;

3. it is a leaf of a compact lamination.

Recall a compact lamination has 2 types ( 3.7), simple geodesics which has one end up
the cusp or intersects boundary thus has 3 types

Lemma 4.5. Complete simple geodesics which intersects the cusp region has 3 types: the
other end of the geodesic

1. up a cusp or intersects boundary;

2. spirals to a closed geodesic inside the surface;

3. spirals to a minimal lamination consisting of uncountably many leaves;

4. spirals to a closed geodesic on the boundary.
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On the left is a simple geodesic with one end spiralling to a simple geodesic.On the right is
a punctured torus cutting a nontrivial minimal lamination, which has two geodesic

boundary component of length infinity.

Remark 4.5.1. In this article, we call a geodesic is of type 1/2/3/4 if it falls into the 1/2/3/4
class above.

From Lemma 4.3.1, we can choose a small cusp region so that a complete simple geodesics
which intersect the cusp region must have one end up a cusp. Then it has the classification
above. We’ll try to describe the structure of these geodesics.

On such a horocycle(boundary of the cusp region) Hi, we define a set Ei ⊂ Hi to be all
the points which a simple geodesic go through. Thus each point of Ei exactly correspond to
a simple geodesic with one end up to the cusp. It is actually a Cantor set unions countably
many isolated points. By a theorem of Birman and Series, Ei has measure zero.

Theorem 4.6 (Birman Series). Let G be the set of all simple geodesics on a hyperbolic
surface. The set S of points which lie on a geodesic γ ∈ G has Hausdorff dimension 1.

Points in Hi−Ei represents a geodesic which intersects itself, thus transversely intersects
itself. So a small perturbation preserve the property. Therefore Hi − Ei is open, and thus
decomposed into countably many open intervals, called gap.

Now we can state our structure theorem of the case of cusp.

Theorem 4.7 (Structure Theorem of cusp).

1. x ∈ Ei is isolated if and only if x is of type 1 or 4;

2. x is boundary of a gap and not isolated if and only if x is of type 2;

3. x is not a boundary of a gap if and only x is of type 3;

Furthermore, every gap has one endpoint of type 1 and another endpoint of type 2 or 4.
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Remark 4.7.1. Here is an example of the structure of the geodesic when M is a punctured
torus. The yellow region is a fundamental domain and the blue region are some gaps. Red
lines are simple geodesics.

Each gap is beside an isolated point in Ei, that is, a geodesic of type 1. And each isolated
point of Ei besides 2 gaps.

Therefore, the area of the cusp region can be calculated by summing the length of all the
gaps, or summing the length of gaps beside all the geodesics of type 1.

Our next proposition shows that each isolated point corresponds to a pants with one
of the boundaries a cusp, which let us convert the length of gaps into the length of simple
closed geodesics.

Proposition 4.8. Let M be a surface with at least one cusp and let γ be a geodesic with
both ends up the cusp then γ is contained in a unique embedded pair of pants.

Remark 4.8.1. It’s easy to see that for each pair of pants with one of the boundaries a
cusp, there’s exactly one geodesic of type 1 contained in it. So our calculation may over all
pants of this kind.

4.2.2 geodesic boundary case

This case is basically same as the previous one, which has studied simple geodesics in general
hyperbolic surface. It’s somehow much easier than cusp case.

We consider simple geodesics γx which intersects boundary component βi at x perpendic-
ularly. Let Hi just be βi and Ei be the points x in Hi which the geodesic γx perpendicularly
start at is simple, and if γx intersects boundary components at the other end, then it should
intersect perpendicularly. It has the similar structure theorem

11
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Theorem 4.9 (Structure Theorem).

1. x ∈ Ei is isolated if and only if the other end of γx intersects or spirals to a boundary
component (No matter βi itself or not);

2. x is boundary of a gap and not isolated if and only if the other end of γx spirals to a
non-boundary closed geodesic;

3. x is not a boundary of a gap if and only the other end of γx spirals to a nontrivial
minimal lamination (uncountably many leaves);

Furthermore, every gap has one endpoint of the first type and another endpoint of the second
type.

Remark 4.9.1. We also call the points of Ei or geodesics of type 1/2/3 if the geodesic
satisfies the 1/2/3 conditions respectively.

In this case, the proposition which let us convert the length of gaps into the length of
closed geodesics should split into 2 parts

Proposition 4.10. Let M be a surface with at least one geodesic boundary and let γ be a
geodesic with

1. both ends intersect boundary component βi perpendicularly; or

2. two ends intersect different boundary component βi, βj perpendicularly;

then γ is contained in a unique embedded pair of pants.

Remark 4.10.1. In the proposition, cusp can be regarded as a geodesic boundary of length
0, and the statement of intersect the geodesic boundary perpendicularly should be translated
into up the cusp. Thus it’s a generalized version of 4.8.
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Proof. In case 1, as shown in the left figure, γx divide the boundary component βi into 2
parts. each part with γx form a simple closed curve, which is obviously a quasi-geodesic. So
it is free homotopic to a simple closed geodesic.

The 2 quasi-geodesics are disjoint with γx, βi, so the corresponding 2 geodesics are disjoint
with them. So from the homotopy type, the subsurface bound inside the 3 closed geodesic
is a pair of pants P containing βi, which is what we required.

In case 2, it’s similar. we can also construct such a simple closed quasi-geodesic as shown
in the right figure.

4.3 structure theorem

We will study the 3 types of geodesics respectively. First we should complete our classification
of simple geodesics crossing cusp region.

Lemma 4.11. Let M be a surface with a cusp; such a surface has a cusp region of area 2.
The portion of a complete simple geodesic lying in a cusp region of area less than 2 always
meets the horocyclic foliation perpendicularly.

Proof. Let H ∼= {z : Imz > 1}/[z 7→ z+2] be the cusp region of area 2. It has a fundamental
domain D = {x+ yi : |x| < 1, y > 1}. If γ is a complete geodesic crossing H, then it can be
lifted to γ̃, a geodesic in H2 crossing D.

If γ̃ has one end ∞, then it intersects ∂H perpendicularly.
Otherwise, as we showed in the figure above, γ̃ extend to a semicircle centered on the

real axis with radius r > 1 (because it crosses D). γ̃ and γ̃ + 2 intersects at some point in
H2.

Thus γ will intersect itself at some point in the surface M . This is because if M is a
hyperbolic surface without boundary, then our geodesics are complete. So it intersects itself.
However, if M has boundary, we only consider the geodesics with both end complete or
intersects boundary perpendicularly. Thus the claim also remains true.

Remark 4.11.1. Now when we say a sufficiently small cusp region always has area less than
2, so that satisfies the condition above.
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Now we will prove our main theorem. (definition of type is in 4.9.1)

Theorem 4.12 (Structure Theorem).

1. x ∈ Ei is isolated if and only if x is of type 1;

2. x is boundary of a gap and not isolated if and only if x is of type 2;

3. x is not a boundary of a gap if and only x is of type 3;

Furthermore, every gap has one endpoint of type 1 and another endpoint of type 2.

We only prove the case when the boundary component βi doesn’t represent a cusp.

4.3.1 type 1

Lemma 4.13 (type 1 part). If x ∈ Ei is a point which lies on a geodesic γx of type 1, then
x is an isolated point.

Proof. If the other end perpendicularly intersects boundary, by Proposition 4.10, we can
find a pants P containing the geodesic γx starts from x. A slight translation of γx to γ′

x let
the other end deviate from right angle. So it is not a simple geodesic in our context (see
4.3.1).

If the other end up a cusp, then by Proposition 4.8, we can also find a pants P containing
the geodesic γx across x. Then from the universal covering of pants, for any points y ∈
Hi near x, γy is contained in the pants and intersects cusp region at the other end not
perpendicularly. So by Lemma 4.11 it can’t be simple.

If the other end spirals to a boundary βj, then by 4.10, there’s a pants P bounding βi

and βj. It’s easy to see that little perturbation of γx to one side let it intersect βj, while that
to another side let it intersect itself on P . So x is also isolated.

4.3.2 type 2

Lemma 4.14 (type 2 part). If x ∈ Ei is a point which lies on a geodesic of type 2, then x
is not an isolated point and one of the end of a gap.

Proof. Let γx be the geodesic perpendicularly starting at x, γx spirals to a simple geodesic
Ω = Ω(γx).

Similar to the proof of Proposition 4.10, we know that Ω and βi bounds a pair of pants.
So one side of x in Hi is a gap.

Now we will construct a series of closed simple geodesics Ωi, to which γyi spirals, such
that lim

n→∞
yi = x, whose existence can be also guranteed by the existence of pants bounding

a pair of pants with βi.
Case 1 When M −Ω has only 1 components, let u, v be two points close enough lies on

the two sides of Ω. Minimal geodesic αu,v between u, v can be enclosed into a simple closed
quasi-geodesic and then homotopic to a simple geodesic α intersecting Ω at only 1 point z.
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Now Let αn (blue line) be a simple curve starts at u, goes along a n round twist ϕn(u, v) of
geodesic [u, v] to v and then goes along αu,v back to u.

We now construct the twist ϕn. Choose a collar neighborhood U ∼= S1×I of Ω. We might
assume u, v is on S1 × {0}, S1 × {1}, respectively. Then (x, y) 7→ (x + 2πny, y) conjugates
to ϕn in U .

Since αn is simple, it is free homotopic to a simple closed geodesic Ωn, to which γyi spirals.
We will next prove that yi converges to x.

Denote [αn] to be the class of αn in the fundamental group Γ = π1(M,u). Then Γ
acts discretely on a convex subsurface N of H2, that is, the universal covering of M , with
fundamental domain D ∋ ũ, where ũ is the base point of N . Then [αn] = [Ω]n[α0]. As
a loxodromic element in Aut(H2), the fix point of [αn] on ∂H2 converges to the fix points
of [Ω]. Thus the other end of γyn in N , which is exactly the attracting fix point of [αn],
converges to the attracting fix point of [Ω], which means yi → x.

Case 2 If M − Ω has 2 components P1, P2, then assume βi is in P1.
Case 2.1 If P2 contains a boundary component βj, then consider the shortest path from

βi to βj, denote it α. α intersects Ω at only 1 point. So twist it by ϕn as we did in case 1,
and we obtain αn = ϕn(α). α

′
n be the geodesic free homotopic to αn.

Denote [αn] = [α′
n] to be an loxodromic element in the fundamental group Γ = π1(M,u)

acting on the universal covering N ⊂ H2 of M , such that [α′
n] send yi = α′

n ∩ βi to α′
n ∩ βj

and preserves the complete line αn. Then [αn] = [Ω]n[α0]. So the attracting and repelling
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fixed point converges to the attracting and repelling fixed point of [Ω], respectively, which
means yi → x.

Case 2.2 If P2 contains no boundary components, since P2 is not a disk, there’s a simple
geodesic α′ inside P2, which is not homotopic to Ω. Now let α be a geodesic starts from βi,
spiraling to α′. Then we can assume α has only one intersection with Ω.

Just like we did in Case 2.1, we can twist it to be αn = ϕn(α) and canonically define an
[αn] as a loxodromic element in Γ = π1(M,u) acting on the universal covering N ⊂ H2 of
M . We have [αn] = [Ω]n[α0] and then yi → x.

4.3.3 type 3

To prove the type 3 part, we need more delicate analysis to find out approximations yi → x
on two side of x. The example of a nontrivial lamination is given in 3.8. Here we quote a
lemma from Mirzakhani ([Mir07a] Lemma 4.7 ).

Lemma 4.15. Assume that

c ∩ {γx(t)|0 ≤ t < t2} = ∅.

For any ϵ > 0 there exist δ, L > 0 such that if (α, t0, t1, c) is a δ-good geodesic segment
and L ≤ t1 − t0, then η is a simple quasi geodesic. Let η̂ denote the geodesic representative
of η and y = η̂ ∩ βi. Then

d(y, x) < ϵ.

Furthermore, y lies on the right (left) side of x if and only if (α, t0, t1, c) is positive
(negative).

Remark 4.15.1. Here γx is the parameter representation of geodesic ray starting from
x = γx(0). A δ-good geodesic (α, t0, t1, c) is to say that

1. l(c) ≤ δ

2. The angle between c and α at each endpoint is in (
π

2
− δ,

π

2
+ δ).

3. c meets the α in only two endpoints.
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Such a δ-good geodesic can be obtained by the density of any leaf in the non-trivial
lamination.

η is a piecewise geodesic curve starting at x, going along γx(t) for t ≤ t2 = inf{t :
γx(t) ∈ c}, (γx(t2) is the first intersection of c and γx), and spirals to the simple closed curve
consisting of α([t0, t1]) and c.

Now the y’s constructed by this lemma instantly proved our last part of type 3 geodesics.

Lemma 4.16 (type 3). If x ∈ Ei is a point which lies on a geodesic of type 3, then x is not
a boundary of a gap, or that is to say, x can be approximated from both sides in Ei.

Till now, we have already proved the structure theorem.

4.4 Proof of the Generalized McShane’s Identity

Now we prove the Generalized McShane’s Identity. At first, we describe the structure of Ei.
We need the collar lemma to describe the behavior of geodesics near a closed geodesic.

Lemma 4.17 (Collar lemma). Let γ be a close simple geodesic on the hyperbolic surface S,
then the collar neighborhood

C[γ] = {p : dist(p, γ) ≤ w(ℓγ(S))}

is an embedded annulus, where

w(x) = sinh−1(
1

sinh(x)
)

is the width.

In the collar neighborhood every point has a unique geodesic passing it and perpendicular
to γ, hence we can give it a coordinate describing by the oriented distance to γ and the
perpendicular foot on the geodesic which called the Fermi coordinate, as the picture shows.
More details are available in [Bus92].
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Theorem 4.18. The set Ei is measure zero.

Proof. By theorem 4.6, E is a null set on the surface. We choose a copy of the surface and
past the two surfaces along the boundary component βi. Then in the half collar neighborhood
of βi on the surface, we have measure relation

µ(E ∩ C[βi]) = sinhw × µ(Ei).

Hence µ(Ei) = 0 from µ(E) = 0.

Theorem 4.19. The intersection set Ei is a set and homemorphic to the Cantor set union
countably many isolated points.

Proof. There are at most countably many isolated points in Ei, let Ii be the set of the
isolated points, which by theorem 4.12 are the intersections of the geodesics with the other
end approaches to boundary components, i.e., spiraling to it or perpendicular to it. The
Ei− Ii has no isolated points, and it is closed from the argument following 4.6. Because this
set has measure zero and closed hence its complementary is open dense subset of βi which
leads that Ei is totally disconnected.

Then the result follows from any perfect totally disconnected compact metric space is
homemorphic to Cantor set.

Now we prove the theorem 4.3.

Proof. Let Hi be the set of connected components in Gi = Ii ∪ (βi − Ei). By the Theorem

4.12, we can assume that βi − (Ei − Ii) =
⋃
h∈Hi

(ah, bh), where ah, bh are the ends of h. By

theorem 4.18,

L1 =
∑
h∈Hi

|bh − ah|,

where |bh − ah| denotes the geodesic length on the surface.

18

408 



We state the correspondence between pair of pants and Hi.
Case 1. For an embedded pair of pants bounding by the boundary β and two non-

peripheral geodesics γ1, γ2. There are two intervals in this pants, namely, the two parts
bounding by one geodesic spiraling to γ1 and one geodesic spiraling to γ2,corresponding the
interval (y1, z1) and (y2, z2) in 3.2 and the two red parts in above graph.

The ends of the intervals spiral to non-peripheral geodesics hence they are boundary
points. There are no boundary points in the intervals otherwise the geodesic passing one
boundary point entending off the pants forcing it must be perpendicular to the boundary
which is impossible. Hence this intervals are intervals in the corresponding Hi indeed.

Case 2. For an embedded pair of pants bounding by the boundaries β and β′ and one
non-peripheral geodesic γ1. The two points which the passing geodesics spiraling to γ1 are
boundary points and the interval between them intersecting with the geodesic perpendicular
to both γ and γ′ is indeed an interval because and boundary points on it corresponding to
a geodesic extending off the pants which must intersect with γ1 and hence perpendicular to
it and this is impossible.

This corresponds ti the interval (y1, y2) containing w1, w2 in 3.2 and the right red part in
the above graph.

For interval (ah, bh) on β, suppose ah corresponds to a geodesic α1 spiraling to a non-
peripheral closed geodesic γ1. There exists a unique embedded pair of pants containing γ1
and α1 with another boundary. We have:

Case 1. The another boundary is a nonperipheral geodesic γ. By the above cor-
respondence, ah is in an interval (ah, b

′) and because (ah, bh) is an interval hence either
(ah, bh) ⊂ (ah, b

′) or (ah, b
′) ⊂ (ah, bh) which deduce (ah, bh) = (ah, b

′) otherwise we will find
a boundary point in an interval, a contradiction.

If we assume β, γ1, γ2 have lengths L, ℓ1, ℓ2. This case states that such an embedded pants
corresponds to the sum of two interval, which is D(L, ℓ1, ℓ2).

Case 2. The another boundary is a different boundary. In this case, the geodesics
passing ah, bh spiral to γ1 and because there exists an interval ending them, the interval in
above construction must be (ah, bh), having length R(L, ℓ1, ℓ2).

With these observation, and the length sum of βi, we get the desired identity.

5 Moduli space

In this section we introduce some basic notations about Teichmüller spaces and Fenchel-
Nielsen coordinates then we introduce the multi curves and their symmetry group.

5.1 Teichmüller space

The moduli problem for a class of Riemann surfaces is to find a set of isometry invariants
which determine the surface up to isometry. Teichmüller space is a space that parametrizes
complex structures on a surface up to the action of homeomorphisms that are isotopic to
the identity homeomorphism.
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To be exactly, let S be a topological space of genus g, which is the base space.

Definition 5.1. A marked Riemann surface is a pair (X, f), where X is a complete hyper-
bolic surface and f : S → X is a homeomorphism.

We need the concept of isotopy class.

Definition 5.2. Two homeomorphisms of topological spaces f : A → B, g : A → B are
isotopic if there exists a continuous map Φ : [0, 1] × A → B such that Φ(0, .) = f and
Φ(1, .) = g and for every s ∈ (0, 1), Φ(s, .) is a homeomorphism.

Definition 5.3. (X, f) and (X ′, f ′) are marking equivalent if f−1f ′ : X → X ′ is isotopic
to a conformal map. Teichmüller space is the equivalence classes of all marked Riemann
surfaces,namely,

T (S) = { marked Riemann surfaces }/marking equivalence.

In this article, we are interesting about those hyperbolic surfaces with geodesic boundary
components of fixed length, hence we consider the similar definition.

Let A = ∂S consist of finitely many boundary components and L = (Lγ) ∈ R|A|
+ where γ is

one of the boundary components of S and |A| equals to the number of boundary components.

Definition 5.4. The Techimüller space T (S, L) consists of the remarked Riemann surfaces
with geodesic components of given lengths, i.e., for any boundary component β in A,

ℓβ(X) = Lβ.

If Sg,n is an oriented connected surface of genus g with n boundary components (β1, · · · , βn).
We fixed these notations. We write

Tg,n(L) = Tg,n(L1, · · · , Ln) = T (Sg,n, L1, · · · , Ln)

as the Teichmüller space of hyperbolic structures on Sg,n with geodesic boundary components
of lengths L1, · · · , Ln.

Particularly, a boundary geodesic of length 0 degenerate to a cusp.
Next we introduce the mapping class group

Definition 5.5. The mapping class group Mod(S) of surface S is the isotopy classes of
orientation preserving homemorphisms h : S → S such that h(βi) = βi for all i. We write
Modg,n = Mod(Sg,n).

For h ∈ Mod(S), h acts on T (S) → T (S) via the rule

(X, f) 7→ (X, f ◦ h).

Definition 5.6. The quotient space of the Teichmüller space with mapping class group

Mg,n(L) = M(Sg,n, ℓβi
= Li) = Tg,n(L)/Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n geodesic boundary
components of of length ℓβi

= Li.
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Remark 5.6.1. For T (S) and Mod(S) defined above, we will omit the symbol S when no
confusion.

Example 5.7. Consider an example of pair of pants. Let S = S0,3 be a pair of pants.
From hyperbolic geometry, we know for every 3 positive reals β1, β2, β3, there exists unique

hyperbolic hexagon with the lengths of the 3 disjoint sides equaling to β1, β2, β3 respectively
and all its angles are right angle. we can past the hexagon with a copy of it along the 3
other sides to get a pair of pants with geodesic boundary components of lengths β1, β2, β3.
For a pair of pants, it can decompose to two same hexagon by cutting along the geodesics
perpendicular to two boundary components. Hence the lengths of the boundary components
uniquely determine a pair of pants.

By remarking, we can easily see that T0,3(S) = R3
+. And the mapping class group denote

some symmetry, which is Mod0,3(S) = S3. The moduli space M0,3(S) = T0,3(S)/Mod0,3(S)
and its fundamental domain is F = {(x, y, z) : 0 < x ≤ y ≤ z}.

5.2 The Fenchel-Nielsen coordinates

A hyperbolic surface of genus g with n geodesic boundary components has pants decompo-
sition to 2g−2+n pair of pants by cutting along 3g−3+n closed simple curves. Fix such a
system of pants decomposition of Sg,n and let P = {αi}k be the closed simple curves, where
k = 3g − 3 + n. The Fenchel-Nielsen coordinates associated to P is consist of the k length
parameters ℓαi

and k twisting parameters ταi
, we have isomorphism

Tg,n(L) ∼= RP
+ × RP

via the rule
X 7→ (ℓαi(X), ταi

(X)).

Remark 5.7.1. The concrete content about the Fenchel-Nielsen coordinates could be found
in many textbooks, such as [Bus92].

We want to explain the twisting parameters clearly which is important in the integration
formula later.

5.2.1 pasting

Consider two hyperbolic surfaces S and S ′ with two closed geodesics boundaries γ, γ′ of the
same length, and the two geodesics are have the same orientation, i.e., the S and S ′ are either
both on the left hand side or on the right hand side. Assume γ : S1 → S and γ′ : S1 → S ′ be
the parametrizations. For α ∈ R, we past the two surfaces along the geodesics with marked
twisting parameter α by identifying points on the boundary

γ(t) ≡ γ′(α− t) := γα(t), t ∈ S1,

and let
Fα = S + S ′(mod identification on γ and γ′)
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be the surface we get after pasting and let

πα : S ⊔ S ′ → F

be the canonical projection. In particular, π denotes the trivial homeomorphism and F = F 0

be the trivial pasting.

5.2.2 twisting in the collar neighborhood

Recall in the collar neighborhood, we have Fermi coordinate (ρ, t). Let C[γ] and C[γα] be
the collar neighborhood in F and Fα. Let’s construct a twist in the collar neighborhood.

Consider a homemorphism Tα : C[γ] → C[γα]

Tα(ρ, t) = (ρ, t+ α
w + ρ

2w
)

where w is the width of collar.
Consider twist homomorphism twα

γ : F → Fα as

twα
γ (p) =

{
Tα, if p ∈ C[γ],
πα ◦ π−1(p), if p ∈ F − C[γ].

When α = ℓγ(F ), the twist homeomorphism ϕγ = twα
γ is called an elmentary Dehn twist.

See the following graph.
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5.3 multi curve

Definition 5.8. Let η =
t∑

i=1

ciηi be a multi curve where ηi’s are disjoint, essential and

non-peripheral closed simple curves of Sg,n, namely each one is not homotopic to the other
or any boundary components, and ci ≥ 0 for 1 ≤ i ≤ t. And Let Γ = (η1, · · · , ηt) be the
marking. Fixed these notations.

Notice that we must have t ≤ 3g − 3 + n.
Cutting Sg,n along η1, · · · , ηt we get the cut surface Sg,n(η) which is possible disconnected.

Each ηi produces two boundary components η1i , η
2
i on Sg,n(η), hence Sg,n(η) has n + 2t

boundary components β1, · · · , βn, η
1
1, η

2
1, · · · , η1t , η2t .

Suppose Sg,n(η) has s connected components Sgi,ni
in which let Ai be the boundary of

Sgi,ni
with ni = |Ai| and gi denote the genus of Sgi,ni

. For a⃗ ∈ Rt
+, let

M(Sg,n(η), ℓΓ = a⃗, ℓβ = L)

be the moduli space of hyperbolic Riemann surface homemorphic with fixed lengths ℓηi =
ai, ℓβj

= Lj. Obviously, this space is actually the product of the moduli space of the con-
nected componnets, namely,

M(Sg,n(η), ℓΓ = a⃗, ℓβ = L) =
s∏

i=1

M(Sgi,ni
, LAi

)

where LAi
is the length tuples of the boundary of Sgi,ni

.

Remark 5.8.1. We can regard the ηi’s as geodesics on Sg,n if we set the base space as
hyperbolic Riemann surface.

Later we will consider the moduli space which have fixed lengths on its boundaries and
the multi curve.

5.4 Symmetry group of multi curve

For a multi curve η =
t∑

i=1

ciηi as above. We consider the symmetry group of η that essentially

preserve the ηi’s as follows.

Definition 5.9. Let C be the homotopy classes of some closed simple curves on Sg,n, we
define

Stab(C) = {h ∈ Modg,n : h · C = C}
to be the subgroup of the mapping class group that preserving the homotopy classes.

Let

Sym(η) = Stab(η)/
t⋂

i=1

Stab(ηi)

be the symmetry group of η.
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Remark 5.9.1. This group is similar with the permutation group of η1, · · · , ηt. For example,
if c1 = c2 = 1, we can see that |Sym(η1 + η2)| = 2 iff there exists h ∈ Modg,n satisfying
h · η1 = η2, h · η2 = η1, i.e., a homemorphism between Sg,n(η1) and Sg,n(η2).

5.5 Modg,n-orbit of simple closed curves

Assume [γ] be the homotopy class of a simple closed curve γ on Sg,n. Define the Modg,n-orbit
of γ as

Oγ = {[h · γ] : h ∈ Modg,n},
which is determined by γ.

For a multi curve η =
t∑

i=1

ciηi, let Γ = (η1, · · · , ηt). We can define the Modg,n-orbit of Γ

in the same way, namely, let

OΓ = {[h · Γ] : h ∈ Modg,n},

where [h · Γ] = ([h · γ1], · · · , [h · γt]).
For a function f : R+ → R+, we set

fη(X) =
∑

[α]∈Mod·[η]

f(ℓα(X)),

where ℓα(X) =
t∑

i=1

ciℓγi(X). This defines a function fη : Mg,n(L) → R+.

6 Integration over moduli space

In this section, through the preparation in previous section, we can deduce the integration
formula.

Follow the notation in Section 5.3. Let Volg,n(Γ, x⃗, β, L) denote the volume ofM(Sg,n(η), ℓΓ =
a⃗, ℓβ = L). We write Volg,n(L) when we consider only boundary components.

The main theorem of this part followed [Mir07a].

Theorem 6.1. The integral of fη over moduli space Mg,n(L) with respect to the Weil-
Petersson volume form is given by∫

Mg,n(L)

fη(X)dX =
2−M(η)

|Sym(η)|

∫
x⃗∈Rt

+

f(|x⃗|)Volg,n(Γ, x⃗, β, L)x⃗dx⃗,

where |x⃗| =
t∑

i=1

cixi and

M(η) = |{i : ηi separates off a one-handle from Sg,n}|.
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Remark 6.1.1. Follow the notation in 5.3, we can see that naturally we should have

Volg,n(Γ, x⃗, β, L) =
s∏

i=1

Volgi,ni
(LAi

).

We will see in the calculation section this formula reduces the volume of moduli space to the
volume of “smaller” space.

6.1 Symplectic sructure over Teichmüller space

Definition 6.2. Let M be a smooth manifold M . A nondegenerate 2-form on M is a 2-form
ω such that ωp is a nondegenerate 2-covector for each p ∈ M . A symplectic form on M is a
closed nondegnerate 2-form. Such a form sometimes is called a symplectic structure.

Remark 6.2.1. We must remind ourselves that in this article we will not deal strictly with
this concept.

Example 6.3. With standard coordinates on R2n denoted by (x1, · · · , xn, y1, · · · , yn), the
standard sympletic form on R2n is

ω =
n∑

i=1

dxi ∧ dyi.

In his celebrated paper [Wol82], Wolpert proves that the Weil-Petersson symplectic struc-
ture has a simple form in Fenchel-Nielsen coordinates.

Theorem 6.4 (Wolpert). The Weil-Petersson sympletic form is given by

ωwp =
k∑

i=1

dℓαi
∧ dℓτi .

6.2 Integration under covering maps

Let π : X → Y be a covering maps and ω is a volume form on Y then we can define a volume
form on X by pushing back. To be exactly, η = π∗ω, i.e.,

(π∗ω)p = dπ∗
p(ωF (p)),

which acts on a vector v ∈ TpM by

(π∗ω)p(v) = ωF (p)(dFp(v)).

For f ∈ L1(X, η), the push forward

(π∗f)(x) =
∑

y∈π−1x

f(y)

defines a function in L1(Y, ω) and by integrating on atlases we get∫
X

fdη =

∫
Y

(π∗f)dω.
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6.3 Coverings and volume forms of the Mg,n(L)’s

Recall OΓ = {[h · Γ] : h ∈ Modg,n}. To prove Theorem 6.1, it is supposed that we should
extend the moduli space Mg,n(L). To view this, we see that the function fη is defined as
sum over Modg,n-orbit of multi-curve η, namely, we have

fη(X) =
∑

h∈Modg,n/Stab(η)

f(ℓh·η(X)).

Recall the symmetry group of η, Sym(η), which means some extra symmetry on η. If
g ∈ Sym(η), then

η =
t∑

i=1

ciηi =
t∑

i=1

cig · ηi,

hence when ηj = g · ηi, ci = cj. From this, the value of ci’s in an orbit of the action of the
cyclic group generated by g is constant. So for g ∈ Sym(η) and h ∈ Modg,n/Stab(η) the
formula ℓgh·η(X) = ℓh·η(X) holds.

We can rewrite the integral formula from above analysis and the definition 5.9 of Sym(η)∫
Mg,n(L)

fη(X)dX =

∫
Mg,n(L)

∑
[α]∈Mod·[η]

f(ℓα(X))dX

=

∫
Mg,n(L)

∑
h∈Modg,n/Stab(η)

f(ℓh·η(X))dX

=
1

|Sym(η)|

∫
Mg,n(L)

∑
h∈Modg,n/

⋂t
i=1 Stab(ηi)

f(ℓh·η(X))dX

Notice that the sum of integral part is over the Modg,n-orbit of Γ = (η1, · · · , ηt). Once
we calculate the integral by choosing x⃗ and collecting (X, h) with ℓh·ηi(X) = xi the inte-
gral is transformed to calculate some special moduli space with fixed lengths on boundary
components and OΓ, which is less complicated than original integral.

There exists a unique simple geodesic in the homotopy class of a simple closed curve,
thus we define

Definition 6.5. Set Mg,n(L)
Γ be the set of pairs

{(X, γ) : X ∈ Mg,n(L), γ = (γ1, · · · , γt) ∈ OΓ, γi’s are closed geodesics on X}.

Let πΓ : Mg,n(L)
Γ → Mg,n(L) be the natural projection πΓ(X, γ) = X.

By the above analysis, this space is actually the marked hyperbolic structures on X
carried by

GΓ = Modg,n/

t⋂
i=1

Stab(ηi),
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hence we have
Mg,n(L)

Γ = Tg,n(L)/GΓ.

Next, we will reduce this volume to the volume of “smaller” space. We give an intuitive
explanation of the process.

Consider the length function LΓ : Mg,n(L)
Γ → Rt defined as

LΓ(X, γ) = (ℓγ1(X), · · · , ℓγt(X)).

In view of integration, we consider the level set Mg,n(L)
Γ [⃗a] := L−1

Γ (⃗a).
We have a map

π : Mg,n(L)
Γ [⃗a] → M(Sg,n(η), ℓΓ = a⃗, ℓβ = L)

defined in such way:
Given (X, η) ∈ Mg,n(L)

Γ ,we take a lift X̃ ∈ Tg,n(L) of X and maps it to the point
corresponding to its cut surface in M(Sg,n(η), ℓΓ = a⃗, ℓβ = L).

For every twist ϕt
α = twt·ℓα(X)

α the equation ℓα(X) = ℓα(tw
t
α(X)) holds. Hence the

twisting along each components of η induced (S1)k action on the level set. Under this action
the Weil-Petersson form is invariant hence induced a symplectic structure on the quotient
space of the action π : Mg,n(L)

Γ [⃗a] and the images of the action under π is actually invariant.
In fact, these two spaces are essentially the same up to simplecteomorphism.

The actions of S1-actions on η mean normalizing the length parameters and to collect
the twisting parameters determining different hyperbolic structures. In general, we can see
the twisting parameter of ηi are between 0 and ℓi and when ηi separates a torus of genus 1,

the twsiting parameter is between 0 and
ℓi
2
. The exceptions form a closed set of measure 0

in Mg,n(L)
Γ [⃗a].

Thus for any open set U in M(Sg,n(η), ℓΓ = a⃗, ℓβ = L), we have

Vol(π−1(U)) = 2−M(η)Vol(U)a1 · · · at.

Hence we can deduce that∫
Mg,n(L)

fη(X)dX =
1

|Sym(η)|

∫
Mg,n(L)

∑
h∈Modg,n/

⋂t
i=1 Stab(ηi)

f(ℓh·η(X))dX

=
1

|Sym(η)|

∫
x⃗∈Rt

+

(∫
Mg,n(L)Γ[x⃗]

dX

)
f(|x⃗|)dx⃗

=
1

|Sym(η)|

∫
x⃗∈Rt

+

f(|x⃗|)2−M(η)Volg,n(Γ, x⃗, β, L)x1 · · · xtdx⃗

=
2−M(η)

|Sym(η)|

∫
x⃗∈Rt

+

f(|x⃗|)Volg,n(Γ, x⃗, β, L)x⃗dx⃗,

as desired.
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7 Examples of Calculation

In [Mir07a], Mirzakhani derives the recursive formula of the border surface Vg,n(L). In this
section, we provide a few examples to realize the recursion process instead of stating the
complete result. Notice Vol0,3(L) = 1.

7.1 M1,1(L)

There is only one boundary component on S1,1, hence we consider only F1 in the generalized
McShane’s identity, and when {α1, α2} ∈ F1, it is supposed that α1 = α2. Hence the
generalized McShane’s identity reduces to∑

α

D(L, ℓα(X), ℓα(X)) = L,

where the sum is over all simple closed geodesics on X ∈ M1,1(L). Actually,they are the
Mod1,1(L)-orbit of the non-peripheral closed geodesics and cutting along the geodesic we get
a pair of pants with two equaled boundary components.

Integrating the formula over moduli space, we get

LVol1,1(L) =

∫
M1,1(L)

∑
α

D(L, ℓα(X), ℓα(X))dX,

Take the derivative of L, and by integration formula 6.1,

∂

∂L
LVol1,1(L) =

∫
M1,1(L)

∑
α

∂

∂L
D(L, ℓα(X), ℓα(X))dX

=

∫ ∞

0

∂

∂L
D(L, t, t)Vol0,3(t, t, L)dt

=

∫ ∞

0

t(
1

1 + et+
L
2

+
1

1 + et−
L
2

)dt

=

∫ ∞

L
2

t− L
2

1 + et
dt+

∫ ∞

−L
2

t+ L
2

1 + et
dt

=

∫ ∞

0

2t

1 + et
dt+

∫ L
2

0

(
L

2
− t)(

1

1 + et
+

1

1 + e−t
)dt

=

∫ ∞

0

2t

1 + et
dt+

∫ L
2

0

(
L

2
− t)dt

=
π2

6
+

L2

8
,

hence

Vol1,1(L) =
π2

6
+

L2

24
.

Notice from the above calculation we can get

∫ ∞

0

xH(x, L)dx =
2

3
π2 +

L2

2
.
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7.2 M0,4(L)

Consider the hyperbolic surface X homemorphic to S0,4 with geodesic boundary components
β1, β2, β3, β4 with lengths L = (L1, L2, L3, L4).

Before we apply the identity, we should study the set F1 and F1,i.
For {α1, α2} ∈ F1, if cutting along them the cut surface has at most two connected

components. Two connected components will force the original surface has genus more
than zero, a contradiction. If there are two components, the two components must have 3
and 2 boundary components corresponding to a pair of pants and an embedded annulus, a
contradiction from the fact that there is no hyperbolic structure on annulus.

Hence we consider only the sets F1,i. Fixed i, the set F1,i is a complete homotopy class,
i.e., F1,i = Mod0,4 · [γ] for γ ∈ F1,i. And the cut surface is obvious a pair of pants.

Similarly,
4∑

i=2

∑
γ∈F1,i

R(L1, Li, lγ(X)) = L1,

and

∂

∂L1

L1Vol0,4(L) =

∫
M0,4(L)

n∑
i=2

∑
γ∈F1,i

∂

∂L1

R(L1, Li, lγ(X))dX

=

∫ ∞

0

4∑
i=2

∂

∂L1

R(L1, Li, t)Vol0,3(t, Lj, Lk)tdt

=

∫ t

0

4∑
i=2

1

2
(H(t, L1 + Li) +H(t, L1 − Li))tdt

=
4∑

i=2

1

2
(
2

3
π2 +

1

2
(L1 + Li)

2 +
2

3
π2 +

1

2
(L1 − Li)

2)

= 2π2 +
3

2
L2
1 +

4∑
i=2

1

2
L2
i ,

thus

Vol0,4(L) = 2π2 +
1

2
(L2

1 + L2
2 + L2

3 + L2
4).

7.3 M1,2(L)

Let’s consider a little more complicate example, the moduli space of S1,2(L) with boundary
components β1, β2 of fixed lengths L = (L1, L2).

As usual, we consider the sets F1 and F1,i.
Case 1. For set F1, suppose {α1, α2} ∈ F1. Obviously α1 ̸= α2 and cutting along them we

get one connected component with 3 boundary components or two connected components
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with genus 1 and 3 boundary components which is impossible. And similarly, F1 is a complete
homotopy class.

Hence cutting along the two geodesics, we get a pair of pants. And by remark 5.9.1, the
symmetry group of the multi curve added by the two geodesics has two elements because
cutting along any one of them we get a surface homemorphic to S0,4.

Case 2. For set F1,2. Cutting along γ ∈ F1,2, we get an Y ∈ M1,1 and a pair of pants.
That means the geodesic separates off a torus with one boundary.

Hence write down the identity,∑
{α1,α2}∈F1

D(L1, lα1(X), lα2(X)) +
∑

γ∈F1,2

R(L1, L2, lγ(X)) = L1.

and

∂

∂L1

L1Vol1,2(L) =

∫
M1,2(L)

∑
{α1,α2}∈F1

∂

∂L1

D(L1, lα1(X), lα2(X)) +
∑

γ∈F1,2

∂

∂L1

R(L1, L2, lγ(X))dX

=
1

2

∫
x⃗∈R2

+

H(|x⃗|, L1)x1x2dx⃗+
1

2

∫ ∞

0

∂

∂L1

R(L1, L2, t)Vol1,1(t)tdt

=
1

2

∫ ∞

0

H(t, L1)
1

6
t3dt+

∫ ∞

0

1

4
(H(t, L1 + L2) +H(t, L1 − L2))(

π2

6
+

t2

24
)tdt

And we see that it suffices to calculate for every integer k ≥ 0, the following integral

I2k+1(t) =

∫ ∞

0

x2k+1 ·H(x, t)dx.

This will reduce to calculate the integral

I2k+1 = I2k+1(t, 0) =

∫ ∞

0

2x2k+1

1 + e
x
2

dx,

which relates to ζ(2k + 2). In fact, an explicit formula is appeared in [Mir07a] as

I2k+1(t)

(2k + 1)!
=

k+1∑
i=0

ζ2i(2
2i+1 − 4)

t2k+2−2i

(2k + 2− 2i)!
,

where k ≥ 0. Recall ζ(s) has unique pole at 1 and has value −1

2
at 0.

From this, we can deduce by easy calculation that

Vol1,2(L) =
1

192
(4π2 + L2

1 + L2
2)(12π

2 + L2
1 + L2

2).
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7.4 Summary of Calculation

From the above calculation, we can see the only concerned multi curves are those in F1 and
F1,i. For F1,i, it is a complete homotopy class, we just count how many torus with one
boundary it separates off.

For F1, we must notice the symmetry group and the separating property which com-
pletely determined by the topological structure on the base space Sg,n. And when we cut
along these multi curves we see that the remaining smaller space has less genus or less bound-
ary components and the sum of their numbers is strictly decreasing. Hence this afford an
algorithm to calculate the volume of moduli space of bordered surfaces.

In fact, the volume Volg,n(L) is a symmetric polynomial of L1, L2, · · · , Ln.

8 More about moduli space and its volumes

In a next paper [Mir07b], Mirzakhani applies the recursive formula of Volg,n(L) to the inter-
section theory on the moduli space of curves which can deduce the Witten conjecture. In
fact, these information are stored in the coefficients of the polynomials of the volume which
in this article are not mentioned.

From the last section of calculation and the pants decomposition, we can feel that some-
times the structure of moduli space is something more or less like combinatorics somehow.
Actually, in his proof of Witten conjecture, Kontsevich[Kon92] studied a combinatorial model
Mcomb

g,n for the moduli space of curves. In [etc10], the authors study the Kontsevich geometry
of the combinatorial Theichmüller space and attain many results including a formula parallel
to the recursive formula of Mirzakhani’s, which is very interesting. [Do] is a wonderful survey
of the related topics.
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